3. Determine if each function is differentiable at $x=1$. If it is, find the derivative. If not, explain why not.
(a) $f(x)= \begin{cases}2 x-1 & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}$
(b) $f(x)= \begin{cases}3 x-1 & \text { if } x<1 \\ x^{3} & \text { if } x \geq 1\end{cases}$
(c) $f(x)= \begin{cases}3 x-2 & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}$
4. Use Definition 1.1 to find the derivative of each function.
(a) $f(x)=3 x+5$ for $x \in \mathbb{R}$
(b) $f(x)=x^{3}$ for $x \in \mathbb{R}$
(c) $f(x)=\frac{1}{x}$ for $x \neq 0$
(d) $f(x)=\sqrt{x}$ for $x>0$
(e) $f(x)=\frac{1}{\sqrt{x}}$ for $x>0$
5. Let $f(x)=x^{1 / 3}$ for $x \in \mathbb{R}$.
(a) Use Definition 1.1 to prove that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ for $x \neq 0$. is
(b) Show that f is not differentiable at $x=0$.
*6. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$.
(a) Use the chain rule and the product rule to show that f is differentiable at each $c \neq 0$ and find $f^{\prime}(c)$. (You may assume that the derivative of $\sin x$ is $\cos x$ for all $x \in \mathbb{R}$.)
(b) Use Definition 1.1 to show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
(c) Show that f^{\prime} is not continuous at $x=0$.
(d) Let $g(x)=x^{2}$ if $x \leq 0$ and $g(x)=x^{2} \sin (1 / x)$ if $x>0$. Determine whether or not g is differentiable at $x=0$. If it is, find $g^{\prime}(0)$.
6. Determine for which values of x each function from \mathbb{R} to \mathbb{R} is differentiable and find the derivative.
(a) $f(x)=|x-1|$
(b) $f(x)=\left|x^{2}-1\right|$ *
(c) $f(x)=|x|$

*8. Let $f(x)=x^{2} \sin \left(1 / x^{2}\right)$ for $x \neq 0$ and $f(0)=0$.
(a) Show that f is differentiable on \mathbb{R}.
(b) Show that f^{\prime} is not bounded on the interval $[-1,1]$.
7. Let $f(x)=x^{2}$ if $x \geq 0$ and $f(x)=0$ if $x<0$.
(a) Show that f is differentiable at $x=0$. As
(b) Find $f^{\prime}(x)$ for all real x and sketch the graph of f^{\prime}.
(c) Is f^{\prime} continuous on \mathbb{R} ? Is f^{\prime} differentiable on \mathbb{R} ? $\begin{gathered}\text { s }\end{gathered}$
8. Complete the proof of parts (a) and (b) of Theorem 1.7.
9. Let $f(x)=x^{2}$ if x is rational and $f(x)=0$ if x is irrational.
(a) Prove that f is continuous at exactly one point, namely at $x=0$.
(b) Prove that f is differentiable at exactly one point, namely at $x=0$.
10. Prove: If a polynomial $p(x)$ is divisible by $(x-a)^{2}$, then $p^{\prime}(x)$ is divisible by $(x-a)$.
11. Let f, g, and h be real-valued functions that are differentiable on an interval I. Prove that the product function $f g h: I \rightarrow \mathbb{R}$ is differentiable on I and find $(f g h)^{\prime}$. $\boldsymbol{i s}$
12. Let $f: I \rightarrow J, g: J \rightarrow K$, and $h: K \rightarrow \mathbb{R}$, where I, J, and K are intervals. Suppose that f is differentiable at $c \in I, g$ is differentiable at $f(c)$, and h is differentiable at $g(f(c))$. Prove that $h \circ(g \circ f)$ is differentiable at c and find the derivative.
13. Suppose that $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are differentiable at $c \in I$ and that $g(c) \neq 0$.
(a) Use Exercise 4(c) and the chain rule [Theorem 1.10] to show that $(1 / g)^{\prime}(c)=-g^{\prime}(c) /[g(c)]^{2}$.
(b) Use part (a) and the product rule [Theorem 1.7(c)] to derive the quotient rule [Theorem 1.7(d)].
14. Let I and J be intervals and suppose that the function $f: I \rightarrow J$ is twice differentiable on I. That is, the derivative f^{\prime} exists and is itself differentiable on I. (We denote the derivative of f^{\prime} by $f^{\prime \prime}$.) Suppose also that the function $g: J \rightarrow \mathbb{R}$ is twice differentiable on J. Prove that $g \circ f$ is twice differentiable on I and find $(g \circ f)^{\prime \prime}$.
15. Let $f: I \rightarrow \mathbb{R}$, where I is an open interval containing the point c, and let $k \in \mathbb{R}$. Prove the following.
(a) f is differentiable at c with $f^{\prime}(c)=k$ iff $\lim _{h \rightarrow 0}[f(c+h)-f(c)] / h=k$.
*(b) If f is differentiable at c with $f^{\prime}(c)=k$, then $\lim _{h \rightarrow 0}[f(c+h)-$ $f(c-h)] / 2 h=k$.
(c) If f is differentiable at c with $f^{\prime}(c)=k$, then $\lim _{n \rightarrow \infty} n[f(c+1 / n)-$ $f(c)]=k$.
(d) Find counterexamples to show that the converses of parts (b) and (c) are not true.

$$
1-(1+x)^{n}=n(1+c)^{n-1}(-x) \leq-n x,
$$

since $0<1+c<1$ and $n-1 \geq 0$. It follows that $(1+x)^{n} \geq 1+n x$.
$2.11 f^{\prime}(x)=\frac{1}{g^{\prime}(y)}=\frac{1}{n y^{n-1}}=\frac{1}{n\left(x^{1 / n}\right)^{n-1}}=\frac{1}{n} x^{1 / n-1}$

2 EXERCISES

Exercises marked with * are used in later sections, and exercises marked with $\dot{*}$ have hints or solutions in the back of the chapter.

1. Mark each statement True or False. Justify each answer.
(a) A continuous function defined on a bounded interval assumes maximum and minimum values.
(b) If f is continuous on $[a, b]$, then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=[f(b)-f(a)] /(b-a)$.
(c) Suppose f is differentiable on (a, b). If $c \in(a, b)$ and $f^{\prime}(c)=0$, then $f(c)$ is either the maximum or the minimum of f on (a, b).
2. Mark each statement True or False. Justify each answer.
(a) Suppose f and g are continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then f and g differ by a constant.
(b) If f is differentiable on (a, b) and $c \in(a, b)$, then f^{\prime} is continuous at c.
(c) Suppose f is differentiable on an interval I. If f is not injective on I, then there exists a point $c \in I$ such that $f^{\prime}(c)=0$.
3. Let $f(x)=x^{2}-4 x+5$ for $x \in[0,3]$. $\vec{~}$
(a) Find where f is strictly increasing and where it is strictly decreasing.
(b) Find the maximum and minimum of f on $[0,3]$.
4. Repeat Exercise 3 for $f(x)=\left|x^{2}-1\right|$ on $[0,2]$.
5. Use the mean value theorem to establish the following inequalities. (You may assume any relevant derivative formulas from calculus.)
(a) $e^{x}>1+x$ for $x>0$
(b) $\frac{x-1}{x}<\ln x<x-1$ for $x>1$
(c) $7 \frac{1}{4}<\sqrt{53}<7 \frac{2}{7}$
(d) $\sqrt{1+x}<1+\frac{1}{2} x$ for $x>0$
(e) $\sqrt{1+x}<5+\frac{x-24}{10}$ for $x>24$
(f) $\sin x \leq x$ for $x \geq 0$
(g) $|\cos x-\cos y| \leq|x-y|$ for $x, y \in \mathbb{R}$
(h) $x<\tan x$ for $0<x<\pi / 2$
(i) $\arctan x<\frac{\pi}{4}+\frac{x-1}{2}$ for $x>1$
(j) $\left|\frac{\sin a x-\sin b x}{x}\right| \leq|a-b|$ for $x \neq 0$
6. Rolle's theorem requires three conditions be satisfied:
(i) f is continuous on $[a, b]$,
(ii) f is differentiable on (a, b), and
(iii) $f(a)=f(b)$.

Find three functions that satisfy exactly two of these three conditions, but for which the conclusion of Rolle's theorem does not follow. That is, there is no point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
7. Let f be continuous on $[a, b]$ and differentiable on (a, b). Prove that for any x and h such that $a \leq x<x+h \leq b$ there exists an $\alpha \in(0,1)$ such that $f(x+h)-f(x)=h f^{\prime}(x+\alpha h)$. is
*8. A function f is said to be increasing on an interval I if $x_{1}<x_{2}$ in I implies that $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. [For decreasing, replace $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ by $f\left(x_{1}\right) \geq f\left(x_{2}\right)$.] Suppose that f is differentiable on an interval I. Prove the following:
(a) f is increasing on I iff $f^{\prime}(x) \geq 0$ for all $x \in I$.
(b) f is decreasing on I iff $f^{\prime}(x) \leq 0$ for all $x \in I$.
9. Show that the converses of parts (a) and (b) of Theorem 2.8 are false by finding counterexamples.
10. Let f be differentiable on $(0,1)$ and continuous on $[0,1]$. Suppose that $f(0)=0$ and that f^{\prime} is increasing on $(0,1)$. (See Exercise 8.) Let $g(x)=$ $f(x) / x$ for $x \in(0,1)$. Prove that g is increasing on $(0,1)$.
*11. Let f be differentiable on $[a, b]$. Suppose that $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$ and that f^{\prime} is not identically zero on any subinterval of $[a, b]$. Prove that f is strictly increasing on $[a, b]$. is
12. Let f be differentiable on \mathbb{R}. Suppose that $f(0)=0$ and that $1 \leq f^{\prime}(x) \leq 2$ for all $x \geq 0$. Prove that $x \leq f(x) \leq 2 x$ for all $x \geq 0$.
13. Suppose that f is differentiable on \mathbb{R} and that $f(0)=0, f(1)=2$, and $f(2)=2$. 호
(a) Show that there exists $c_{1} \in(0,1)$ such that $f^{\prime}\left(c_{1}\right)=2$.
(b) Show that there exists $c_{2} \in(1,2)$ such that $f^{\prime}\left(c_{2}\right)=0$.
(c) Show that there exists $c_{3} \in(0,2)$ such that $f^{\prime}\left(c_{3}\right)=\frac{5}{4}$.

