- 9. Suppose $f: [a,b] \to \mathbb{R}$ is continuous and that $f([a,b]) \subseteq \mathbb{Q}$. Prove that f is constant on [a,b].
- **10.** Suppose that $f: [a, b] \to \mathbb{R}$ is two-to-one. That is, for each $y \in \mathbb{R}$, $f^{-1}(\{y\})$ either is empty or contains exactly two points.
 - (a) Find an example of such a function.
 - (b) Prove that no such function can be continuous.
- 11. (a) Let $p \in \mathbb{R}$ and define $f: \mathbb{R} \to \mathbb{R}$ by f(x) = |x p|. Prove that f is continuous.
 - (b) Let S be a nonempty compact subset of R and let p ∈ R. Prove that S has a "closest" point to p. That is, prove that there exists a point q in S such that |q-p| = inf {|x-p|: x ∈ S}.
- **12.** Prove Theorem 3.2 using the Heine–Borel theorem and the Bolzano–Weierstrass theorem for sequences instead of the open-cover property of compactness.
- *13. Let f be a function defined on an interval I. We say that f is strictly increasing if $x_1 < x_2$ in I implies that $f(x_1) < f(x_2)$. Similarly, f is strictly decreasing if $x_1 < x_2$ in I implies that $f(x_1) > f(x_2)$. Prove the following.
 - (a) If f is continuous and injective on I, then f is strictly increasing or strictly decreasing.
 - (b) If f is strictly increasing and if f(I) is an interval, then f is continuous. Furthermore, f^{-1} is a strictly increasing continuous function on f(I).
- 14. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin(1/x)$ if $x \neq 0$ and f(0) = 0.
 - (a) Show that f is not continuous at 0.
 - (b) Show that f has the intermediate value property on \mathbb{R} .
- **15.** Let $f: D \to \mathbb{R}$ and let $c \in D$. We say that f is **bounded on a neighborhood** of c if there exists a neighborhood U of c and a number M such that $|f(x)| \le M$ for all $x \in U \cap D$.
 - (a) Suppose that f is bounded on a neighborhood of each x in D and that D is compact. Prove that f is bounded on D. \Rightarrow
 - (b) Suppose that f is bounded on a neighborhood of each x in D, but that D is not compact. Show that f is not necessarily bounded on D, even when f is continuous.
 - (c) Suppose that f: [a, b] → ℝ has a limit at each x in [a, b]. Prove that f is bounded on [a, b].
- 16. A subset S of \mathbb{R} is said to be **disconnected** if there exist disjoint open sets U and V in \mathbb{R} such that $S \subseteq U \cup V$, $S \cap U \neq \emptyset$, and $S \cap V \neq \emptyset$. If S is not disconnected, then it is said to be **connected**. Suppose that S is connected and that $f: \mathbb{R} \to \mathbb{R}$ is continuous. Prove that f(S) is connected. (*Hint*: Use Corollary 2.15.)

Limits and Continuity

- **4.** Prove that each function is uniformly continuous on the given set by directly verifying the $\varepsilon \delta$ property in Definition 4.1.
 - (a) $f(x) = x^3$ on [0, 2](b) $f(x) = \frac{1}{x}$ on $[2, \infty)$ (c) $f(x) = \frac{x-1}{x+1}$ on $[0, \infty)$
- 5. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.
- 6. Let f and g be real-valued functions that are uniformly continuous on D. Prove that f + g is uniformly continuous on D.
- 7. Let $f: D \to \mathbb{R}$ be uniformly continuous on D and let $k \in \mathbb{R}$. Prove that the function kf is uniformly continuous on D.
- 8. Let f and g be real-valued functions that are uniformly continuous on D, and suppose that $g(x) \neq 0$ for all $x \in D$.
 - (a) Find an example to show that the function f/g need not be uniformly continuous on D.
 - (b) Prove that if D is compact, then f/g must be uniformly continuous on D.
- **9.** Prove or give a counterexample: If $f: A \to B$ is uniformly continuous on *A* and $g: B \to C$ is uniformly continuous on *B*, then $g \circ f: A \to C$ is uniformly continuous on *A*.
- 10. Find two real-valued functions f and g that are uniformly continuous on a set D, but such that their product fg is not uniformly continuous on D.
- **11.** Let $f: D \to \mathbb{R}$ be uniformly continuous on the bounded set *D*. Prove that *f* is bounded on *D*. \updownarrow
- 12. (a) Let f and g be real-valued functions that are bounded and uniformly continuous on D. Prove that their product fg is uniformly continuous on D.
 - (b) Let f and g be real-valued functions that are uniformly continuous on a bounded set D. Prove that their product fg is uniformly continuous on D.
- Suppose that f is uniformly continuous on [a, b] and uniformly continuous on [b, c]. Prove that f is uniformly continuous on [a, c].
- 14. Prove Theorem 4.6 by justifying the following steps.
 - (a) Suppose that *f* is not uniformly continuous on *D*. Then there exists an $\varepsilon > 0$ such that, for every $n \in \mathbb{N}$, there exist x_n and y_n in *D* with $|x_n y_n| < 1/n$ and $|f(x_n) f(y_n)| \ge \varepsilon$.

Limits and Continuity

- (b) This part has been intentionally excluded from this edition.
- (c) Show that $\lim_{k\to\infty} y_{n_k} = x$.
- (d) Show that $(f(x_{n_k}))$ and $(f(y_{n_k}))$ both converge to f(x), to obtain a contradiction.
- **15.** A function $f: \mathbb{R} \to \mathbb{R}$ is said to be **periodic** if there exists a number k > 0 such that f(x + k) = f(x) for all $x \in \mathbb{R}$. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous and periodic. Prove that f is bounded and uniformly continuous on \mathbb{R} .

Section 5 CONTINUITY IN METRIC SPACES[†]

This section discusses the general setting of a metric space.

5.1 DEFINITION A sequence (s_n) in a metric space (X, d) is said to converge if there exists a point $s \in X$ such that

for every $\varepsilon > 0$ there exists a natural number *N* such that $n \ge N$ implies that $d(s_n, s) < \varepsilon$.

In this case we say that (s_n) converges to s, and we write $s_n \rightarrow s$ or $\lim s_n = s$.

For a fixed point *s* in *X*, we can think of the real numbers $d(s_n, s)$ as a sequence in \mathbb{R} . Thus, to show that a sequence (s_n) converges to *s* in the metric space (X, d), it suffices to show that the real sequence $(d(s_n, s))$ converges to 0 in \mathbb{R} . Furthermore, since $d(s_n, s) \ge 0$ for all *n*, we can do this by finding a positive real sequence (a_n) such that $d(s_n, s) \le a_n$ for all *n* and $a_n \to 0$.

[†]This section may be skipped, if desired, since it is not used in later sections.