Relationship between Convolutional Neural Networks and Convolutional Sparse Coding

José Rodríguez, Basanta Pahari

April 25, 2020

José Rodríguez, Basanta Pahari Relations between Convolutional Neural Netw

Goals

In this presentation :

• Introduce Convolutional Neural Network (CNN) and Convolutional Sparse Coding (CSC).

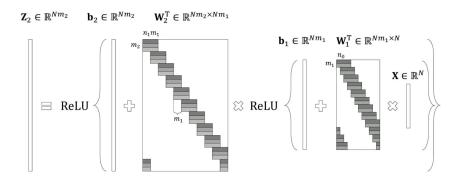
• Present the relationship between the forward pass of a CNN and CSC.

Introduction

The forward pass of a CNN consists of

- Convolving an input signal $X \in \mathbb{R}^N$ with a collection of filters.
- Applying a point-wise non-linear function.
- Very frequently, a third operation pooling is applied. This is not analyzed in this work.

$$f(X, \{W_i\}_{i=1}^2, \{b_i\}_{i=1}^2) = Z_2 = ReLU(W_2^T(ReLU(W_1^TX + b_1) + b_2))$$



where $W_1 \in \mathbb{R}^{N \times N m_1}$ $W_2 \in \mathbb{R}^{Nm_1 \times Nm_2}$ are convolutional matrices of m_1 filters of size n_0 and m_2 dilters of size n_1 respectively.

Sparse Representation

Given $X \in \mathbb{R}^N$, we want to write $X = D\Gamma$ where $D \in \mathbb{R}^{N \times M}$ and $\Gamma \in \mathbb{R}^M$.

We want to recover the sparsest representation.

• $(P_0) \min_{\Gamma} \|\Gamma\|_0 s. t. D\Gamma = X$

•
$$(P_1) \min_{\Gamma} \|\Gamma\|_1 \ s. t. \ D\Gamma = X$$
,

Here, $\|\Gamma\|_0$ counts the number of nonzero entries in Γ . P_1 is convex form of problem P_0 .

Simple approaches to solving P_0 and P_1 include **hard and soft thresholding algorithms** respectively. These are equivalent to the following minimization problems:

• $\min_{\Gamma} \frac{1}{2} \|\Gamma - D^{T}X\|_{2}^{2} + \beta \|\Gamma\|_{0}$ for the P_{0}

• min_{$$\Gamma$$} $\frac{1}{2} \|\Gamma - D^T X\|_2^2 + \beta \|\Gamma\|_1$ for the P_1 .

These problems admit a solution in the form $\mathbf{H}_{\beta}(D^{T}X)$ or $\mathbf{S}_{\beta}(D^{T}X)$ where

$$\mathbf{H}_{\beta}(z) = \begin{cases} z & z < -\beta \\ 0 & -\beta \le z \le \beta \\ z & \beta < z \end{cases}$$
$$\mathbf{S}_{\beta}(z) = \begin{cases} z + \beta & z < -\beta \\ 0 & -\beta \le z \le \beta \\ z - \beta & \beta < z \end{cases}$$

- $X = D\Gamma_P + (-D)(-\Gamma_N)$.
- Γ_p and $-\Gamma_N$ are all non-negative.
- X admits a non-negative sparse representation in [D, -D] with the vector $[\Gamma_p, -\Gamma_N]^T$.]
- P_1 becomes $\min_{\Gamma} \frac{1}{2} \|\Gamma D^T X\|_2^2 + \beta \|\Gamma\|_1$ s. t. $\Gamma \ge 0$.
- The solution becomes $\mathbf{S}^+_{\beta}(D^T X)$ where

$$\mathbf{S}_{\beta}^{+}(z) = \max\left(z - \beta, 0\right) = ReLU(z - \beta).$$

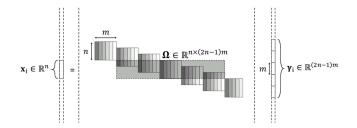
• • = • • = •

Convolutional Sparse Coding

Dimension of $X \in \mathbb{R}^N$ may be too large, and the uniqueness of problem P_0 requires

$$\|\Gamma\|_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(D)}\right)$$

where $\mu(D) := \max_{i \neq j} |d_i^T d_j|$ is the mutual coherence of D.



So, measure sparsity of Γ in a localized way.

- x_i = Ωγ_i be i th n dimensional patch where Ω is extracted from the i - th patch of D.
- γ_i contains all the coefficients of columns of Ω that contributes to x_i .
- $\|\Gamma\|_{0,\infty}^{\mathbf{s}} := \max_{i} \|\gamma_{i}\|_{0}$
- $(P_{0,\infty}) \min_{\Gamma} \|\Gamma\|_{0,\infty}^{s} s. t. D\Gamma = X.$
- $(P_{0,\infty}^{\epsilon}) \min_{\Gamma} \|\Gamma\|_{0,\infty}^{s} s.t. \|Y D\Gamma\|_{2}^{2} \le \epsilon^{2} \text{ in case } Y = X + E.$

Definition

For a measured signal Y = X + E and a set of convolutional dictionaries $\{D_i\}_{i=1}^K$ and vectors λ and ϵ , define the **deep coding problem** DCP_{γ}^{ϵ} as:

$$(DCP_{\gamma}^{\epsilon}): \qquad find \quad \{\Gamma_i\}_{i=1}^{K} \ s. t. \quad \|\Gamma_{i-1} - D_i\Gamma_i\| \le \epsilon_{i-1}, \ \|\Gamma_i\|_{0,\infty}^{s} \le \lambda_i$$

for $i = 0, \dots, K, \quad \Gamma_0 = Y$

Definition

For a set of global signals $\{X_j\}_j$ and their corresponding labels $\{h(X_j)\}_j$, a loss function ℓ and a vector λ , we define the **deep learning problem** DLP_{λ} as:

$$(DLP_{\lambda}): \min_{\{D_i\}_{i=1}^{K}, U} \sum_{j} \ell\left(h(X_j), U, DCP_{\lambda}^*(X, \{D_i\}_{i=1}^{K})\right)$$

Layered Thresholding

 $X = D_1\Gamma_1$, $\Gamma_1 = D_2\Gamma_2$ and so on. To solve this we have the following algorithm.

• Input: X, $\{D_i\}_{i=1}^{K}$. $\mathbf{P} \in \{\mathbf{H}, \mathbf{S}, \mathbf{S}^+\}$ (thresholding operator), $\{\beta_i\}_{i=1}^{K}$ (threshold).

• Process:
$$\hat{\Gamma}_0 \leftarrow X$$
, for $(i = 1 : K)$ do $\hat{\Gamma}_i \leftarrow \mathbf{P}_{\beta_i}(D_i^T \hat{\Gamma}_{i-1})$.

• Output: X, $\{\hat{\Gamma}_i\}_{i=1}^K$

For CSC:

$$\hat{\Gamma}_2 = \mathbf{P}_{\beta_2} \left(D_2^T \mathbf{P}_{\beta_1} (D_1^T X) \right).$$

For CNN:

$$f(X, \{W_i\}_{i=1}^2, \{b_i\}_{i=1}^2) = ReLU(W_2^T(ReLU(W_1^TX + b_1) + b_2)).$$

Theoretical Results

Theorem

(Uniqueness via mutual coherence): For a signal X satisfying the DCP_{λ} model, $\Gamma_{i-1} = D_i\Gamma_i$ where $\{D_i\}_{i=1}^K$ is a set of convolutional dictionaries and $\{\mu(D_i)\}_{i=1}^K$ are their corresponding mutual coherences. If for all $1 \leq i \leq K$ we have $\|\Gamma_i\|_{0,\infty}^{s} \leq \lambda_i < \frac{1}{2}\left(1 + \frac{1}{\mu(D_i)}\right)$, then $\{\Gamma_i\}_{i=1}^K$ is the unique solution to the DCP_{λ} .

Theorem

(Stability of the solution to the DCP^{ϵ_{λ}} problem): Suppose a signal X has a decomposition $\Gamma_{i-1} = D_i \Gamma_i$ and it is contaminated with noise E so that Y = X + E. Assume that we solve DCP^{ϵ}_{λ} problem for $\epsilon_0 = ||E||_2$ and $\epsilon_i = 0$ for $i \ge 1$ obtaining solutions $\{\hat{\Gamma}_i\}_{i=1}^K$. If for all $1 \le i \le K$ $||\Gamma_i||_{0,\infty}^{\mathbf{s}} \le \lambda_i < \frac{1}{2} \left(1 + \frac{1}{\mu(D_i)}\right)$, then $||\Gamma_i - \hat{\Gamma}_i||_2^2 \le 4 ||E||_2^2 \prod_{j=1}^i \frac{1}{1 - (2\lambda_j - 1)\mu(D_j)}$.

< (1) > < 三

Theorem

(Stability of the forward(layered soft thresholding) pass in the presence of noise): Let X have a decomposition $\Gamma_{i-1} = D_i\Gamma_i$ and denote by Y = X + E the corrupted signal with $\|E\|_{2,\infty}^P \leq \epsilon_0$. Denote by $|\Gamma_i^{\min}|$ and $|\Gamma_i^{\max}|$ the lowest and highest entries in absolute value of Γ_i , respectively. Let $\hat{\Gamma}_i = \mathbf{S}_{\beta_1}(D_i^T\hat{\Gamma}_{i-1})$ where $\hat{\Gamma}_0 = Y$. Assume that • $\|\Gamma_i\|_{0,\infty}^S < \frac{1}{2}\left(1 + \frac{1}{\mu(D_1)}\frac{|\Gamma_i^{\min}|}{|\Gamma_i^{\max}|}\right) - \frac{1}{\mu(D_1)}\frac{\epsilon_{i-1}}{|\Gamma_i^{\max}|}$ and

•
$$\|\Gamma_i\|_{0,\infty}^{S}\mu(D_i)|\Gamma_i^{\max}| + \epsilon_{i-1} < \beta_i < |\Gamma_i^{\min}| - \left(\|\Gamma_i\|_{0,\infty}^{S} - 1\right)\mu(D_i)|\Gamma_i^{\max}| - \epsilon_{i-1}.$$

Then, the following holds

• The support of $\hat{\Gamma}_i$ is equal to the support of Γ_i and

•
$$\|\Gamma_i - \hat{\Gamma}_i\|_{2,\infty}^P \leq \sqrt{\|\Gamma_i\|_{0,\infty}^P} \left(\epsilon_{i-1} + \left(\|\Gamma_i\|_{0,\infty}^S - 1\right)\mu(D_i)|\Gamma_i^{\max}| + \beta_i\right).$$

References

- Convolutional Neural Networks Analyzed by Convolutional Sparse Coding, V. Papyan, Y. Romano, M. Elad., Journal of Machine Learning Research, 2017
- Sparse and Redundant Representations, M. Elad., Springer, 2010
- Working locally thinking globally: Theoretical guarantees for convolutional sparse coding., V. Papyan, J. SulamM. Elad., arXiv, 2016