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Goals

In this presentation :

Introduce Convolutional Neural Network (CNN) and Convolutional
Sparse Coding (CSC).

Present the relationship between the forward pass of a CNN and CSC.
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Introduction

The forward pass of a CNN consists of

Convolving an input signal X ∈ RN with a collection of filters.

Applying a point-wise non-linear function.

Very frequently, a third operation pooling is applied. This is not
analyzed in this work.

f (X , {Wi}2
i=1, {bi}2

i=1) = Z2 = ReLU
(
W T

2 (ReLU(W T
1 X + b1) + b2)

)
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where W1 ∈ RN×N m1 W2 ∈ RNm1×Nm2 are convolutional matrices of m1

filters of size n0 and m2 dilters of size n1 respectively.
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Sparse Representation

Given X ∈ RN , we want to write X = DΓ where D ∈ RN×M and Γ ∈ RM .

We want to recover the sparsest representation.

(P0) minΓ ‖Γ‖0 s. t. DΓ = X

(P1) minΓ ‖Γ‖1 s. t. DΓ = X ,

Here, ‖Γ‖0 counts the number of nonzero entries in Γ. P1 is convex form
of problem P0.
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Simple approaches to solving P0 and P1 include hard and soft thresholding
algorithms respectively. These are equivalent to the following minimization
problems:

minΓ
1
2‖Γ− DTX‖2

2 + β‖Γ‖0 for the P0

minΓ
1
2‖Γ− DTX‖2

2 + β‖Γ‖1 for the P1.

These problems admit a solution in the form Hβ(DTX ) or Sβ(DTX ) where

Hβ(z) =


z z < −β
0 −β ≤ z ≤ β
z β < z

Sβ(z) =


z + β z < −β
0 −β ≤ z ≤ β
z − β β < z
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X = DΓP + (−D)(−ΓN).

Γp and −ΓN are all non-negative.

X admits a non-negative sparse representation in [D,−D] with the
vector [Γp,−ΓN ]T .]

P1 becomes minΓ
1
2‖Γ− DTX‖2

2 + β‖Γ‖1 s. t. Γ ≥ 0.

The solution becomes S+
β (DTX ) where

S+
β (z) = max (z − β, 0) = ReLU(z − β).

José Rodŕıguez, Basanta Pahari Relations between Convolutional Neural Networks (CNN) and Convolutional Sparse Coding (CSC)April 25, 2020 7 / 14



Convolutional Sparse Coding

Dimension of X ∈ RN may be too large, and the uniqueness of problem P0

requires

‖Γ‖0 <
1

2

(
1 +

1

µ(D)

)
where µ(D) := maxi 6=j |dT

i dj | is the mutual coherence of D.
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So, measure sparsity of Γ in a localized way.

xi = Ωγi be i − th n − dimensional patch where Ω is extracted from
the i − th patch of D.

γi contains all the coefficients of columns of Ω that contributes to xi .

‖Γ‖s0,∞ := maxi ‖γi‖0

(P0,∞) minΓ ‖Γ‖s0,∞ s. t. DΓ = X .

(Pε
0,∞) minΓ ‖Γ‖s0,∞ s. t. ‖Y − DΓ‖2

2 ≤ ε2 in case Y = X + E .
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Definition

For a measured signal Y = X + E and a set of convolutional dictionaries
{Di}Ki=1 and vectors λ and ε, define the deep coding problem DCPε

γ as:

(DCPε
γ) : find {Γi}Ki=1 s. t. ‖Γi−1 − DiΓi‖ ≤ εi−1, ‖Γi‖s0,∞ ≤ λi

for i = 0, . . . ,K , Γ0 = Y

Definition

For a set of global signals {Xj}j and their corresponding labels {h(Xj)}j , a
loss function ` and a vector λ, we define the deep learning problem
DLPλ as:

(DLPλ) : min
{Di}Ki=1,U

∑
j

`
(

h(Xj),U,DCP∗λ(X , {Di}Ki=1)
)
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Layered Thresholding

X = D1Γ1, Γ1 = D2Γ2 and so on. To solve this we have the following
algorithm.

Input: X , {Di}Ki=1. P ∈ {H,S,S+} (thresholding operator), {βi}Ki=1

(threshold).

Process: Γ̂0 ← X , for (i = 1 : K ) do Γ̂i ← Pβi (DT
i Γ̂i−1).

Output: X , {Γ̂i}Ki=1

For CSC:
Γ̂2 = Pβ2

(
DT

2 Pβ1(DT
1 X )

)
.

For CNN:

f (X , {Wi}2
i=1, {bi}2

i=1) = ReLU
(
W T

2 (ReLU(W T
1 X + b1) + b2)

)
.
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Theoretical Results

Theorem

(Uniqueness via mutual coherence): For a signal X satisfying the DCPλ
model, Γi−1 = DiΓi where {Di}Ki=1 is a set of convolutional dictionaries
and {µ(Di )}Ki=1 are their corresponding mutual coherences. If for all

1 ≤ i ≤ K we have ‖Γi‖s0,∞ ≤ λi < 1
2

(
1 + 1

µ(Di )

)
, then {Γi}Ki=1 is the

unique solution to the DCPλ.

Theorem

(Stability of the solution to the DCPε
λ problem): Suppose a signal X has a

decomposition Γi−1 = DiΓi and it is contaminated with noise E so that
Y = X + E . Assume that we solve DCPε

λ problem for ε0 = ‖E‖2 and

εi = 0 for i ≥ 1 obtaining solutions {Γ̂i}Ki=1. If for all 1 ≤ i ≤ K

‖Γi‖s0,∞ ≤ λi < 1
2

(
1 + 1

µ(Di )

)
, then

‖Γi − Γ̂i‖2
2 ≤ 4‖E‖2

2

∏i
j=1

1
1−(2λj−1)µ(Dj )

.
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Theorem

(Stability of the forward(layered soft thresholding) pass in the presence of
noise): Let X have a decomposition Γi−1 = DiΓi and denote by
Y = X + E the corrupted signal with ‖E‖P2,∞ ≤ ε0. Denote by |Γmin

i | and
|Γmax

i | the lowest and highest entries in absolute value of Γi , respectively.

Let Γ̂i = Sβ1(DT
i Γ̂i−1) where Γ̂0 = Y . Assume that

‖Γi‖S0,∞ < 1
2

(
1 + 1

µ(D1)
|Γmin

i |
|Γmax

i |

)
− 1

µ(D1)
εi−1

|Γmax
i | and

‖Γi‖S0,∞µ(Di )|Γmax
i |+ εi−1 < βi <

|Γmin
i | −

(
‖Γi‖S0,∞ − 1

)
µ(Di )|Γmax

i | − εi−1.

Then, the following holds

The support of Γ̂i is equal to the support of Γi and

‖Γi − Γ̂i‖P2,∞ ≤
√
‖Γi‖P0,∞

(
εi−1 +

(
‖Γi‖S0,∞ − 1

)
µ(Di )|Γmax

i |+ βi

)
.
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