6. Use Definition 1.1 to prove each limit.
(a) $\lim _{x \rightarrow 3}\left(x^{2}-5 x+1\right)=-5$
(b) $\lim _{x \rightarrow-3}\left(x^{2}+3 x+8\right)=8$
(c) $\lim _{x \rightarrow 2} x^{3}=8$
7. Find the following limits and prove your answers.
(a) $\lim _{x \rightarrow 0}|x|$
(b) $\lim _{x \rightarrow 0} x^{2} /|x|$
(c) $\lim _{x \rightarrow c} \sqrt{x}$, where $c \geq 0$. is
8. Let $f: D \rightarrow \mathbb{R}$ and let c be an accumulation point of D. Suppose that $\lim _{x \rightarrow c}$ $f(x)=L$.
(a) Prove that $\lim _{x \rightarrow c}|f(x)|=|L|$.
(b) If $f(x) \geq 0$ for all $x \in D$, prove that $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}$.
9. Determine whether or not the following limits exist. Justify your answers. is
(a) $\lim _{x \rightarrow 0+} \frac{1}{x}$
(b) $\lim _{x \rightarrow 0+}\left|\sin \frac{1}{x}\right|$
(c) $\lim _{x \rightarrow 0+} x \sin \frac{1}{x}$
10. Prove Corollary 1.9
(a) by using Definition 1.1.
(b) by using Theorem 1.8 and the "Limit of a Sequence" theorem "If a sequence converges, its limit is unique.".
11. Prove Theorem 1.10. is
12. Finish the proof of Theorem 1.13.
13. Let f, g, and h be functions from D into \mathbb{R}, and let c be an accumulation point of D. Suppose that $f(x) \leq g(x) \leq h(x)$, for all $x \in D$ with $x \neq c$, and suppose $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$. Prove that $\lim _{x \rightarrow c} g(x)=L$. 刘
14. Let $f: D \rightarrow \mathbb{R}$ and let c be an accumulation point of D. Suppose that $a \leq f(x) \leq b$ for all $x \in D$ with $x \neq c$, and suppose that $\lim _{x \rightarrow c} f(x)=L$. Prove that $a \leq L \leq b$.
15. Let f and g be functions from D into \mathbb{R} and let c be an accumulation point of D. Suppose that there exist a neighborhood U of c and a real number M such that $|g(x)| \leq M$ for all $x \in U \cap D$. If $\lim _{x \rightarrow c} f(x)=0$, prove that $\lim _{x \rightarrow c}(f g)(x)=0$. मे
(b) If $f(D)$ is a bounded set, then f is continuous on D.
(c) If c is an isolated point of D, then f is continuous at c.
(d) If f is continuous at c and $\left(x_{n}\right)$ is a sequence in D, then $x_{n} \rightarrow c$ whenever $f\left(x_{n}\right) \rightarrow f(c)$.
(e) If f is continuous at c, then for every neighborhood V of $f(c)$ there exists a neighborhood U of c such that $f(U \cap D)=V$.
16. Let $f: D \rightarrow \mathbb{R}$ and let $c \in D$. Mark each statement True or False. Justify each answer.
(a) If f is continuous at c and c is an accumulation point of D, then $\lim _{x \rightarrow c} f(x)=f(c)$.
(b) Every polynomial is continuous at each point in \mathbb{R}.
(c) If $\left(x_{n}\right)$ is a Cauchy sequence in D, then $\left(f\left(x_{n}\right)\right)$ is convergent.
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at each irrational number, then f is continuous on \mathbb{R}.
(e) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous (on \mathbb{R}), then $f \circ g$ and $g \circ f$ are both continuous on \mathbb{R}.
17. Let $f(x)=\left(x^{2}+4 x-21\right) /(x-3)$ for $x \neq 3$. How should $f(3)$ be defined so that f will be continuous at 3 ? λ
18. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}+3 x-5$. Use Definition 2.1 to prove that f is continuous at 3 .
19. Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at exactly one point. is
20. Prove or give a counterexample for each statement.
(a) If f is continuous on D and $k \in \mathbb{R}$, then $k f$ is continuous on D.
(b) If f and $f+g$ are continuous on D, then g is continuous on D.
(c) If f and $f g$ are continuous on D, then g is continuous on D.
(d) If f^{2} is continuous on D, then f is continuous on D.
(e) If f is continuous on D and D is bounded, then $f(D)$ is bounded.
(f) If f and g are not continuous on D, then $f+g$ is not continuous on D.
(g) If f and g are not continuous on D, then $f g$ is not continuous on D.
(h) If $f: D \rightarrow E$ and $g: E \rightarrow F$ are not continuous on D and E, respectively, then $g \circ f: D \rightarrow F$ is not continuous on D.
21. Prove or give a counterexample: Every sequence of real numbers is a continuous function. it
22. Consider the formula

$$
f(x)=\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}} .
$$

Let $D=\{x: f(x) \in \mathbb{R}\}$. Calculate $f(x)$ for all $x \in D$ and determine where $f: D \rightarrow \mathbb{R}$ is continuous.
9. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=5 x$ if x is rational and $f(x)=x^{2}+6$ if x is irrational. Prove that f is discontinuous at 1 and continuous at 2. Are there any other points besides 2 at which f is continuous? it
*10. (a) Let $f: D \rightarrow \mathbb{R}$ and define $|f|: D \rightarrow \mathbb{R}$ by $|f|(x)=|f(x)|$. Suppose that f is continuous at $c \in D$. Prove that $|f|$ is continuous at c.
(b) If $|f|$ is continuous at c, does it follow that f is continuous at c ? Justify your answer.
11. Define $\max (f, g)$ and $\min (f, g)$ as in Example 2.11. Show that $\max (f, g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|$ and $\min (f, g)=\frac{1}{2}(f+g)-\frac{1}{2}|f-g| . \hat{}$
12. Let $f: D \rightarrow \mathbb{R}$ and suppose that $f(x) \geq 0$ for all $x \in D$. Define $\sqrt{f}: D \rightarrow \mathbb{R}$ by $\sqrt{f}(x)=\sqrt{f(x)}$. If f is continuous at $c \in D$, prove that \sqrt{f} is continuous at c.
*13. Let $f: D \rightarrow \mathbb{R}$ be continuous at $c \in D$ and suppose that $f(c)>0$. Prove that there exists an $\alpha>0$ and a neighborhood U of c such that $f(x)>\alpha$ for all $x \in U \cap D$. $\dot{\forall}$
14. Let $f: D \rightarrow \mathbb{R}$ be continuous at $c \in D$. Prove that there exists an $M>0$ and a neighborhood U of c such that $|f(x)| \leq M$ for all $x \in U \cap D$.
15. Complete the proof of Theorem 2.14 by showing that $H \cap D=f^{-1}(G)$.
*16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that f is continuous on \mathbb{R} iff $f^{-1}(H)$ is a closed set whenever H is a closed set.
17. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $f(x+y)=$ $f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists $k \in \mathbb{R}$ such that $f(x)=k x$, for every $x \in \mathbb{R}$. $\begin{array}{r} \\ \boldsymbol{z}\end{array}$
18. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and that $f(r)=0$ for every rational number $r \in(a, b)$. Prove that $f(x)=0$ for all $x \in(a, b)$.
19. Suppose $1 \leq c \leq \sqrt[3]{3}$ and define a sequence $\left(s_{n}\right)$ recursively by $s_{1}=c$ and $s_{n+1}=c^{S_{n}}$ for all $n \in \mathbb{N}$.
(a) Prove that $\left(s_{n}\right)$ is an increasing sequence.
(b) Prove that $\left(s_{n}\right)$ is bounded above.
(c) Prove that $\left(s_{n}\right)$ converges to a number b such that $b=c^{b}$.
(d) Find the value of the continued power $\sqrt{2}^{\sqrt{2}^{\sqrt{2} \cdot} \text {. }}$.

Exercises marked with * are used in later sections, and exercises marked with $\dot{\psi}$ have hints or solutions in the back of the chapter.

1. Mark each statement True or False. Justify each answer.
(a) Let D be a compact subset of \mathbb{R} and suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Then $f(D)$ is compact.
(b) Suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Then, there exists a point x_{1} in D such that $f\left(x_{1}\right) \geq f(x)$ for all $x \in D$.
(c) Let D be a bounded subset of \mathbb{R} and suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Then $f(D)$ is bounded.
2. Mark each statement True or False. Justify each answer.
(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose $f(a)<0<f(b)$. Then there exists a point c in (a, b) such that $f(c)=0$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose $f(a) \leq k \leq f(b)$. Then there exists a point $c \in[a, b]$ such that $f(c)=k$.
(c) If $f: D \rightarrow \mathbb{R}$ is continuous and bounded on D, then f assumes maximum and minimum values on D.
3. Let $f: D \rightarrow \mathbb{R}$ be continuous. For each of the following, prove or give a counterexample. is
(a) If D is open, then $f(D)$ is open.
(b) If D is closed, then $f(D)$ is closed.
(c) If D is not open, then $f(D)$ is not open.
(d) If D is not closed, then $f(D)$ is not closed.
(e) If D is not compact, then $f(D)$ is not compact.
(f) If D is unbounded, then $f(D)$ is unbounded.
(g) If D is finite, then $f(D)$ is finite.
(h) If D is infinite, then $f(D)$ is infinite.
(i) If D is an interval, then $f(D)$ is an interval.
(j) If D is an interval that is not open, then $f(D)$ is an interval that is not open.
4. Show that $3^{x}=5 x$ for some $x \in(0,1)$.
5. Show that the equation $5^{x}=x^{4}$ has at least one real solution.
6. Show that any polynomial of odd degree has at least one real root.
7. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists $c \in[a, b]$ such that $f(c)=c$. | |
| ---: | :--- |
8. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are continuous functions such that $f(a) \leq g(a)$ and $f(b) \geq g(b)$. Prove that $f(c)=g(c)$ for some $c \in[a, b]$.
