3. Determine if each function is differentiable at x = 1. If it is, find the derivative. If not, explain why not.

(a)
$$f(x) = \begin{cases} 2x-1 & \text{if } x < 1 \\ x^2 & \text{if } x \ge 1 \end{cases}$$

(b) $f(x) = \begin{cases} 3x-1 & \text{if } x < 1 \\ x^3 & \text{if } x \ge 1 \end{cases}$
(c) $f(x) = \begin{cases} 3x-2 & \text{if } x < 1 \\ x^2 & \text{if } x \ge 1 \end{cases}$

- 4. Use Definition 1.1 to find the derivative of each function.
- (a) f(x) = 3x + 5 for $x \in \mathbb{R}$ (b) $f(x) = x^{3}$ for $x \in \mathbb{R}$ (c) $f(x) = \frac{1}{x}$ for $x \neq 0$ (d) $f(x) = \sqrt{x}$ for x > 0(e) $f(x) = \frac{1}{\sqrt{x}}$ for x > 05. Let $f(x) = x^{1/3}$ for $x \in \mathbb{R}$.
 - (a) Use Definition 1.1 to prove that $f'(x) = \frac{1}{3}x^{-2/3}$ for $x \neq 0$.
 - (b) Show that f is not differentiable at x = 0.
- *6. Let $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0.
 - (a) Use the chain rule and the product rule to show that f is differentiable at each c ≠ 0 and find f'(c). (You may assume that the derivative of sin x is cos x for all x ∈ ℝ.)
 - (b) Use Definition 1.1 to show that f is differentiable at x = 0 and find f'(0).
 - (c) Show that f' is not continuous at x = 0.
 - (d) Let $g(x) = x^2$ if $x \le 0$ and $g(x) = x^2 \sin(1/x)$ if x > 0. Determine whether or not g is differentiable at x = 0. If it is, find g'(0).
- 7. Determine for which values of x each function from \mathbb{R} to \mathbb{R} is differentiable and find the derivative.
 - (a) f(x) = |x-1|(b) $f(x) = |x^2-1| \Rightarrow$ (c) f(x) = |x|(d) $f(x) = x|x| \Rightarrow$
- *8. Let $f(x) = x^2 \sin(1/x^2)$ for $x \neq 0$ and f(0) = 0.
 - (a) Show that f is differentiable on \mathbb{R} .
 - (b) Show that f' is not bounded on the interval [-1, 1].

- **9.** Let $f(x) = x^2$ if $x \ge 0$ and f(x) = 0 if x < 0.
 - (a) Show that *f* is differentiable at x = 0.
 - (b) Find f'(x) for all real x and sketch the graph of f'.
 - (c) Is f' continuous on \mathbb{R} ? Is f' differentiable on \mathbb{R} ? \bigstar
- 10. Complete the proof of parts (a) and (b) of Theorem 1.7.
- 11. Let $f(x) = x^2$ if x is rational and f(x) = 0 if x is irrational.
 - (a) Prove that f is continuous at exactly one point, namely at x = 0.
 - (b) Prove that f is differentiable at exactly one point, namely at x = 0.
- 12. Prove: If a polynomial p(x) is divisible by $(x a)^2$, then p'(x) is divisible by (x a).
- **13.** Let f, g, and h be real-valued functions that are differentiable on an interval I. Prove that the product function $fgh: I \to \mathbb{R}$ is differentiable on I and find (fgh)'.
- **14.** Let $f: I \to J$, $g: J \to K$, and $h: K \to \mathbb{R}$, where *I*, *J*, and *K* are intervals. Suppose that *f* is differentiable at $c \in I$, *g* is differentiable at f(c), and *h* is differentiable at g(f(c)). Prove that $h \circ (g \circ f)$ is differentiable at *c* and find the derivative.
- **15.** Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$ and that $g(c) \neq 0$.
 - (a) Use Exercise 4(c) and the chain rule [Theorem 1.10] to show that $(1/g)'(c) = -g'(c)/[g(c)]^2$.
 - (b) Use part (a) and the product rule [Theorem 1.7(c)] to derive the quotient rule [Theorem 1.7(d)].
- 16. Let *I* and *J* be intervals and suppose that the function *f* : *I* → *J* is twice differentiable on *I*. That is, the derivative *f'* exists and is itself differentiable on *I*. (We denote the derivative of *f'* by *f''*.) Suppose also that the function *g*: *J* → ℝ is twice differentiable on *J*. Prove that *g* ∘ *f* is twice differentiable on *I* and find (*g* ∘ *f*)".
- 17. Let $f: I \to \mathbb{R}$, where I is an open interval containing the point c, and let $k \in \mathbb{R}$. Prove the following.
 - (a) f is differentiable at c with f'(c) = k iff $\lim_{h \to 0} [f(c+h) f(c)]/h = k$.
 - *(b) If f is differentiable at c with f'(c) = k, then $\lim_{h \to 0} [f(c+h) f(c-h)]/2h = k$.
 - (c) If f is differentiable at c with f'(c) = k, then $\lim_{n \to \infty} n[f(c + 1/n) f(c)] = k$.
 - (d) Find counterexamples to show that the converses of parts (b) and (c) are not true.

$$1 - (1+x)^n = n(1+c)^{n-1}(-x) \le -nx,$$

since 0 < 1 + c < 1 and $n - 1 \ge 0$. It follows that $(1 + x)^n \ge 1 + nx$.

2.11
$$f'(x) = \frac{1}{g'(y)} = \frac{1}{ny^{n-1}} = \frac{1}{n(x^{1/n})^{n-1}} = \frac{1}{n}x^{1/n-1}$$

2 EXERCISES

Exercises marked with * *are used in later sections, and exercises marked with* A *have hints or solutions in the back of the chapter.*

- 1. Mark each statement True or False. Justify each answer.
 - (a) A continuous function defined on a bounded interval assumes maximum and minimum values.
 - (b) If f is continuous on [a, b], then there exists a point c ∈ (a, b) such that f'(c) = [f(b) - f(a)]/(b - a).
 - (c) Suppose f is differentiable on (a,b). If $c \in (a,b)$ and f'(c) = 0, then f(c) is either the maximum or the minimum of f on (a,b).
- 2. Mark each statement True or False. Justify each answer.
 - (a) Suppose f and g are continuous on [a, b] and differentiable on (a, b). If f'(x) = g'(x) for all $x \in (a, b)$, then f and g differ by a constant.
 - (b) If f is differentiable on (a, b) and $c \in (a, b)$, then f' is continuous at c.
 - (c) Suppose f is differentiable on an interval I. If f is not injective on I, then there exists a point $c \in I$ such that f'(c) = 0.
- **3.** Let $f(x) = x^2 4x + 5$ for $x \in [0, 3]$.
 - (a) Find where f is strictly increasing and where it is strictly decreasing.
 - (b) Find the maximum and minimum of f on [0, 3].
- 4. Repeat Exercise 3 for $f(x) = |x^2 1|$ on [0, 2].
- **5.** Use the mean value theorem to establish the following inequalities. (You may assume any relevant derivative formulas from calculus.)
 - (a) $e^x > 1 + x$ for x > 0
 - (b) $\frac{x-1}{x} < \ln x < x-1$ for x > 1
 - (c) $7\frac{1}{4} < \sqrt{53} < 7\frac{2}{7}$
 - (d) $\sqrt{1+x} < 1 + \frac{1}{2}x$ for x > 0
 - (e) $\sqrt{1+x} < 5 + \frac{x-24}{10}$ for x > 24
 - (f) $\sin x \le x$ for $x \ge 0$

- (g) $|\cos x \cos y| \le |x y|$ for $x, y \in \mathbb{R}$
- (h) $x < \tan x$ for $0 < x < \pi/2$
- (i) $\arctan x < \frac{\pi}{4} + \frac{x-1}{2}$ for x > 1

(j)
$$\left| \frac{\sin ax - \sin bx}{x} \right| \le \left| a - b \right|$$
 for $x \ne 0$

- 6. Rolle's theorem requires three conditions be satisfied:
 - (i) f is continuous on [a, b],
 - (ii) f is differentiable on (a, b), and
 - (iii) f(a) = f(b).

Find three functions that satisfy exactly two of these three conditions, but for which the conclusion of Rolle's theorem does not follow. That is, there is no point $c \in (a, b)$ such that f'(c) = 0.

- 7. Let f be continuous on [a, b] and differentiable on (a, b). Prove that for any x and h such that $a \le x < x + h \le b$ there exists an $\alpha \in (0, 1)$ such that $f(x+h) f(x) = hf'(x+\alpha h)$.
- *8. A function f is said to be **increasing** on an interval I if $x_1 < x_2$ in I implies that $f(x_1) \le f(x_2)$. [For **decreasing**, replace $f(x_1) \le f(x_2)$ by $f(x_1) \ge f(x_2)$.] Suppose that f is differentiable on an interval I. Prove the following:
 - (a) f is increasing on I iff $f'(x) \ge 0$ for all $x \in I$.
 - (b) f is decreasing on I iff $f'(x) \le 0$ for all $x \in I$.
- **9.** Show that the converses of parts (a) and (b) of Theorem 2.8 are false by finding counterexamples.
- 10. Let f be differentiable on (0,1) and continuous on [0,1]. Suppose that f(0) = 0 and that f' is increasing on (0,1). (See Exercise 8.) Let g(x) = f(x)/x for $x \in (0,1)$. Prove that g is increasing on (0,1).
- *11. Let f be differentiable on [a, b]. Suppose that $f'(x) \ge 0$ for all $x \in [a, b]$ and that f' is not identically zero on any subinterval of [a, b]. Prove that f is strictly increasing on [a, b].
- 12. Let f be differentiable on \mathbb{R} . Suppose that f(0) = 0 and that $1 \le f'(x) \le 2$ for all $x \ge 0$. Prove that $x \le f(x) \le 2x$ for all $x \ge 0$.
- 13. Suppose that f is differentiable on \mathbb{R} and that f(0) = 0, f(1) = 2, and f(2) = 2. \mathfrak{A}
 - (a) Show that there exists $c_1 \in (0, 1)$ such that $f'(c_1) = 2$.
 - (b) Show that there exists $c_2 \in (1,2)$ such that $f'(c_2) = 0$.
 - (c) Show that there exists $c_3 \in (0,2)$ such that $f'(c_3) = \frac{5}{4}$.