
Differentiation 

  3. Determine if each function is differentiable at x = 1.  If it is, find the 
derivative.  If not, explain why not. 
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x x
f x

x x
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  4. Use Definition 1.1 to find the derivative of each function. 

(a) ( ) 3 5f x x= +  for x ∈ R 
(b) 3( ) =f x x  for x ∈ R 

(c) 1( ) =f x
x

 for x ≠ 0 

(d) ( ) =f x x  for x > 0 

(e) 1( ) =f x
x

 for x > 0 

  5. Let f (x) = x1/3 for x ∈ R. 

(a) Use Definition 1.1 to prove that 2 /31
3( ) −′ =f x x  for x ≠ 0.  

(b) Show that f is not differentiable at x = 0. 

  *6. Let f (x) = x2 sin (1/x) for x ≠ 0 and f (0) = 0. 
(a) Use the chain rule and the product rule to show that f is differentiable at 

each c ≠ 0 and find f ′(c).  (You may assume that the derivative of sin x 
is cos x for all x ∈ R.) 

(b) Use Definition 1.1 to show that f is differentiable at x = 0 and find 
f ′(0). 

(c) Show that  f ′ is not continuous at x = 0. 
(d) Let g(x) = x2 if x ≤ 0 and g(x) = x2 sin (1/x) if x > 0.  Determine whether 

or not g is differentiable at x = 0.  If it is, find g′(0).  

  7. Determine for which values of x each function from R to R is differentiable 
and find the derivative. 

 (a) f (x) = | x – 1 |   (b)   f (x) = | x2 – 1 |   
 (c) f (x) = | x |   (d)   f (x) = x | x |   

  *8. Let f (x) = x2 sin (1/x2) for x ≠ 0 and f (0) = 0. 
 (a) Show that f is differentiable on R. 
 (b) Show that f ′ is not bounded on the interval [ – 1, 1]. 
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Differentiation 

  9. Let f (x) = x2 if x ≥ 0 and f (x) = 0 if x < 0. 
 (a) Show that f is differentiable at x = 0.  
 (b) Find f ′(x) for all real x and sketch the graph of f ′. 
 (c) Is f ′ continuous on R? Is f ′ differentiable on R?  

10. Complete the proof of parts (a) and (b) of Theorem 1.7. 

11. Let f (x) = x2 if x is rational and f (x) = 0 if x is irrational. 
 (a) Prove that f is continuous at exactly one point, namely at x = 0. 
 (b) Prove that f is differentiable at exactly one point, namely at x = 0. 

12. Prove: If a polynomial p (x) is divisible by (x – a)2, then p ′(x) is divisible by 
(x – a). 

13. Let f, g, and h be real-valued functions that are differentiable on an interval I.  
Prove that the product function f g h : I → R is differentiable on I and find 
( f g h)′.  

14. Let f : I → J, g : J → K, and h : K → R, where I, J, and K are intervals.  
Suppose that f is differentiable at c ∈ I, g is differentiable at f (c), and h is 
differentiable at g (f (c)).  Prove that h ° (g ° f ) is differentiable at c and find 
the derivative. 

15. Suppose that f : I → R and g : I → R are differentiable at c ∈ I and that    
g (c) ≠ 0. 

 (a) Use Exercise 4(c) and the chain rule [Theorem 1.10] to show that 
(1/g) ′(c) = – g ′(c)/[ g (c)]2. 

 (b) Use part (a) and the product rule [Theorem 1.7(c)] to derive the quotient 
rule [Theorem 1.7(d)]. 

16. Let I and J be intervals and suppose that the function f : I → J is twice 
differentiable on I.  That is, the derivative f ′ exists and is itself differentiable 
on I.  (We denote the derivative of f ′ by f ″.)  Suppose also that the function 
g : J → R is twice differentiable on J.  Prove that g ° f is twice differentiable 
on I and find (g ° f ) ″. 

17. Let f : I → R, where I is an open interval containing the point c, and let 
k ∈ R.  Prove the following. 

 (a) f is differentiable at c with f ′(c) = k iff lim h → 0 [ f (c + h) – f (c)]/h = k. 
 *(b) If f is differentiable at c with f ′(c) = k, then lim h → 0 [ f (c + h) –       

f (c – h)]/2h = k. 
 (c) If f is differentiable at c with f ′(c) = k, then lim n → ∞ n[ f (c + 1/n) –   

f (c)] = k. 
 (d) Find counterexamples to show that the converses of parts (b) and (c) are 

not true. 
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Differentiation 

11 (1 ) (1 ) ( ) ,−− + = + − ≤ −n nx n c x nx  

 since 0 < 1 + c < 1 and n – 1 ≥ 0.  It follows that (1 + x)n ≥ 1 + n x. 
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1 1 1
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/
/
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− −

′ = = = =
′

n
n n nf x x

g y nny n x
 

2  EXERCISES 
Exercises marked with * are used in later sections, and exercises marked with  
have hints or solutions in the back of the chapter. 
 
  1.  Mark each statement True or False.  Justify each answer. 

(a) A continuous function defined on a bounded interval assumes maximum 
and minimum values. 

(b) If f is continuous on [a, b], then there exists a point c ∈ (a, b) such that 
f ′(c) = [ f (b) − f (a)]/(b − a). 

(c) Suppose f is differentiable on (a, b).  If c ∈ (a, b) and f ′(c) = 0, then 
f (c) is either the maximum or the minimum of f on (a, b). 

  2. Mark each statement True or False.  Justify each answer. 
(a) Suppose f and g are continuous on [a, b ] and differentiable on (a, b).  If 

f ′(x) = g ′(x) for all x ∈ (a, b), then f and g differ by a constant. 
(b) If f is differentiable on (a, b) and c ∈ (a, b), then f ′ is continuous at c. 
(c) Suppose f is differentiable on an interval I.  If f is not injective on I, 

then there exists a point c ∈ I such that f ′(c) = 0. 

  3. Let f (x) = x2 – 4x + 5 for x ∈ [0, 3].  
(a) Find where f is strictly increasing and where it is strictly decreasing. 
(b) Find the maximum and minimum of f on [0, 3]. 

  4. Repeat Exercise 3 for f (x) = | x2 – 1 | on [0, 2]. 

  5. Use the mean value theorem to establish the following inequalities.  (You 
may assume any relevant derivative formulas from calculus.) 
(a) e 

x > 1 + x  for x > 0 

(b) 1 ln 1x x x
x
− < < −  for x > 1 

(c) 1 2
747 53 7< <  

(d) 1
21 1+ < +x x  for x > 0 

(e) 241 5
10
−+ < + xx  for x > 24 

(f) sin x ≤ x  for x ≥ 0 
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Differentiation 

(g) | cos x – cos y |  ≤  | x – y |  for x, y ∈ R 

(h) x < tan x  for 0 < x < π/2 

(i) 1arctan
4 2
π −< + xx  for x > 1 

(j) sin sin− ≤ −ax bx a b
x

  for x ≠ 0 

  6. Rolle’s theorem requires three conditions be satisfied: 
(i) f is continuous on [a, b], 
(ii) f is differentiable on (a, b), and 
(iii) f (a)  =  f (b). 

 Find three functions that satisfy exactly two of these three conditions, but for 
which the conclusion of Rolle’s theorem does not follow.  That is, there is no 
point c ∈ (a, b) such that f ′ (c) = 0. 

  7. Let f be continuous on [a, b] and differentiable on (a, b).  Prove that for     
any x and h such that a ≤ x < x + h ≤ b there exists an α ∈ (0, 1) such that   
f (x + h) – f (x)  =  h f ′ (x + α h).  

*8. A function f is said to be increasing on an interval I if x1 < x2 in I implies 
that f (x1) ≤ f (x2).  [For decreasing, replace f (x1) ≤ f (x2) by f (x1) ≥ f (x2).]  
Suppose that f is differentiable on an interval I.  Prove the following: 

  (a) f is increasing on I iff f ′(x) ≥ 0 for all x ∈ I. 
  (b) f is decreasing on I iff f ′(x) ≤ 0 for all x ∈ I. 

  9. Show that the converses of parts (a) and (b) of Theorem 2.8 are false by 
finding counterexamples. 

10. Let f be differentiable on (0, 1) and continuous on [0, 1].  Suppose that    
f (0) = 0 and that f ′ is increasing on (0, 1).  (See Exercise 8.)  Let g (x) = 
f (x)/x for x ∈ (0, 1).  Prove that g is increasing on (0, 1). 

  *11. Let f be differentiable on [a, b].  Suppose that f ′(x) ≥ 0 for all x ∈ [a, b] and 
that f ′ is not identically zero on any subinterval of [a, b].  Prove that f is 
strictly increasing on [a, b].  

12. Let f be differentiable on R.  Suppose that f (0) = 0 and that 1 ≤ f ′(x) ≤ 2 
for all x ≥ 0.  Prove that x ≤ f (x) ≤ 2x for all x ≥ 0. 

13. Suppose that f is differentiable on R and that f (0) = 0, f (1) = 2, and       
f (2) = 2.  
(a) Show that there exists c1 ∈ (0, 1) such that 1( ) 2.′ =f c  
(b) Show that there exists c2 ∈ (1, 2) such that 2( ) 0.′ =f c  
(c) Show that there exists c3 ∈ (0, 2) such that 5

3 4( ) .′ =f c  
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