
Limits and Continuity 

  9. Suppose f : [a, b] →  is continuous and that f ([a, b]) ⊆ .  Prove that f is 
constant on [a, b]. 

10. Suppose that f : [a, b] → R is two-to-one.  That is, for each y ∈ R,  f
 

–
 
1 ({ y}) 

either is empty or contains exactly two points. 
(a) Find an example of such a function. 
(b) Prove that no such function can be continuous. 

11. (a) Let p ∈  and define f :  →  by f (x) = | x – p |.  Prove that f is 
continuous. 

 (b) Let S be a nonempty compact subset of  and let p ∈ .  Prove that S 
has a “closest” point to p.  That is, prove that there exists a point q in S 
such that | q – p | = inf {| x – p |: x ∈ S }. 

12. Prove Theorem 3.2 using the Heine−Borel theorem and the 
Bolzano−Weierstrass theorem for sequences instead of the open-cover 
property of compactness. 

  *13. Let f be a function defined on an interval I.  We say that f is strictly 
increasing if x1 < x2 in I implies that f (x1) < f (x2).  Similarly, f is strictly 
decreasing if x1 < x2 in I implies that f (x1) > f (x2).  Prove the following. 
(a) If f is continuous and injective on I, then f is strictly increasing or 

strictly decreasing. 
(b) If f is strictly increasing and if f (I ) is an interval, then f is continuous.  

Furthermore, f
 
–

 
1 is a strictly increasing continuous function on f (I ). 

14. Define f : R → R by f (x) = sin (1/x) if x ≠ 0 and f (0) = 0. 
(a) Show that f is not continuous at 0. 
(b) Show that f has the intermediate value property on R. 

15. Let f : D → R and let c ∈ D.  We say that f is bounded on a neighborhood 
of c if there exists a neighborhood U of c and a number M such that | f (x) | ≤  
M for all x ∈ U ∩ D.   
(a) Suppose that f is bounded on a neighborhood of each x in D and that D 

is compact.  Prove that f is bounded on D.  
(b) Suppose that f is bounded on a neighborhood of each x in D, but that D 

is not compact.  Show that f is not necessarily bounded on D, even 
when f is continuous. 

(c) Suppose that f : [a, b] → R has a limit at each x in [a, b].  Prove that f is 
bounded on [a, b]. 

16. A subset S of R is said to be disconnected if there exist disjoint open sets U 
and V in R such that S ⊆ U ∪ V, S ∩ U ≠ ∅, and S ∩ V ≠ ∅. If S is not 
disconnected, then it is said to be connected. Suppose that S is connected 
and that f : R → R is continuous.  Prove that f (S ) is connected.  (Hint: Use 
Corollary 2.15.)  
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Limits and Continuity 

  4. Prove that each function is uniformly continuous on the given set by directly 
verifying the ε –δ  property in Definition 4.1. 

(a) 3( )  on [0, 2]=f x x  

(b) 1( )  on [2, )= ∞f x
x

 

(c) 1( )  on [0, )
1

−= ∞
+

xf x
x

 

  5. Prove that ( ) =f x x  is uniformly continuous on [0, ∞).  

  6. Let f and g be real-valued functions that are uniformly continuous on D.  
Prove that f  + g is uniformly continuous on D. 

  7. Let f : D → R be uniformly continuous on D and let k ∈ R.  Prove that the 
function k f is uniformly continuous on D. 

  8. Let f and g be real-valued functions that are uniformly continuous on D, and 
suppose that g (x) ≠ 0 for all x ∈ D. 
(a) Find an example to show that the function f/g need not be uniformly 

continuous on D. 
(b) Prove that if D is compact, then f/g must be uniformly continuous      

on D. 

  9. Prove or give a counterexample: If f : A → B is uniformly continuous on A 
and g : B → C is uniformly continuous on B, then g ° f : A → C is uniformly 
continuous on A.  

10. Find two real-valued functions f and g that are uniformly continuous on a set 
D, but such that their product f g is not uniformly continuous on D. 

11. Let f : D → R be uniformly continuous on the bounded set D.  Prove that f 
is bounded on D.  

12. (a) Let f and g be real-valued functions that are bounded and uniformly 
continuous on D. Prove that their product f g is uniformly continuous    
on D. 

 (b) Let f and g be real-valued functions that are uniformly continuous on a 
bounded set D. Prove that their product f g is uniformly continuous     
on D. 

13. Suppose that f is uniformly continuous on [a, b] and uniformly continuous on 
[b, c].  Prove that f is uniformly continuous on [a, c]. 

14. Prove Theorem 4.6 by justifying the following steps. 
(a) Suppose that f is not uniformly continuous on D.  Then there exists an 

ε > 0 such that, for every n ∈ N, there exist xn and yn in D with | xn – yn | 
< 1/n and | f (xn) – f (yn) | ≥ ε . 
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Limits and Continuity 

(b) This part has been intentionally excluded from this edition. 
(c) Show that lim k → ∞ ynk = x.   
(d) Show that ( f (xnk)) and ( f ( ynk)) both converge to f (x), to obtain a 

contradiction. 

15. A function f : R → R is said to be periodic if there exists a number k > 0 
such that f (x + k) = f (x) for all x ∈ R.  Suppose that f : R → R is 
continuous and periodic.  Prove that f is bounded and uniformly continuous 
on R. 

 
 
 
 
 
 
 
 

 Section 5 CONTINUITY IN METRIC SPACES† 
 

This section discusses the general setting of a metric space. 
 

 5.1  DEFINITION A sequence (sn) in a metric space (X, d ) is said to converge if there exists a 
point s ∈ X such that 

for every ε > 0 there exists a natural number N such that n ≥ N implies 
that d (sn, s) < ε. 

In this case we say that (sn) converges to s, and we write sn → s or lim sn = s. 
 

 For a fixed point s in X, we can think of the real numbers d (sn, s) as a 
sequence in R.  Thus, to show that a sequence (sn) converges to s in the 
metric space (X, d ), it suffices to show that the real sequence (d (sn, s)) 
converges to 0 in R.  Furthermore, since d (sn, s) ≥ 0 for all n, we can do this 
by finding a positive real sequence (an) such that d (sn, s) ≤ an for all n and 
an → 0. 

 
†This section may be skipped, if desired, since it is not used in later sections. 
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