- 6. Use Definition 1.1 to prove each limit.
 - (a) $\lim_{x\to 3} (x^2 5x + 1) = -5$
 - (b) $\lim_{x\to -3} (x^2 + 3x + 8) = 8$
 - (c) $\lim_{x\to 2} x^3 = 8$
- 7. Find the following limits and prove your answers.
 - (a) $\lim_{x \to a} |x|$
 - (b) $\lim_{x \to 0} x^2 / |x|$
 - (c) $\lim_{x \to c} \sqrt{x}$, where $c \ge 0$. A
- 8. Let $f: D \to \mathbb{R}$ and let *c* be an accumulation point of *D*. Suppose that $\lim_{x\to c} f(x) = L$.
 - (a) Prove that $\lim_{x\to c} |f(x)| = |L|$.
 - (b) If $f(x) \ge 0$ for all $x \in D$, prove that $\lim_{x\to c} \sqrt{f(x)} = \sqrt{L}$.
- 9. Determine whether or not the following limits exist. Justify your answers. $rac{1}{2}$

(a) $\lim_{x \to 0^+} \frac{1}{x}$ (b) $\lim_{x \to 0^+} \left| \sin \frac{1}{x} \right|$ (c) $\lim_{x \to 0^+} x \sin \frac{1}{x}$

- 10. Prove Corollary 1.9
 - (a) by using Definition 1.1.
 - (b) by using Theorem 1.8 and the "Limit of a Sequence" theorem "If a sequence converges, its limit is unique.".
- 11. Prove Theorem 1.10. \Rightarrow
- 12. Finish the proof of Theorem 1.13.
- **13.** Let *f*, *g*, and *h* be functions from *D* into \mathbb{R} , and let *c* be an accumulation point of *D*. Suppose that $f(x) \le g(x) \le h(x)$, for all $x \in D$ with $x \ne c$, and suppose $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$. Prove that $\lim_{x\to c} g(x) = L$.
- **14.** Let $f: D \to \mathbb{R}$ and let *c* be an accumulation point of *D*. Suppose that $a \le f(x) \le b$ for all $x \in D$ with $x \ne c$, and suppose that $\lim_{x\to c} f(x) = L$. Prove that $a \le L \le b$.
- **15.** Let f and g be functions from D into \mathbb{R} and let c be an accumulation point of D. Suppose that there exist a neighborhood U of c and a real number M such that $|g(x)| \leq M$ for all $x \in U \cap D$. If $\lim_{x\to c} f(x) = 0$, prove that $\lim_{x\to c} (fg)(x) = 0$.

- (b) If f(D) is a bounded set, then f is continuous on D.
- (c) If c is an isolated point of D, then f is continuous at c.
- (d) If f is continuous at c and (x_n) is a sequence in D, then $x_n \to c$ whenever $f(x_n) \to f(c)$.
- (e) If f is continuous at c, then for every neighborhood V of f(c) there exists a neighborhood U of c such that $f(U \cap D) = V$.
- **2.** Let $f: D \to \mathbb{R}$ and let $c \in D$. Mark each statement True or False. Justify each answer.
 - (a) If f is continuous at c and c is an accumulation point of D, then $\lim_{x\to c} f(x) = f(c)$.
 - (b) Every polynomial is continuous at each point in \mathbb{R} .
 - (c) If (x_n) is a Cauchy sequence in D, then $(f(x_n))$ is convergent.
 - (d) If $f: \mathbb{R} \to \mathbb{R}$ is continuous at each irrational number, then f is continuous on \mathbb{R} .
 - (e) If f: ℝ → ℝ and g: ℝ → ℝ are both continuous (on ℝ), then f ∘g and g ∘f are both continuous on ℝ.
- 3. Let $f(x) = (x^2 + 4x 21)/(x 3)$ for $x \neq 3$. How should f(3) be defined so that f will be continuous at 3? \Rightarrow
- 4. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + 3x 5$. Use Definition 2.1 to prove that f is continuous at 3.
- Find an example of a function f: R → R that is continuous at exactly one point. A
- 6. Prove or give a counterexample for each statement.
 - (a) If f is continuous on D and $k \in \mathbb{R}$, then kf is continuous on D.
 - (b) If f and f+g are continuous on D, then g is continuous on D.
 - (c) If f and fg are continuous on D, then g is continuous on D.
 - (d) If f^2 is continuous on D, then f is continuous on D.
 - (e) If f is continuous on D and D is bounded, then f(D) is bounded.
 - (f) If f and g are not continuous on D, then f + g is not continuous on D.
 - (g) If f and g are not continuous on D, then fg is not continuous on D.
 - (h) If $f: D \to E$ and $g: E \to F$ are not continuous on *D* and *E*, respectively, then $g \circ f: D \to F$ is not continuous on *D*.
- 7. Prove or give a counterexample: Every sequence of real numbers is a continuous function. ☆
- 8. Consider the formula

$$f(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n}.$$

Let $D = \{x : f(x) \in \mathbb{R}\}$. Calculate f(x) for all $x \in D$ and determine where $f: D \to \mathbb{R}$ is continuous.

Limits and Continuity

- **9.** Define $f: \mathbb{R} \to \mathbb{R}$ by f(x) = 5x if x is rational and $f(x) = x^2 + 6$ if x is irrational. Prove that f is discontinuous at 1 and continuous at 2. Are there any other points besides 2 at which f is continuous?
- *10. (a) Let $f: D \to \mathbb{R}$ and define $|f|: D \to \mathbb{R}$ by |f|(x) = |f(x)|. Suppose that f is continuous at $c \in D$. Prove that |f| is continuous at c.
 - (b) If |f| is continuous at *c*, does it follow that *f* is continuous at *c*? Justify your answer.
- *11. Define max (f, g) and min (f, g) as in Example 2.11. Show that

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g| \text{ and } \min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

- **12.** Let $f: D \to \mathbb{R}$ and suppose that $f(x) \ge 0$ for all $x \in D$. Define $\sqrt{f}: D \to \mathbb{R}$ by $\sqrt{f(x)} = \sqrt{f(x)}$. If f is continuous at $c \in D$, prove that \sqrt{f} is continuous at c.
- *13. Let $f: D \to \mathbb{R}$ be continuous at $c \in D$ and suppose that f(c) > 0. Prove that there exists an $\alpha > 0$ and a neighborhood U of c such that $f(x) > \alpha$ for all $x \in U \cap D$.
- **14.** Let $f: D \to \mathbb{R}$ be continuous at $c \in D$. Prove that there exists an M > 0 and a neighborhood U of c such that $|f(x)| \le M$ for all $x \in U \cap D$.
- 15. Complete the proof of Theorem 2.14 by showing that $H \cap D = f^{-1}(G)$.
- *16. Let $f: \mathbb{R} \to \mathbb{R}$. Prove that f is continuous on \mathbb{R} iff $f^{-1}(H)$ is a closed set whenever H is a closed set.
- 17. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Prove that there exists $k \in \mathbb{R}$ such that f(x) = kx, for every $x \in \mathbb{R}$.
- **18.** Suppose that $f: (a, b) \to \mathbb{R}$ is continuous and that f(r) = 0 for every rational number $r \in (a, b)$. Prove that f(x) = 0 for all $x \in (a, b)$.
- **19.** Suppose $1 \le c \le \sqrt[3]{3}$ and define a sequence (s_n) recursively by $s_1 = c$ and $s_{n+1} = c^{s_n}$ for all $n \in \mathbb{N}$.
 - (a) Prove that (s_n) is an increasing sequence.
 - (b) Prove that (s_n) is bounded above.
 - (c) Prove that (s_n) converges to a number *b* such that $b = c^b$.
 - (d) Find the value of the continued power $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$.

3 EXERCISES

Exercises marked with * *are used in later sections, and exercises marked with* A *have hints or solutions in the back of the chapter.*

- 1. Mark each statement True or False. Justify each answer.
 - (a) Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f(D) is compact.
 - (b) Suppose that $f: D \to \mathbb{R}$ is continuous. Then, there exists a point x_1 in D such that $f(x_1) \ge f(x)$ for all $x \in D$.
 - (c) Let D be a bounded subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f(D) is bounded.
- 2. Mark each statement True or False. Justify each answer.
 - (a) Let $f: [a, b] \to \mathbb{R}$ be continuous and suppose f(a) < 0 < f(b). Then there exists a point c in (a, b) such that f(c) = 0.
 - (b) Let $f: [a, b] \to \mathbb{R}$ be continuous and suppose $f(a) \le k \le f(b)$. Then there exists a point $c \in [a, b]$ such that f(c) = k.
 - (c) If $f: D \to \mathbb{R}$ is continuous and bounded on *D*, then *f* assumes maximum and minimum values on *D*.
- **3.** Let $f: D \to \mathbb{R}$ be continuous. For each of the following, prove or give a counterexample. rightarrow
 - (a) If D is open, then f(D) is open.
 - (b) If D is closed, then f(D) is closed.
 - (c) If D is not open, then f(D) is not open.
 - (d) If D is not closed, then f(D) is not closed.
 - (e) If D is not compact, then f(D) is not compact.
 - (f) If D is unbounded, then f(D) is unbounded.
 - (g) If D is finite, then f(D) is finite.
 - (h) If D is infinite, then f(D) is infinite.
 - (i) If D is an interval, then f(D) is an interval.
 - (j) If D is an interval that is not open, then f(D) is an interval that is not open.
- 4. Show that $3^x = 5x$ for some $x \in (0, 1)$.
- 5. Show that the equation $5^x = x^4$ has at least one real solution.
- 6. Show that any polynomial of odd degree has at least one real root.
- 7. Suppose that $f: [a,b] \to [a,b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists $c \in [a,b]$ such that f(c) = c.
- 8. Suppose that $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ are continuous functions such that $f(a) \le g(a)$ and $f(b) \ge g(b)$. Prove that f(c) = g(c) for some $c \in [a, b]$.