9. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and that $f([a, b]) \subseteq \mathbb{Q}$. Prove that f is constant on $[a, b]$.
10. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is two-to-one. That is, for each $y \in \mathbb{R}, f^{-1}(\{y\})$ either is empty or contains exactly two points.
(a) Find an example of such a function.
(b) Prove that no such function can be continuous.
11. (a) Let $p \in \mathbb{R}$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=|x-p|$. Prove that f is continuous.
(b) Let S be a nonempty compact subset of \mathbb{R} and let $p \in \mathbb{R}$. Prove that S has a "closest" point to p. That is, prove that there exists a point q in S such that $|q-p|=\inf \{|x-p|: x \in S\}$.
12. Prove Theorem 3.2 using the Heine-Borel theorem and the Bolzano-Weierstrass theorem for sequences instead of the open-cover property of compactness.
*13. Let f be a function defined on an interval I. We say that f is strictly increasing if $x_{1}<x_{2}$ in I implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$. Similarly, f is strictly decreasing if $x_{1}<x_{2}$ in I implies that $f\left(x_{1}\right)>f\left(x_{2}\right)$. Prove the following.
(a) If f is continuous and injective on I, then f is strictly increasing or strictly decreasing.
(b) If f is strictly increasing and if $f(I)$ is an interval, then f is continuous. Furthermore, f^{-1} is a strictly increasing continuous function on $f(I)$.
13. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sin (1 / x)$ if $x \neq 0$ and $f(0)=0$.
(a) Show that f is not continuous at 0 .
(b) Show that f has the intermediate value property on \mathbb{R}.
14. Let $f: D \rightarrow \mathbb{R}$ and let $c \in D$. We say that f is bounded on a neighborhood of c if there exists a neighborhood U of c and a number M such that $|f(x)| \leq$ M for all $x \in U \cap D$.
(a) Suppose that f is bounded on a neighborhood of each x in D and that D is compact. Prove that f is bounded on D. \& \downarrow
(b) Suppose that f is bounded on a neighborhood of each x in D, but that D is not compact. Show that f is not necessarily bounded on D, even when f is continuous.
(c) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a limit at each x in $[a, b]$. Prove that f is bounded on $[a, b]$.
15. A subset S of \mathbb{R} is said to be disconnected if there exist disjoint open sets U and V in \mathbb{R} such that $S \subseteq U \cup V, S \cap U \neq \varnothing$, and $S \cap V \neq \varnothing$. If S is not disconnected, then it is said to be connected. Suppose that S is connected and that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Prove that $f(S)$ is connected. (Hint: Use Corollary 2.15.)
16. Prove that each function is uniformly continuous on the given set by directly verifying the $\varepsilon-\delta$ property in Definition 4.1.
(a) $f(x)=x^{3}$ on $[0,2]$
(b) $f(x)=\frac{1}{x}$ on $[2, \infty)$
(c) $f(x)=\frac{x-1}{x+1}$ on $[0, \infty)$
17. Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$. is
18. Let f and g be real-valued functions that are uniformly continuous on D. Prove that $f+g$ is uniformly continuous on D.
19. Let $f: D \rightarrow \mathbb{R}$ be uniformly continuous on D and let $k \in \mathbb{R}$. Prove that the function $k f$ is uniformly continuous on D.
20. Let f and g be real-valued functions that are uniformly continuous on D, and suppose that $g(x) \neq 0$ for all $x \in D$.
(a) Find an example to show that the function f / g need not be uniformly continuous on D.
(b) Prove that if D is compact, then f / g must be uniformly continuous on D.
21. Prove or give a counterexample: If $f: A \rightarrow B$ is uniformly continuous on A and $g: B \rightarrow C$ is uniformly continuous on B, then $g \circ f: A \rightarrow C$ is uniformly continuous on A. is
22. Find two real-valued functions f and g that are uniformly continuous on a set D, but such that their product $f g$ is not uniformly continuous on D.
23. Let $f: D \rightarrow \mathbb{R}$ be uniformly continuous on the bounded set D. Prove that f is bounded on D. is
24. (a) Let f and g be real-valued functions that are bounded and uniformly continuous on D. Prove that their product $f g$ is uniformly continuous on D.
(b) Let f and g be real-valued functions that are uniformly continuous on a bounded set D. Prove that their product $f g$ is uniformly continuous on D.
25. Suppose that f is uniformly continuous on $[a, b]$ and uniformly continuous on $[b, c]$. Prove that f is uniformly continuous on $[a, c]$.
26. Prove Theorem 4.6 by justifying the following steps.
(a) Suppose that f is not uniformly continuous on D. Then there exists an $\varepsilon>0$ such that, for every $n \in \mathbb{N}$, there exist x_{n} and y_{n} in D with $\left|x_{n}-y_{n}\right|$ $<1 / n$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$.
(b) This part has been intentionally excluded from this edition.
(c) Show that $\lim _{k \rightarrow \infty} y_{n_{k}}=x$.
(d) Show that $\left(f\left(x_{n_{k}}\right)\right)$ and $\left(f\left(y_{n_{k}}\right)\right)$ both converge to $f(x)$, to obtain a contradiction.
27. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be periodic if there exists a number $k>0$ such that $f(x+k)=f(x)$ for all $x \in \mathbb{R}$. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and periodic. Prove that f is bounded and uniformly continuous on \mathbb{R}.

Section 5 CONTINUITY IN METRIC SPACES ${ }^{\dagger}$

This section discusses the general setting of a metric space.
5.1 DEFINITION A sequence $\left(s_{n}\right)$ in a metric space (X, d) is said to converge if there exists a point $s \in X$ such that
for every $\varepsilon>0$ there exists a natural number N such that $n \geq N$ implies that $d\left(s_{n}, s\right)<\varepsilon$.
In this case we say that $\left(s_{n}\right)$ converges to s, and we write $s_{n} \rightarrow s$ or $\lim s_{n}=s$.

For a fixed point s in X, we can think of the real numbers $d\left(s_{n}, s\right)$ as a sequence in \mathbb{R}. Thus, to show that a sequence $\left(s_{n}\right)$ converges to s in the metric space (X, d), it suffices to show that the real sequence $\left(d\left(s_{n}, s\right)\right)$ converges to 0 in \mathbb{R}. Furthermore, since $d\left(s_{n}, s\right) \geq 0$ for all n, we can do this by finding a positive real sequence $\left(a_{n}\right)$ such that $d\left(s_{n}, s\right) \leq a_{n}$ for all n and $a_{n} \rightarrow 0$.

[^0]
[^0]: ${ }^{\dagger}$ This section may be skipped, if desired, since it is not used in later sections.

