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Introduction by the Organisers

Shearlets: The First Five Years

The Mini-Workshop Shearlets, organized by Gitta Kutyniok (Osnabrück) and
Demetrio Labate (Houston) was held October 4th–October 8th, 2010. This meet-
ing was attended by 16 participants whose background ranged from the theory of
group representations over approximation theory to image analysis. This unique
selection provided the ideal setting for a vivid and fertile discussion of the theory
and applications of shearlets, a novel multiscale approach particularly designed for
multivariate problems.

Multivariate problems in applied mathematics are typically governed by an-
isotropic phenomena such as singularities concentrated on lower dimensional em-
bedded manifolds or edges in digital images. Wavelets and multiscale methods,
which were extensively exploited during the past 25 years for a wide range of both
theoretical and applied problems, have been shown to be suboptimal for the en-
coding of anisotropic features. To overcome these limitations, several intriguing
approaches such as ridgelets, contourlets, and curvelets, have since then been pro-
posed, which all provide optimally sparse approximations of anisotropic features.
Among those, shearlets are unique in encompassing the mathematical framework
of affine systems and are, to date, the only approach capable of achieving a truly
unified treatment in both the continuum and digital setting. This includes a pre-
cise mathematical analysis of sparse approximation properties in both settings as
well as numerically efficient discrete transforms. Therefore shearlets are regarded
as having the same potential impact on the encoding of multivariate signals as
traditional wavelets did about 20 years ago for univariate problems.

Shearlet systems are designed to efficiently encode anisotropic features such as
singularities concentrated on lower dimensional embedded manifolds. To achieve
optimal sparsity, shearlets are scaled according to a parabolic scaling law encoded
in the parabolic scaling matrix Aa, a > 0, and exhibit directionality by parameter-
izing slope encoded in the shear matrix Ss, s ∈ R, defined by

Aa =

(
a 0
0

√
a

)

and Ss =

(
1 s
0 1

)

,

respectively. Hence, shearlet systems are based on three parameters: a > 0 being
the scale parametermeasuring the resolution level, s ∈ R being the shear parameter
measuring the directionality, and t ∈ R2 being the translation parametermeasuring
the position. This parameter space R+ × R× R2 can be endowed with the group
operation

(a, s, t) · (a′, s′, t′) = (aa′, s+ s′
√
a, t+ SsAat

′),

leading to the so-called shearlet group S, which can be regarded as a special case of
the general affine group. The continuous shearlet systems arise from the unitary
group representation

σ : S → U(L2(R2)), (σ(a, s, t)ψ)(x) = a−3/4ψ(A−1
a S−1

s (x− t))
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Figure 1. Left to Right: Frequency tiling of a discrete shearlet
system; Frequency tiling of a cone-adapted discrete shearlet sys-
tem.

and are defined by

{ψa,s,t = σ(a, s, t)ψ = a−3/4ψ(A−1
a S−1

s ( · − t)) : (a, s, t) ∈ S}.
For appropriate choices of the shearlet ψ ∈ L2(R2), the Continuous Shearlet Trans-
form

SHψ : f → SHψf(a, s, t) = 〈f, ψast〉,
is a linear isometry from L2(R2) to L2(S). Alternatively, rather than defining the
shearing parameter s on R, the domain can be restricted to, say, |s| ≤ 1. This gives
rise to the so-called Cone-adapted Continuous Shearlet Transform, which allows
an equal treatment of all directions in contrast to a slightly biased treatment by
the Continuous Shearlet Transform. In fact, it could be proven that the Cone-
adapted Continuous Shearlet Transform resolves the wavefront set of distributions
and can be applied to precisely characterize edges in images. Notice that, although
directions are treated slightly biased, the Continuous Shearlet Transform has the
advantage of being equipped with a simpler mathematical structure. This allows
the application of group theoretic methodologies to, for instance, discretize the set
of parameters through coorbit theory.

Discrete shearlet system are obtained by appropriate sampling of the continuous
shearlet systems presented above. Specifically, for ψ ∈ L2(R2), a (discrete) shearlet
system is a collection of functions of the form

(1) {ψj,k,m = 23j/4ψ(SkA2j · −m) : j ∈ Z, k ∈ K ⊂ Z,m ∈ Z
2},

where K is a carefully chosen indexing set of shears. Notice that the shearing
matrix Sk maps the digital grid Z

2 onto itself, which is the key idea for deriving a
unified treatment of the continuum and digital setting. The discrete shearlet sys-
tem defines a collection of waveforms at various scales j, orientations controlled
by k, and locations dependent on m. In particular, if K = Z in (1), the shearlet
system contains elements oriented along all possible slopes as illustrated in Fig-
ure 1. This particular choice is in accordance with the continuous shearlet systems
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generated by a group action. To avoid the already mentioned biased treatment
of directions which the discrete systems inherit, the cone-adapted discrete shearlet
systems were introduced as

{φ(· −m) : m ∈ Z
2} ∪ {ψj,k,m, ψ̃j,k,m : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z

2},

where ψ̃j,k,m is generated from ψj,k,m by interchanging both variables, and ψ, ψ̃,
and φ are L2 functions. Figure 1 illustrates a typical frequency tiling associated
with a cone-adapted shearlet system. A suitable choice of the shearlets ψ and
ψ̃ generates well-localized shearlet systems which form frames or even Parseval
frames.

Over the last years, an abundance of results on the theory and applications
of shearlets have been derived by a constantly growing community of researchers.
One main goal of this workshop was to discuss the state of the art of this vivid
research area. The talks which were delivered by the participants covered the
following topics:

(1) (Cone-adapted) Continuous Shearlet Systems. Novel results for continu-
ous shearlet systems were presented by S. Dahlke and G. Teschke, who
exploited their group structure through a coorbit theory approach to de-
rive feasible discretization of the shearlet parameters as well as associated
function spaces even for the 3D setting. F. DeMari’s talk then revealed
intriguing properties of the set of groups the shearlet group belongs to.
Focusing on cone-adapted continuous shearlet systems instead, the mi-
crolocal properties of such systems were presented by P. Grohs, and their
application to the characterization of edges for 2D and 3D data was dis-
cussed by K. Guo.

(2) (Cone-adapted) Discrete Shearlet Systems. Recently, compactly supported
discrete shearlet systems which provide optimally sparse approximations
of anisotropic features were introduced for both 2D and 3D signals to
allow superior spatial localization. These novel results were presented by
J. Lemvig and W. Lim.

(3) Numerical Implementations and Applications. Different efficient numeri-
cal implementations of the shearlet transform have been proposed in the
past, but further improvements are desirable to achieve additional compu-
tational efficiency and features such as locality. W. Lim presented a new
fast shearlet transform in his talk which is extremely competitive for ap-
plications such as denoising and data separation. A subdivision approach
towards a shearlet multiresolution analysis with associated fast decompo-
sition algorithm was discussed by T. Sauer. G. Easley and V. Patel then
showed that the shearlet approach is extremely competitive in a wide range
of applications from signal and image processing including edge detection,
halftoning and image deconvolution.

A further main objective of the workshop was to foster interaction in order to
attack a number of open problems and identify future directions of this area of
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research. During our discussions, the following topics and problems have emerged
as main themes to be investigated within the next five years:

• Shearlet Smoothness Spaces. For problems arising in the theory of par-
tial differential equations and in approximation theory, it is essential to
precisely understand the nature of the spaces defined using shearlets as
building blocks and their relation to classical function spaces.

• Shearlet Constructions and Applications in 3D. While the theory of shear-
lets is well understood in the bivariate case, the extension to higher di-
mensions is still far from being complete. Open problems in this direction
include, in particular, the analysis of corner and irregular surface points
using shearlets.

• Construction of “good” Shearlet Systems. Several results are known, by
now, for compactly supported shearlet systems, which though do not form
tight frames. Thus, it would be highly desirable to construct well local-
ized shearlet systems which are compactly supported, form a tight frame
or even an orthonormal system, and provide provably optimal sparse ap-
proximations of anisotropic features.

• Numerical Implementations. Starting with the bivariate situation, one
main goal is to derive a complete analog of the fast wavelet transform
in the sense of a fast algorithm with associated multiresolution structure
paralleling the continuum setting. Furthermore, as the theory for sparse
3D shearlet representations is emerging, numerical implementations for
the trivariate case are also in demand. The higher complexity of such
data poses a particular difficulty.

The organizers:

G. Kutyniok and D. Labate
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Abstracts

The Continuous Shearlet Transform: Representation Formulae and
Microlocal Analysis

Philipp Grohs

1. Introduction

In this talk we considered two aspects of the continuous shearlet transform:
Representation formulae and the ability of of the shearlet transform to characterize
microlocal smoothness properties of bivariate functions.

We start with some notation: Let DM : f(x) 7→ | det(M)|−1/2f(M−1x), x ∈ R2

be a matrix dilation operator and Us =

(
1 s
0 1

)

, Wa =

(
a 0

0 a1/2

)

be shear

and anisotropic dilation matrices. Then the shearlet transform of a bivariate
function f with respect to a shearlet generator ψ is defined via

(a, s, t) → SHψf(a, s, t) := 〈f, TtDUsDWaψ〉, (a, s, t) ∈ R+ × R× R
2

where ψast = TtDUsDWaψ. The parameters (a, s, t) encode scale, direction and lo-
cation, respectively. It is easily seen that the distribution of the directions becomes
less uniform as s becomes large. This has led to the development of the cone-
adapted shearlet transform [4]. The idea is to decompose f into f = PCf + PCνf ,
where PC , PCν denote frequency projections onto the cone with slope ≤ 1, resp.
≥ 1. This way it is possible to restrict the shear parameter to a compact set and
thus to produce a near uniform sampling of the directions.

2. Representation Formulae

The starting point of our work is [5], where it is shown that with bandlimited

shearlet generators, defined by ψ̂(ξ1, ξ2) := ψ̂1(ξ1)ψ̂2(ξ2/ξ1), ψ̂
ν(ξ1, ξ1) = ψ̂(ξ2, ξ1),

supp ψ̂1 ⊂ [−2,−1/2] ∪ [1/2, 2], supp ψ̂2 ⊂ [−1, 1] there holds a representation
formula

f(x) =

∫

t∈R2

〈f, TtW 〉TtW (x)dt+

∫

R2

∫ 2

−2

∫ 1

0

SHψPCf(a, s, t)PCψast(x)
da

a3
dsdt

∫

R2

∫ 2

−2

∫ 1

0

SHψνPCνf(a, s, t)PCνψνast(x)
da

a3
dsdt

with W an appropriate low-pass function. The main drawback of this formula is
its lack of locality. First, the fact that the generators ψ, ψν are bandlimited forces
them to be non compactly supported. Second, the operators PC , PCν are highly
nonlocal. It turns out that the first problem can be dealt with, but one cannot
dispense of some sort of frequency localization onto the cones:
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Theorem 1 [2]. Under reasonable assumptions (spacial decay, smoothness, van-
ishing moments) on ψ there does not exist a representation formula

f(x) = C

(∫

t∈R2

〈f, TtW 〉TtW (x)dt+

∫

R2

∫ 2

−2

∫ 1

0

SHψf(a, s, t)ψast(x)
da

a3
dsdt

∫

R2

∫ 2

−2

∫ 1

0

SHψf(a, s, t)ψ
ν
ast(x)

da

a3
dsdt

)

with W smooth.
What we can do is to ’localize’ the frequency projections and then we obtain the
following result:
Theorem 2 [2]. Under reasonable assumptions (spacial decay, smoothness, van-
ishing moments) on ψ there exist a constant C, compactly supported tempered
distributions q, qν and a smooth function W so that

f(x) = C

(∫

t∈R2

〈f, TtW 〉TtW (x)dt+

∫

R2

∫ 2

−2

∫ 1

0

SHψf(a, s, t)q ∗ ψast(x)
da

a3
dsdt

∫

R2

∫ 2

−2

∫ 1

0

SHψf(a, s, t)q
ν ∗ ψνast(x)

da

a3
dsdt

)

3. Microlocal Analysis

Shearlets are well-suited for the characterization of microlocal smoothness prop-
erties of bivariate tempered distributions. In [5] it is shown that the decay rate of
the shearlet coefficients of f with bandlimited generators exactly determines the
wavefront set of f . Intuitively, the wavefront set consists of the point-direction
pairs where f is not smooth, see [1, 5] for the precise definition. In [3] we show that
the assumptions on the generators ψ can be relaxed to non-bandlimited generators
with directional vanishing moments.

A finer notion of microlocal smoothness is described by microlocal Sobolev
spaces. We say that f ∈ Wα

2 (t0, s0) iff there exists a bump function Φ around
t0 such that the frequency projection of Φf onto a cone around the direction
associated with s0 lies in the usual Sobolev space Wα

2 , see [1] for the precise
definition. We have the following result:
Theorem 3. f ∈ L2 is in Wα

2 (t0, s0) if and only if there exists a neighborhood U
of t0 and V of s0 such that

Sα(t, s) ∈ L2 (U × V, dtds)

and

Sα(t, s) :=

(∫ 1

0

|SHψf(a, s, t)a
−α|2 da

a3

)1/2

,

provided that ψ has sufficiently many vanishing moments and is sufficiently smooth.
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Shearlet coorbit spaces I: General setting (in arbitrary space
dimensions)

Stephan Dahlke

(joint work with Gabriele Steidl, Gerd Teschke )

Multivariate Continuous Shearlet Transform. Let us start by introducing
the continuous shearlet transform on L2(R

n). This requires the generalization of
the parabolic dilation matrix and of the shear matrix. Let In denote the (n, n)-
identity matrix and 0n, resp. 1n the vectors with n entries 0, resp. 1. For
a ∈ R∗ := R \ {0} and s ∈ Rn−1, we set

Aa :=

(

a 0T

n−1

0n−1 sgn (a)|a| 1
n In−1

)

and Ss :=

(
1 sT

0n−1 In−1

)

.

Lemma 1. The set R∗ × Rn−1 × Rn endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−1/n s′, t+ SsAat
′)

is a locally compact group S which we call full shearlet group. The left and right
Haar measures on S are given by

dµl(a, s, t) =
1

|a|n+1
da ds dt and dµr(a, s, t) =

1

|a| da ds dt.

For f ∈ L2(R
n) we define

(1) π(a, s, t)f(x) = fa,s,t(x) := |a| 1
2n−1f(A−1

a S−1
s (x− t)).

Theorem 2. The mapping π defined by (1) is a unitary representation of S.
Moreover, a function ψ ∈ L2(R

n) is admissible if and only if

(2) Cψ :=

∫

Rn

|ψ̂(ω)|2
|ω1|n

dω <∞.
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Then, for any f ∈ L2(R
n), the following equality holds true:

(3)

∫

S

|〈f, ψa,s,t〉|2 dµl(a, s, t) = Cψ ‖f‖2L2(Rn).

Multivariate Shearlet Coorbit Theory. We consider weight functions w(a, s, t) =
w(a, s) that are locally integrable with respect to a and s, i.e., w ∈ Lloc1 (Rn) and
fulfill w ((a, s, t) ◦ (a′, s′, t′)) ≤ w(a, s, t)w(a′, s′, t′) and w(a, s, t) ≥ 1. Let

Lp,w(S) := {F : ‖F‖Lp,w(S) :=

(∫

S

|F (g)|p w(a, s, t)pdµ(a, s, t)
)1/p

<∞}.

In order to construct the coorbit spaces related to the shearlet group we have to
ensure that there exists a function ψ ∈ L2(R

n) such that

(4) SHψ(ψ) = 〈ψ, π(a, s, t)ψ〉 ∈ L1,w(S).

Theorem 3. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0] ∪
[a0, a1])× [−b1, b1]× · · · × [−bn−1, bn−1]. Then we have that SHψ(ψ) ∈ L1,w(S).
For ψ satisfying (4) we can consider the space

(5) H1,w := {f ∈ L2(R
n) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)},

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dualH∼
1,w. The spacesH1,w and

H∼
1,w are π-invariant Banach spaces with continuous embeddings H1,w →֒ H →֒

H∼
1,w, and their definition is independent of the shearlet ψ. Then the inner product

on L2(R
n)× L2(R

n) extends to a sesquilinear form on H∼
1,w ×H1,w, therefore for

ψ ∈ H1,w and f ∈ H∼
1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w

are well-defined. The next step is to consider an additional weight function m
which is moderate with respect to w, i.e., m((a, s, t) ◦ (a′, s′, t′) ◦ (a′′, s′′, t′′)) ≤
w(a, s, t)m(a′, s′, t′)w(a′′, s′′, t′′). Then, with respect to the new weight m, we de-
fine the shearlet coorbit spaces

(6) SCp,m := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,m(S)}

with norms ‖f‖SCp,m
:= ‖SHψf‖Lp,m(S).

The Feichtinger-Gröchenig theory provides us with a machinery to construct
atomic decompositions and Banach frames for our shearlet coorbit spaces SCp,w. A
(countable) familyX = ((a, s, t)λ)λ∈Λ in S is said to be U -dense if ∪λ∈Λ(a, s, t)λU =
S, and separated if for some compact neighborhood Q of e we have (ai, si, ti)Q ∩
(aj , sj , tj)Q = ∅, i 6= j, and relatively separated if X is a finite union of separated
sets.

Lemma 4. Let U be a neighborhood of the identity in S, and let α > 1 and

β, γ > 0 be defined such that [α
1
n−1, α

1
n )× [−β

2 ,
β
2 )
n−1 × [− γ

2 ,
γ
2 )
n ⊆ U. Then the

sequence

{(ǫαj , βαj(1− 1
n )k, S

βαj(1− 1
n

)k
Aαjγm) : j ∈ Z, k ∈ Z

n−1,m ∈ Z
n, ǫ ∈ {−1, 1}}
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is U -dense and relatively separated.
Next we define the U–oscillation as

(7) oscU (a, s, t) := sup
u∈U

|SHψ(ψ)(u ◦ (a, s, t))− SHψ(ψ)(a, s, t)|.

Then, the following decomposition theorem, which was proved in a general setting
in [3, 4, 5], says that discretizing the representation by means of an U -dense set
produces an atomic decomposition for SCp,w.
Theorem 5. Assume that the irreducible, unitary representation π is w-integrable
and let an appropriately normalized ψ ∈ L2(R

n) which fulfills

(8) M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S)

be given. Choose a neighborhood U of e so small that ‖oscU‖L1,w(S) < 1. Then for
any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space SCp,m has
the following atomic decomposition: If f ∈ SCp,m, then

(9) f =
∑

λ∈Λ

cλ(f)π((a, s, t)λ)ψ

where the sequence of coefficients depends linearly on f and satisfies

(10) ‖(cλ(f))λ∈Λ‖ℓp,m ∼ ‖f‖SCp,m
.

Given such an atomic decomposition, the problem arises under which conditions
a function f is completely determined by its moments 〈f, π((a, s, t)λ)ψ〉 and how
f can be reconstructed from these moments.

Theorem 6. Impose the same assumptions as in Theorem 5. Choose a neighbor-
hood U of e such that ‖oscU‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). Then the set {π((a, s, t)λ)ψ :
λ ∈ Λ} is a Banach frame for SCp,m. This means that

i) f ∈ SCp,m if and only if (〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ ∈ ℓp,m;

ii)

‖f‖SCp,m ∼ ‖(〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w )λ∈Λ‖ℓp,m ;

iii) there exists a bounded, linear operator S from ℓp,m to SCp,m such that

S
(

(〈f, ψ((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ

)

= f.

To apply the whole machinery it remains to prove that ‖oscU‖L1,w(S) becomes
arbitrarily small for a sufficiently small neighborhood U of e.

Theorem 7. Let ψ be a function contained in the Schwartz space S with supp ψ̂ ⊆
([−a1,−a0] ∪ [a0, a1]) ×b [−b1, b1] × · · · × [−bn−1, bn−1]. Then, for every ε > 0,
there exists a sufficiently small neighborhood U of e so that

(11) ‖oscU‖L1,w(S) ≤ ε.

Further information concerning the coorbit and group theory related with the
continuous shearlet transform can be found in [1, 2].
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Shearlet Coorbit Spaces II: Compactly Supported Shearlets, Traces
and Embeddings

Gerd Teschke

(joint work with Stephan Dahlke, Gabriele Steidl)

We show that compactly supported functions with sufficient smoothness and enough
vanishing moments can serve as analyzing vectors for shearlet coorbit spaces. We
use this approach to prove embedding theorems for subspaces of shearlet coorbit
spaces resembling shearlets on the cone into Besov spaces. Furthermore, we show
embedding relations of traces of these subspaces with respect to the real axes.

The Shearlet group and the continuous Shearlet transform. The (full) shearlet
group SS is defined to be the set R∗ ×R×R2 endowed with the group operation
(a, s, t) (a′, s′, t′) = (aa′, s+s′

√

|a|, t+SsAat′). A right–invariant and left-invariant
Haar measures of SS is given by µSS,r = da/|a| ds dt and µSS,l = da/|a|3 ds dt,
respectively and the modular function of S by △(a, s, t) = 1/|a|2. For the shearlet
group the mapping π : S → U(L2(R

2)) defined by

(1) π(a, s, t)ψ(x) := |a|− 3
4 ψ

(

1

a
(x1 − t1 − s(x2 − t2)) ,

sgna
√

|a|
(x2 − t2)

)

is a unitary representation of S, see [1, 2]. With the help of [2] it follows that the
unitary representation π defined in (1) is a square-integrable representation of S.
The transform SHψ : L2(R

2) → L2(S) defined by SHψf(a, s, t) := 〈f, ψa,s,t〉 is
called Continuous Shearlet Transform.

Shearlet coorbit spaces from Shearlets with compact support. Let w be a positive,
real-valued, continuous submultiplicative weight on S. To define our coorbit spaces
we need the set Aw := {ψ ∈ L2(R

2) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w} of analyzing
vectors, see [3, 4, 5, 7]. In the following, we assume that our weight is symmetric
with respect to the modular function, i.e., w(g) = w(g−1)△(g−1). Let QD :=
[−D,D]× [−D,D]. The following theorem shows that Aw contains shearlets with
compact support.



16 Oberwolfach Report 44

Theorem 1. Let ψ(x) ∈ L2(R
2) fulfill suppψ ∈ QD. Suppose that the weight

function satisfies w(a, s, t) = w(a) ≤ |a|−ρ1 + |a|ρ2 for ρ1, ρ2 > 0 and that

(2) |ψ̂(ω1, ω2)| ≤ C
|ω1|n

(1 + |ω1|)r
1

(1 + |ω2|)r

with n ≥ max(14 + ρ2,
9
4 + ρ1) and r > n+max(74 + ρ2,

9
4 + ρ1). Then we have that

SHψ(ψ) ∈ L1,w(S).
For an analyzing ψ we can consider

H1,w := {f ∈ L2(R
2) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼
1,w. As the inner prod-

uct on L2(R
2) × L2(R

2) extends to a sesquilinear form on H∼
1,w × H1,w, the ex-

tended representation coefficients SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w are

well-defined. Let m be a w-moderate weight on S, i.e. m(xyz) ≤ w(x)m(y)w(z)
for all x, y, z ∈ S. Then we can define the called shearlet coorbit spaces

(3) SCp,m := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m := ‖SHψf‖Lp,m(S).

Atomic decompositions and Shearlet Banach frames. To construct atomic decom-
positions and Banach frames the subset Bw of Aw,

Bw := {ψ ∈ L2(R
2) : SHψ(ψ) ∈ W(C0, L1,w)}

has to be non-empty. Here W(C0, L1,w) := {F : ‖(LxχQ)F‖∞ ∈ L1,w} and Q
is a relatively compact neighborhood of the identity element in S, see [7]. It can
be shown, for a classes of weights w sufficiently smooth and compactly supported
ψ(x) ∈ L2(R

2) belong to Bw. As it was shown in [2] that for α > 1 and σ, τ > 0
the set X := {(ǫα−j , σα−j/2k, Sσα−j/2kAα−j τl) : j ∈ Z, k ∈ Z, l ∈ Z2, ǫ ∈ {−1, 1}}
forms a U -dense and relatively separated family, we can deduce by Theorem 3.1
and 3.2 in [2] that we can establish atomic decompositions and Banach frames for
the shearlet coorbit spaces.

Structure of Shearlet Coorbit Spaces. We now establish relations between scales
of Shearlet coorbit spaces and relations to Besov spaces. To establish relations
to Besov spaces we apply the characterization of homogeneous Besov spaces Bσp,q
from [6], see also [8, 10]. For inhomogeneous Besov spaces we refer to [9]. The full
analysis is restricted to weights m(a, s, t) = m(a) := |a|−r, r ≥ 0, suggesting to use
the abbreviation SCp,r := SCp,m. For simplicity, we further assume that we can
use σ = τ = 1 in the U -dense, relatively separated set X and restrict ourselves to
the case ǫ = 1. Therefore, we assume that f ∈ SCp,r can be written as

f(x) =
∑

j∈Z

∑

k∈Z

∑

l∈Z2

c(j, k, l)α
3
4 jψ(αjx1 − αj/2kx2 − l1, α

j/2x2 − l2).(4)

To derive reasonable trace and embedding theorems, it is necessary to introduce
the following subspaces of SCp,r. For fixed ψ ∈ Bw we denote by SCCp,r be the
closed subspace of SCp,r consisting of those functions which are representable as

in (4) but with integers |k| ≤ αj/2. As we shall see in the sequel for each of these
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ψ the resulting spaces SCCp,r embed in the same scale of Besov spaces, and the
same holds true for the trace theorems.

In most of the classical smoothness spaces like Sobolev and Besov spaces dense
subsets of ‘nice’ functions can be identified.
Theorem 2. Let S0 := {f ∈ S : |f̂(ω)| ≤ ω2α

1 (1 + ‖ω‖2)−2α ∀ α > 0} and
m(a, s, t) = m(a, s) := |a|r(1/|a|+ |a|+ |s|)n for some r ∈ R, n ≥ 0. Then the set
of Schwartz functions forms a dense subset of the shearlet coorbit space SCp,m.

We now investigate the traces of functions lying in SCCp,r with respect to the
horizontal and vertical axes, respectively.
Theorem 3. Let Trhf denote the restriction of f to the (horizontal) x1-axis, i.e.,
(Trhf)(x1) := f(x1, 0). Then Trh(SCCp,r) ⊂ Bσ1

p,p(R) +Bσ2
p,p(R), where

Bσ1
p,p(R) +Bσ2

p,p(R) := {h | h = h1 + h2, h1 ∈ Bσ1
p,p(R), h2 ∈ Bσ2

p,p(R)}
and the parameters σ1 and σ2 satisfy the conditions σ1 = r− 5

4+
3
2p , σ2 = r− 3

4+
1
p .

Corollary 4. For p = 1, the embedding Trh(SC1,r) ⊂ Bσ1,1(R) with σ = r− 3
4 +

1
p

holds true.
Theorem 5. Let Trvf denote the restriction of f to the (vertical) x2-axis, i.e.,
(Trvf)(x2) := f(0, x2). Then the embedding Trv(SCCp,r) ⊂ Bσ1

p,p(R) + Bσ2
p,p(R),

holds true, where σ1 is the largest number such that σ1 + ⌊σ1⌋ ≤ 2r − 9
2 + 3

p , and

σ2 = 2r − 3
2 + 1

p .

We turn now to embedding results.
Corollary 6. For 1 ≤ p1 ≤ p2 ≤ ∞ the embedding SCp1,r ⊂ SCp2,r holds
true. Introducing the ’smoothness spaces’ Grp := SCp,r+d( 1

2−
1
p )
. This implies the

continuous embedding Gr1p1 ⊂ Gr2p2 , if r1 − d
p1

= r2 − d
p2
.

Theorem 7. The embedding SCCp,r ⊂ Bσ1
p,p(R

2) +Bσ2
p,p(R

2), holds true, where σ1

is the largest number such that σ1+⌊σ1⌋ ≤ 2r− 9
2 +

4
p , and σ2−

⌊σ2⌋
2 = r+ 3

2p+
1
4 .
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Optimally Sparse Representations of 3D Data using Parseval Frames
of Shearlets

Kanghui Guo

(joint work with Demetrio Labate)

In a seminal paper from 2004 [1], Candès and Donoho proved a remarkable
result about representations of 2-dimensional data, showing that the curvelet rep-
resentation, a multiscale system of waveforms defined at various directions and
positions at each scale, is essentially as good as an adaptive representation from
the point of view of its ability to approximate images containing edges. Specifi-
cally, for functions f which are C2 away from C2 edges, the N term approximation
fCN obtained from the N largest coefficients of its curvelet expansion, obeys

(1) ||f − fCN ||22 ≍ N−2(logN)3, as N → ∞.

Ignoring the loglike factor, this is the optimal approximation rate for this class
of functions while, in comparison, the wavelet and Fourier representations only
achieve approximation rate N−1 and N−1/2, respectively.

The importance of this result goes beyond basic fundamental theoretical ques-
tions about the mathematical representations of functions containing edge discon-
tinuities, and has great relevance for a variety of technologies and applications. In
fact, the notion of sparsity entails the intimate understanding of the most essential
information contained in data, which is critically important for the development
of improved algorithms in areas such as data modeling, feature extraction, image
denoising and classification.

The shearlet representation was introduced by the authors of this paper and
their collaborators in [7, 4] as an alternative approach which satisfies the same
(essentially) optimally sparse approximation rate (Refeq.opt) when dealing with
the same class of 2–D data [5]. However, unlike curvelets, the shearlet approach
relies on a simpler mathematical construction, based on the framework of affine
systems, so that all elements of the representation system are derived from a single
(or finite set of) generators through the action of the affine group. The unique
properties of the shearlet approach provide not only the benefit of greater flexibility
and mathematical simplicity, but also ensure that there is a natural transition from
the continuum to the discrete setting. This was exploited in a wide range of very
powerful applications (e.g., [2, 3, 8, 9]).

In particular, the shearlet approach extends naturally to the 3-dimensional set-
ting where it also provides optimally sparse nonadaptive representations of 3–D
data. In fact, we can construct a Parseval frame of shearlets to represent 3-
dimensional functions f which are smooth away from discontinuities along C2
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boundaries, and prove that the N -term approximation fSN , obtained from the N
largest coefficients of its shearlet representation, satisfies the estimate:

(2) ||f − fSN ||22 ≍ N−1(logN)2, as N → ∞.

Up the logarithmic factor, this is the optimal approximation rate for this type
of function in the sense that no orthonormal bases or Parseval frames can yield
approximation rates that are better than N−1. Even if one considers finite linear
combinations of elements taken from arbitrary dictionaries, there is no depth-
limited search dictionary that can achieve a rate better than N−1. In contrast,
more traditional methods based on wavelet and Fourier approximations are sig-
nificantly less efficient since their asymptotic approximation rate only decays as
N−1/2 and N−1/3, respectively. Notice that this result, recently appeared in [6], is
the first and (so far) only published result concerning a nonadaptive construction
which is provably optimal (up to a loglike factor) for a large class of 3–D data.

A simple heuristic argument can be used to justify why 3–D shearlet system is
optimally efficient when dealing with 3–D data f containing discontinuous surfaces,
whereas a 3–D wavelet system cannot be very sparse. Indeed, at scale 2−2j, a
wavelet φj,k(x) = 23jφ(22jx − k) is essentially supported on a box of size 2−2j ×
2−2j × 2−2j. Hence, there are approximately O(24j) wavelet coefficients Cj,k(f) =
〈f, φj,kRangle associated with the surface of discontinuity (while the remaining
coefficients are negligible at fine scales). Since

∫

R3

|φj,k(x)| dx = 23j
∫

R3

|φ(22jx− k)| dx = 2−3j

∫

R3

|φ(y)| dy,

a direct computation shows that, at scale 2−2j, all these wavelet coefficients are
controlled by

|Cj,k(f)| ≤ ||f ||∞ ||φj,k||L1 ≤ C 2−3j.

If follows that the N -th largest wavelet coefficient |CN (f)| is bounded by O(N−3/4)
and, thus, if fWN is the approximation of f obtained by taking the N largest
coefficients of its wavelet expansion, the L2–error obeys the estimate:

||f − fWN ||2L2 ≤
∑

ℓ>N

|Cℓ(f)|2 ≤ C N−1/2.

By contrast, the elements of the shearlet system, denoted by ψj,ℓ,k, at scale
2−2j, are essentially supported on a parallelepiped of size 2−2j × 2−j × 2−j ,
with location controlled by k, and orientation controlled by ℓ. At fine scales
(j “large”), it is reasonable to assume that the only significant shearlet coefficients
Sj,ℓ,k(f) = 〈f, ψj,ℓ,k,Rangle are those corresponding to the shearlet elements which
are tangent to the surface of discontinuity; there are about O(22j) coefficients of
this type. Again, a direct computation shows that

∫

R3

|ψj,ℓ,k(x)| dx = 2−2j

∫

R3

|ψ(y)| dy,

so that, at scale 2−2j , all these shearlet coefficients are controlled by

|Sj,ℓk(f)| ≤ ||f ||∞ ||ψj,ℓ,k||L1 ≤ C 2−2j.
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It follows that the N -th largest shearlet coefficient |SN (f)| is bounded by O(N−1)
and this implies that – denoting by fN is the approximation of f computed by
taking the N largest coefficients of its shearlets expansion – the L2–error approx-
imately obeys the estimate:

||f − fSN ||2L2 ≤
∑

ℓ>N

|Sℓ(f)|2 ≤ C N−1.

The rigorous proof of this result requires a much more sophisticated argument
based on techniques from the theory of oscillatory integrals. In particular, the main
technical arguments needed to estimate the effect of the surface discontinuities
in the shearlet representation require the introduction of a fundamentally new
approach which is significantly different from the 2–D case.
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Construction and Applications of Shearlets

Wang-Q Lim

(joint work with Gitta Kutyniok, Jakob Lemvig)

It is now widely acknowledged that analyzing the intrinsic geometrical features of
a function/signal is essential in many applications. In order to achieve this, sev-
eral directional systems have been proposed in the past. The first breakthrough
was achieved by Candés and Donoho who introduced curvelets and showed that
curvelets provide an optimally sparse approximation property for a special class of
2D piecewise smooth functions, called cartoon-like images. Since then, various di-
rectional systems have been proposed. Recently, a novel directional representation
system – so-called shearlets [7] – has emerged which provides a unified treatment of
such continuum models as well as digital models, allowing, for instance, a precise
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resolution of wavefront sets, optimally sparse representations of cartoon-like im-
ages, and associated fast decomposition algorithms. Shearlet systems are systems
generated by one single generator with parabolic scaling, shearing, and transla-
tion operators applied to it, in the same way wavelet systems are dyadic scalings
and translations of a single function, but including a directionality characteristic
owing to the additional shearing operation (and the anisotropic scaling). Further,
in the series of papers [5, 6], we showed that it is possible to construct compactly
supported shearlets systems and they provide an optimally sparse approximation
property for larger classes of functions than a class of cartoon-like images. We now
introduce a general approach to construct compactly supported shearlet systems.

We first start with some notations and definitions for later use. For j ≥ 0, k ∈ Z,
let

A2j =

(
2j 0

0 2j/2

)

, Ã2j =

(
2j/2 0
0 2j

)

and Sk =

(
1 k
0 1

)

,

Next we define discrete shearlet systems in 2D. Let c be a positive constant. For
φ, ψ, ψ̃ ∈ L2(R2) the cone-adapted 2D discrete shearlet system SH(φ, ψ, ψ̃; c) is
defined by

(1) SH(φ, ψ, ψ̃; c) = Φ(φ; c) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),

where

Φ(φ; c) = {φ(· − cm) : m ∈ Z
2},

Ψ(ψ; c) = {2 3
4 jψ(SkA2j · −cm) : j ≥ 0,−⌈2j/2⌉ ≤ k ≤ ⌈2j/2⌉,m ∈ Z

2},

and

Ψ̃(ψ̃; c) = {2 3
4 jψ̃(ST kÃ2j · −cm) : j ≥ 0,−⌈2j/2⌉ ≤ k ≤ ⌈2j/2⌉,m ∈ Z

2}.
We are now ready to state general sufficient conditions for the construction of
shearlet frames.

Theorem 1 (Thm. 3.4 in [5]). Let φ, ψ ∈ L2(R2) be functions such that

φ̂(ξ1, ξ2) ≤ C2 ·min {1, |ξ1|−γ} ·min {1, |ξ2|−γ}
and

|ψ̂(ξ1, ξ2)| ≤ C1 ·min{1, |ξ1|α} ·min {1, |ξ1|−γ} ·min {1, |ξ2|−γ},
for some positive constants C1, C2 < ∞ and α > γ > 3. Define ψ̃(x1, x2) =
ψ(x2, x1). Then there exits the sampling constant c0 > 0 such that the shearlet

system SH(φ, ψ, ψ̃; c), defined in (1), forms a frame for L2(R2) for all c ≤ c0
provided that there exits a positive constant L > 0 such that

|φ̂(ξ)|2 +
∑

j≥0

⌈2j/2⌉
∑

k=−⌈2j/2⌉

|ψ̂(ST kA2jξ)|2 + | ˆ̃ψ((Sk)Ã2j ξ)|2 > L

for a.e ξ ∈ R2.
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In fact, one can construct compactly supported shearlet frames generated by a
separable function, using Theorem 1. Further, this construction can be general-
ized to construct compactly supported 3D shearlets frames providing an optimally
sparse approximation for a certain class of functions. We refer to [5, 6] for more
details.

Shearlet theory has applications in various areas. we will now present two appli-
cations: Denoising of images and geometric separation of data. First, to illustrate
how shearlets perform in image denoising, we have included a denoising example
of the Goldhill image using both curvelets1 and shearlets, see Figure 1. We omit

Figure 1. Denoising of the Goldhill image (512 × 512) using
shearlets and curvelets. Left to Right : Original image, Noisy
image (PSNR 20.17 dB), Curvelet-denoised image (PSNR 28.70
dB/ Computing time 7.22sec), Shearlet-denoised image (PSNR
29.20 dB / Computing time 5.56sec).

a detailed analysis of the denoising results and leave the visual comparison to the
reader. For a detailed review of the shearlet transform and associated aspects, we
refer to [8]. In neurobiological imaging, it is desirable to separate two morphologi-
cally different objects, namely ‘dendrites’ and ‘spines’, from neuron image in order
to analyze them separately. The shearlet transform, in companion with a wavelet
transform, has also been applied to accomplish geometric separation of ‘point-
and-curve’-like data. Especially, this separation scheme can be used to separate
dendrites and spines from neuron image. The result of our geometric separation of
neuron image can be seen in Figure 2. For a theoretical account of these separation
ideas and implementation, we refer to [4, 1]. Designing a directional representation
system that efficiently handles data with anisotropic features is quite challenging
since it needs to satisfy a long list of desired properties: simple mathematical
structure, optimally sparse approximations of certain image classes, compactly
supported generators, fast decomposition algorithms, and unified treatment of the
continuum and digital realm. We argue that shearlets meet all these challenges,
and are, therefore, one of the most successful directional systems. However, the
mathematical properties of dual frames for compactly supported shearlet frames
are still unknown. Further, it is not known whether compactly supported tight
shearlet frames exist. Our next tasks will include the mathematical analysis of

1Produced using Curvelab (Version 2.1.2), which is available from http://curvelet.org (also
see [2]).
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Figure 2. Left to Right : Noisy neuron image, Separated image
(Dendrites ‘curves’), Separated image (Spines ‘points’).

dual shearlet frames and the constructions of compactly supported tight shearlet
frames – if they exist.
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Optimally Sparse Approximations of Functions in L
2(R3) with C

α

Singularities using Shearlets

Jakob Lemvig

(joint work with Gitta Kutyniok, Wang-Q Lim)

Many important problem classes are governed by anisotropic features such as sin-
gularities concentrated on lower dimensional embedded manifolds. To analyze
the ability of representation systems to reliably capture and sparsely represent
anisotropic structures, Donoho [1] introduced the model situation of so-called
cartoon-like images, i.e., two-dimensional functions which are C2 smooth apart



24 Oberwolfach Report 44

from a C2 discontinuity curve. In the past years, it was shown that curvelets, con-
tourlets, and shearlets all have the ability to essentially optimal sparsely approxi-
mate cartoon-like images measured by the L2-error of the (best) n-term approxi-
mation. Traditionally, this type of results has only been available for band-limited
generators, but recently Kutyniok and Lim [2] showed that optimal sparsity also
holds for spatial compactly supported shearlet generators under weak moment
conditions.

In this report, we introduce generalized three-dimensional cartoon-like images,
i.e., three-dimensional functions which are Cβ except for discontinuities along Cα

surfaces for α, β ∈ (1, 2], and consider sparse approximations of such. We first
derive the optimal rate of approximation which is achievable by exploiting in-
formation theoretic arguments. Then we introduce three-dimensional pyramid-
adapted shearlet systems with compactly supported generators and prove that
such shearlet systems indeed deliver essentially optimal sparse approximations of
three-dimensional cartoon-like images. Finally, we even extend this result to the
situation of surfaces which are Cα except for zero- and one-dimensional singulari-
ties, and again derive essential optimal sparsity of the constructed shearlet frames.

We start by defining the 3D cartoon-like image class. Fix ν > 0. By E2,2
3 (ν) we

denote the set of functions f : R3 → C of the form

f = f0 + f1χB,

where B ⊂ [0, 1]3 with ∂B a closed C2-surface for which the principal curvatures
are bounded by ν and fi ∈ C2(R3) with suppfi ⊂ [0, 1]3 and ||fi||C2 ≤ 1 for
each i = 0, 1. We enlarge this cartoon-like image model class to allow less regular
images as follows. Let 1 < α, β ≤ 2. We then require that ∂B is, not necessarily
a C2-surface, but a Cα-surface, and that fi ∈ Cβ(R3) ∩Hβ(R3) with ||fi||Cβ ≤ 1

for each i = 0, 1. We speak of Eα,β3 (ν) as consisting of generalized cartoon-like 3D
images having Cβ smoothness apart from a Cα discontinuity surface.

In [3], it was shown that the optimal approximation rate for such 3D cartoon-

like image models f ∈ Eα,β3 (ν) which can be achieved for almost any representation
system (under polynomial depth search selection procedure of the approximating
coefficients) is

‖f − fn‖22 = O(n−min{α/2,2β/3}), n→ ∞,

where fn is the best n-term approximation of f . In the following paragraphs we
introduce shearlet systems for L2(R3) which almost deliver this approximation
rate.

The Pyramid-Adapted Shearlet Systems are defined as follows. We partition the
frequency space into three pairs of pyramids:

P = {(ξ1, ξ2, ξ3) ∈ R
3 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1, |ξ3/ξ1| ≤ 1},

P̃ = {(ξ1, ξ2, ξ3) ∈ R
3 : |ξ2| ≥ 1, |ξ1/ξ2| ≤ 1, |ξ3/ξ2| ≤ 1},

P̆ = {(ξ1, ξ2, ξ3) ∈ R
3 : |ξ3| ≥ 1, |ξ1/ξ3| ≤ 1, |ξ2/ξ3| ≤ 1},
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and a centered rectangle:

R = {(ξ1, ξ2, ξ3) ∈ R
3 : ||(ξ1, ξ2, ξ3)||∞ < 1}.

We first consider the shearlet system associated with the pyramid pair P .
Fix α ∈ (1, 2]. We scale according to the scaling matrix A2j , j ∈ Z, and

represent directionality by the shear matrix Sk, k = (k1, k2) ∈ Z2, defined by

A2j =





2jα/2 0 0

0 2j/2 0
0 0 2j/2



 , Sk =





1 k1 k2
0 1 0
0 0 1



 ,

respectively. The case α = 2 correspond to paraboloidal scaling; allowing α = 1
would yield isotropic scaling. The translation lattices will be generated by the
matrix Mc = diag(c1, c2, c2), where c1 > 0 and c2 > 0. The shearlet system
associated with P generated by ψ ∈ L2(R3) is defined as

Ψ(ψ; c) = {2(1/2+α/4)jψ(SkA2j · −m) : j ≥ 0, |k1|, |k2| ≤ ⌈2(α−1)j/2⌉,m ∈McZ
3},

The shearlet systems associated with P̃ and P̆ are defined in a similar manner
(simply switch the role of the variables and append ·̃ and ·̆, respectively, to suitable
symbols).

The partition of the frequency space into pyramids allows us to restrict the range
of the shear parameters. In the case of ‘shearlet group’ systems, one must allow
arbitrarily large shear parameters, while the ‘pyramid-adapted’ systems restrict
the shear parameters to [−2(α−1)j/2, 2(α−1)j/2]. It is exactly this fact that gives a
more uniform treatment of the directionality properties of the shearlet system.

We are now ready to introduce our 3D shearlet system. For fixed α ∈ (1, 2] and

c = (c1, c2) ∈ (R+)
2, the pyramid-adapted 3D shearlet system SH(φ, ψ, ψ̃, ψ̆; c, α)

generated by φ, ψ, ψ̃, ψ̆ ∈ L2(R3) is defined by

SH(φ, ψ, ψ̃, ψ̆; c) = Φ(φ; c1) ∪Ψ(ψ; c, α) ∪ Ψ̃(ψ̃; c) ∪ Ψ̆(ψ̆; c),

where

Φ(φ; c1) = {φ(· −m) : m ∈ c1Z
3}.

The functions φ, ψ, ψ̃, ψ̆ ∈ L2(R3) are called shearlets, and the function φ is a
scaling function associated the centered rectangle R.

In [3], it is shown that one can construct frames of the form SH(φ, ψ, ψ̃, ψ̆; c, α),

where the generators φ, ψ, ψ̃, ψ̆ ∈ L2(R3) are compactly supported. The following
result tells us that compactly supported pyramid-adapted shearlets provide almost
optimal approximation rate for the class of generalized 3D cartoon-like images.

Theorem 1 ([3]). Let α ∈ (1, 2] and c ∈ (R+)
2, and let φ, ψ, ψ̃, ψ̆ ∈ L2(R3)

be compactly supported. Suppose that, for all ξ = (ξ1, ξ2, ξ3) ∈ R3, the function ψ
satisfies:

(i) |ψ̂(ξ)| ≤ C ·min{1, |ξ1|δ} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},
(ii)

∣
∣
∣
∂
∂ξi
ψ̂(ξ)

∣
∣
∣ ≤ |h(ξ1)| ·

(

1 + |ξ2|
|ξ1|

)−γ

·
(

1 + |ξ3|
|ξ1|

)−γ

, for i = 1, 2,
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where δ > 8, γ ≥ 4, h ∈ L1(R), and C a constant, and suppose that ψ̃ and ψ̆ satisfy
analogous conditions with the obvious change of coordinates. Further, suppose that

the shearlet system SH(φ, ψ, ψ̃, ψ̆; c, α) forms a frame for L2(R3).

Then, for any β ∈ (1, 2] and ν > 0, the frame SH(φ, ψ, ψ̃, ψ̆; c, α) provides

almost optimally sparse approximations of functions f ∈ Eα,β3 (ν) in the sense
that:

‖f − fn‖22 = O(n−min{α/2−ǫ,2β/3}) as n→ ∞,

where ǫ = ǫ(α) satisfies ǫ < 0.04 and fn is the nonlinear n-term approximation
obtained by choosing the n largest shearlet coefficients of f .

For α = 2, we even have ‖f − fn‖22 = O(n−min{α/2,2β/3} (logn)2) in Theorem 1
which is optimal (up to a log-factor). We remark that a large class of generators

ψ, ψ̃, and ψ̆ satisfy the conditions (i) and (ii) in Theorem 1. Theorem 1 is a
three-dimensional version of a result from [2]. However, as opposed to the two-
dimensional setting, anisotropic structures in three-dimensional data comprise of
two morphologically different types of structure, namely surfaces and curves. It
would therefore be desirable to allow our 3D image class to also contain cartoon-
like images with curve singularities. To achieve this we allow our discontinuity
surface ∂B to be a closed, continuous, piecewise Cα smooth surface. We denote

this function class Eα,β3 (ν, L), where L ∈ N is the maximal number of Cα pieces.
Surprisingly, the pyramid-adapted shearlet systems still deliver the same almost

optimal rate for this extended image class Eα,β3 (ν, L). We refer to [3] for the precise
statement of the result.
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An introduction to mocklets

Filippo De Mari

(joint work with Enesto De Vito)

The mocklets are the admissible vectors for a class of representations of suitable
semi-direct products which generalize the metaplectic representation of the sym-
plectic group as restricted to its (standard) parabolic subgroups. The setup is the
following:

i) the Hilbert space of signals is L2(Rd), regarded in the frequencies domain;
ii) the parameter space G is the semi-direct product G = Rn ⋊ H , where

H is a locally compact second countable group with an n-dimensional
representation h 7→ Mh (hence Mh is an n× n matrix);
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iii) the group H acts also on R
d by a C∞ action (h, x) 7→ h.x in such a way

that there exists a positive character β of H for which
∫

Rd

ϕ(h−1.x) = β(h)

∫

Rd

ϕ(x)dx ϕ ∈ Cc(X).

Thus, for h ∈ H the Jacobian of the map x 7→ h.x does not depend on x;
iv) a C∞ map Φ : Rd → Rn such that, for all x ∈ X and h ∈ H

Φ(h.x) = h[Φ(x)] = tM−1
h Φ(x).

The mock-metaplectic representation is the representation that acts on L2(Rd) as

(U(a,h)f)(x) = β(h)−
1
2 e−2πi〈Φ(x),a〉f(h−1.x).

Our results in [1] are based on the following two assumptions:

H1 the H-orbits in the dual group Rn are locally closed;
H2 for almost all y ∈ Φ(Rd) the stability subgroup of y is compact.

The first result gives a necessary condition to have a reproducing formula: the
“translations” group R

n needs to be smaller than the space where the signals are
defined.

Theorem 1. If U is a reproducing representation, then the set of critical points
of Φ has zero Lebesgue measure, hence n ≤ d.

From now on we assume the existence of an open H-invariant subset X ⊂ Rd

on which the Jacobian of Φ is strictly positive and whose complement is negligible.
As a consequence, Y = Φ(X) is an H-invariant open set of Rn and each level set
Φ−1(y) is a Riemannian submanifold (with Riemannian measure dvy). The coarea
formula gives the following disintegration formula for the d-dimensional Lebesgue
measure dx: there exists a family {νy}y∈Y of Radon measures on X such that

a) for all y ∈ Y the measure νy is concentrated on Φ−1(y);

b) for all ϕ ∈ Cc(X)

∫

X

ϕ(x)dνy(x) =

∫

Φ−1(y)

ϕ(x)
dvy(x)

(JΦ)(x)
;

c) for all ϕ ∈ Cc(X)

∫

X

ϕ(x)dx =

∫

Y

(∫

X

ϕ(x)dνy(x)
)

dy.

The next step is to label theH-orbits of Y . The natural choice of the quotient space
Y/H with the quotient topology can give rise to pathological spaces. However, H1
implies that there exist a locally compact second countable space Z with a Radon
measure dz, a Borel map π : Y → Z and a family of Radon measures {τz}z∈Z on
Y with the following properties:

a) π(y) = π(y′) if and only if y and y′ belongs to the same orbit and there
is a Borel map z 7→ o(z) from Φ(Z) to Y such that π(o(z)) = z, so that
π−1(z) = H [o(z)];

b) for all z ∈ Z, τz is concentrated on π−1(z) and is a relatively invariant
measure with character | det(Mh)|−1;

c) for all ϕ ∈ Cc(Y )

∫

Y

ϕ(x)dy =

∫

Z

(∫

Y

ϕ(x)dτz(y)
)

dz.
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For all z ∈ π(Y ), we think of o(z) as the origin of the orbit π−1(z) = H [o(z)] and
we denote by Hz = Ho(z) the stability subgroup of o(z) and by νz = νo(z) the Hz-

invariant measure on the level set Φ−1(o(z)), which is Hz-invariant. Furthermore
we fix the Haar measure ds on Hz is such a way that Weil’s formula holds true

∫

H

ϕ(h)| det(Mh)|−1 dh =

∫

Y

(∫

Hz

ϕ(hy s)ds
)

dτz(u) ϕ ∈ Cc(H),

where hy ∈ H is such that hy[o(z)] = y for all y ∈ H [o(z)]. Define πz be the
quasi-regular representation of Hz acting on L2(X, νo(z)) by

(πzsfo(z))(x) = fo(z)(s
−1.x) νy-a.e. x ∈ Φ−1(o(z)).

Assumption H2 ensures that, up the a negligible set, Hz is compact, so that πz is
completely reducible

πz ≃
⊕

i∈I

mi π
z,i L2(X, νo(z)) ≃

⊕

i∈I

miC
dzi

where each πz,i is an irreducible representation of Hz acting on some Cd
z
i and the

cardinal mi ∈ N ∪ {ℵ0} is the multiplicity of πz,i into πz. It is possible to choose
the index set I in such a way that mi is independent of z (it can happen that
dzi = 0).

We are now ready to characterize the existence of admissible vectors for the
representation U , namely for the existence of mocklets.
Theorem 2. Suppose that the set of critical points of Φ is negligible and As-
sumptions H1 and H2 hold true. If G is non-unimodular, then U is reproducing
whereas if G is unimodular, U is reproducing if and only if

∫

Z

cardΦ−1(o(z))

vol(Hz)
dz < +∞ where volHz =

∫

Hz

ds

mi ≤ dim(L2(Y, τz,C
di,z)) ∀i ∈ I , almost every z ∈ Z.

In [1] an explicit characterization of the admissible vectors is given.
An example. One of the main motivations for our construction is the connection
with the continuous shearlet transform that we now illustrate. The full shearlet
group R2⋊(R⋊R+), with scaling γ, can be realized as a subgroup of the symplectic
group Sp(2,R) as follows. Fix γ ∈ R (in the usual shearlet literature we have
γ = 1/2) and define

σt =

[
t1 t2
t2 0

]

, Ms =

[
1 0
−s 1

]

, Ma =

[
a−1/2 0
0 a1/2−γ

]

,

where t = (t1, t2) ∈ R2, s ∈ R and a ∈ R+. The matrices

g(a, s, t) =

[
MsMa 0
σtMsMa

t(MsMa)
−1

]

form a subgroup G of Sp(2,R) which is isomorphic to the shearlet group. It falls
in the setup described above as follows. First of all, H = {MsMa} and n = d = 2.



Mini-Workshop: Shearlets 29

On the one hand R
2 = R

d must be interpreted as frequency space (and its points
are denoted by ω), and on the other hand R2 = Rn is the dual of the representation
space of H (and its points are denoted by y). The H action on the frequency space
R2 is h.ω =MsMaω, whereas the contragredient representation is

h[y] =
[

a−1 0
−sa−1 a−γ

] [ y1

y2

]

The intertwining map is Φ(ω1, ω2) = − 1
2 (ω

2
1 , ω1ω2). It maps both half planes

XL =
{
ω ∈ R2 : ω1 < 0

}
and XR =

{
ω ∈ R2 : ω1 > 0

}
onto XL. By means of the

restriction ΦL = Φ|XL we define the map Ψ : L2(XL) → L2(XL) by

Ψf(y) = |JΦ−1
L
(y)|1/2f(Φ−1

L (y)).

The inverse Fourier transform F−1 maps L2(XL) onto a closed proper subspace
S ⊂ L2(R2) and it is easy to see that for F ∈ S we have

Sa,s,t F (ω) = F−1
(
ΨUg(a,s,t)Ψ

−1FF
)
(ω),

where

Sa,s,tF (ω) = a−3/4F
([

a−1 −sa−1

0 a−γ

] [
ω1−t1
ω2−t2

])

is the continuous shearlet representation (see e.g. [2]) and where

Ug(a,s,t)f(ω) = aγ/2eiπ〈σtω,ω〉f
(
[

a1/2 0

saγ−1/2 aγ−1/2

]

ω
)
.

is the restriction of the metaplectic representation to G. All the hypotheses that
we have introduced are easily satisfied. By applying our results one obviously finds
the well-known conditions on admissible vectors, that is, on shearlets.
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Shearlet Multiresolution and Adaptive Directional Multiresolution

Tomas Sauer

(joint work with Gitta Kutyniok, Angelika Kurtz)

Like with the wavelet transform there are several ways and conceptional concepts
to develop numerical implementations of the shearlet transform. The first, maybe
more straightforward concept, is to sample the continuous transformation at a
finite set of parameters chosen such that the resulting discrete transformation
(hopefully) captures all information of the underlying transformed functions. In
both cases, the numerical computation can be accelerated by using a Fast Fourier
Transform to evaluate the underlying convolutions, cf[1]. The second approach,
on the other hand, is entirely discrete and relies on filter banks and the concept



30 Oberwolfach Report 44

of multiresolution analysis introduced by Mallat. The main ingredient for a mul-
tiresolution analysis, that is, a nested sequence V0 ⊂ V1 ⊂ · · · of spaces generated
by translates of a finite set of functions, is the so–called refinement equation that
relates the different dilation levels. In the simplest case of pure isotropic scaling,
the refinement equation takes the form

φ =
∑

α∈Zs

a(α)φ (2 · −α)

and any solution for such a functional equation with given mask a (usually a
finitely supported function on Zs). Based on this property of the function φ and
an appropriate interpretation of the discrete data c as coefficients of a detail level
representation

φ ∗ c (2n·) =
∑

α∈Zs

φ (2n · −α) c(α)

of a function in Vn, dyadic wavelet decompositions of this function can be com-
puted entirely by means of filter banks. To mimic that approach for the shearlet
approach, the two matrices

Ξ0 =

[
4 0
0 2

]

, Ξ1 =

[
4 −4
0 2

]

= Ξ0

[
1 −1
0 1

]

,

one being an anisotropic dilation, the other one that dilation combined with a
simple shear, and two masks aη, η ∈ {0, 1}, are used in a interleaving fashion. In-
deed, to any infinite sequence η ∈ {0, 1}∞, one can assign a sequence of subdivision
schemes

Srηc := Sηr · · ·Sη1c, Sǫc =
∑

α∈Zs

aǫ (· − Ξǫα) c(α), ǫ ∈ {0, 1},

that converges, under suitable assumptions, for any η to a limit function fη when
applied to the δ–sequence that is 1 at the origin and vanishes on Z

s \ {0}.
This family of limit functions shears with a slope related to the dyadic number

.η1η2 . . . and satisfies the joint refinement equation

fǫ,η =
∑

α∈Zs

aǫ(α) fη (Ξǫ · −α) , ǫ ∈ {0, 1}, η ∈ {0, 1}∞,

where the refinement process is determined by the first digit of the index and
the refining function by the remaining infinite part of the index. Based on these
functions, a multiresolution analysis can be built where, however, V0 is generated
by the integer translates of the countable set of all functions of the form f(η,0,... )
with finite initial index η. The talk was describing this construction from [2] and
some numerical aspects, like complexity of the algorithm and some first results of
a simple interpolatory multiresolution analysis implemented in [3].
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Image Processing Applications using Shearlets

Glenn R. Easley

(joint work with F. Colonna, H. Krim, D. Labate, S. Yi)

The shearlet representation has recently been shown to be much more effective
than the traditional wavelet representation in dealing with the set of discontinuities
of functions and distributions. In particular, shearlets have the ability to provide a
very precise geometrical characterization of general discontinuity curves occurring
in images. A formulation of the total variation method using shearlets for denoising
images is proposed. It is also shown that the multiscale directional properties of
shearlets can be used to design an algorithms for analysis and detection of edges.
A general total variation (TV) technique for the purpose of denoising is commonly
based on minimizing the functional

∫

Ω

φ(‖∇u‖) dx dy + λ

2

∫

Ω

(u − u0)
2 dx dy,

where φ ∈ C2(R) is an even regularization function, λ is a fidelity parameter, and
u and u0 represent the estimate and noisy image, respectively. The solution is
obtained by finding the steady state solution of

∂u

∂t
= ∇ ·

(
φ′(‖∇u‖)
‖∇u‖ ∇u

)

− λ(u− u0)

subjected to the Neumann boundary condition. An improved performance of the
general TV method can be achieved by incorporating a discrete shearlet transform
as follows.

Given an appropriate generating function ψ, the discrete shearlets are the ele-
ments of the collection

{ψj,ℓ,k = | detA|j/2 ψ(BℓAjx− k) : j, ℓ ∈ Z, k ∈ Z
2},

where

B =

(
1 1
0 1

)

, A =

(
a 0
0

√
a

)

,

with a ∈ R+. The discrete shearlets have the reproducing formula:

f =
∑

j,ℓ∈Z,k∈Z2

〈f, ψj,ℓ,k〉ψj,ℓ,k.

with convergence in the L2 sense. Thus f ∈ L2(R2) can be very well approximated

using a shearlet representation f̃ as
∑

j,ℓ,k∈M1

〈f, ψj,ℓ,k〉ψj,ℓ,k +
∑

j,ℓ,k∈M2

〈f, ψj,ℓ,k〉ψj,ℓ,k
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where the index sets M1 and M2 correspond to the coarse scale coefficients asso-
ciated with the smooth regions of f and to the fine scale coefficients associated
with the edges of f .

Denote by MC
2 the set of indices of M2 in the shearlet domain that correspond

to the coefficients that would be set to zero in the above reconstruction when
estimating a denoised version. A projection operator PS onto the reconstruction
from these coefficients is defined as

PS(u) =
∑

j,ℓ,k∈MC
2

〈u, ψj,ℓ,k〉ψj,ℓ,k.

Then the proposed method is to find the steady state solution of

∂u

∂t
= ∇ ·

(
φ′(‖∇PS(u)‖)
‖∇PS(u)‖ ∇PS(u)

)

− λx,y(u− u0)

with the boundary condition ∂u
∂n = 0 on ∂Ω and the initial condition u(x, y, 0) =

u0(x, y) for x, y ∈ Ω, where Ω is the ambient space. Note that the quantity λx,y
is to be a spatially varying fidelity term based on a measure of local variances.

The shearlet transform’s geometrical properties are also useful for edge analysis
and for edge detection. The continuous shearlet transform can be expressed as

Sψu(a, s, x) =

∫

u(y)ψas(x− y) dy = u ∗ ψas(x).

where the analyzing elements ψas are well localized waveforms at various scales
and orientations. An edge detector is constructed using the following properties.
If u ∈ E1,3(Ω) (see [2] for details of this function space) and t is away from the
edges, then Sψu(a, s, t) decays rapidly as a → 0, and the decay rate depends on
the local regularity of u. In particular, if u is Lipschitz–α near t0 ∈ R2, then the
following estimates hold: for α ≥ 0,

|Sψu(a, s, t0)| ≤ C a
1
2 (α+

3
2 ), as a→ 0;

while for α < 0,

|Sψu(a, s, t0)| ≤ C a(α+
3
4 ), as a→ 0.

Classification of points by their Lipschitz regularity is important and is used to
distinguish true edge points from points corresponding to noise.
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Image Restoration and Enhancement using Shearlets

Vishal M. Patel

(joint work with Glenn R. Easley, Dennis M. Healy, Jr.)

Shearlets provide a multi-directional and multi-scale decomposition that has been
mathematically shown to represent distributed discontinuities such as edges better
than traditional wavelets. We present several image processing applications such
as image enhancement, image deconvolution and inverse halftoning using a shift-
invariant overcomplete shearlet representation.

The first application deals with the problem of image enhancement in which the
objective is to make the processed image better in some sense than the unprocessed
image. Since edges contain important information about the image, they can be
used to enhance the contrast. To this end, we develop a new nonlinear mapping
function that modifies the shearlet coefficients such that it enhances weak edges
and suppresses noise. Experimental results show that this enhancement technique
achieves better results than wavelet-based enhancement methods.

In image restoration, the goal is to best estimate an image that has been de-
graded. Examples of image degradation include the blurring introduced by camera
motion as well as the noise introduced from the electronics of the system. In the
case when the degradations can be modelled as a convolution operation, the pro-
cess of recovering the original image from the degraded blurred image is commonly
called deconvolution. The process of deconvolution is known to be an ill-posed
problem. Thus, to get a reasonable image estimate, a method of controlling noise
needs to be utilized.

We propose a shearlet-based deconvolution algorithm which utilizes the power
of a Fourier representation to approximately invert the convolution operator and a
redundant shearlet representation to provide an image estimate. The multi-scale
and multi-directional aspects of the shearlet transform provide a better estima-
tion capability over that of the wavelet transform or wavelet-like transforms for
images exhibiting piecewise smooth edges. In addition, we adapt a method of
automatically determining the threshold values for the shearlet noise shrinkage
without knowing the noise variance by using a generalized cross validation func-
tion. Various experiments show that this method can perform better than many
the state-of-the-art wavelet-based deconvolution methods.
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The structure tensor and its relatives

Gabriele Steidl

(joint work with Tanja Teuber, Simon Setzer)

The classical structure tensor of Förstner and Gülch [3] is defined as follows:
Assume that an image u is has nearly constant values along a direction r, ‖r‖2 = 1
in a neighborhood Bρ(x0) of x0 so that

0 ≈ ∂

∂r
u(x) = rT∇f(x), x ∈ Bρ(x0).

Let w be a nonnegative weight function with support in Bρ(0). Then the relation

0 ≈
∫

Ω

w(x − x0) (r
T∇u(x))2 dx = rT

∫

Ω

w(x − x0)∇u(x)∇uT(x) dx

︸ ︷︷ ︸

Jw(∇u)(x0)

r

holds true and consequently r is eigenvector of the smallest eigenvalue of Jw(∇f)(x0)
For the Gaussian weight w := Kρ we get the structure tensor

Jρ(∇uσ) := Kρ ∗ (∇uσ∇uT

σ) =
(
r⊥, r

)

︸ ︷︷ ︸

R

(
µ1 0
0 µ2

)

RT.

The structure tensor has various applications, e.g., in the diffusion tensor D
which steer the flux in the anisotropic diffusion

∂tu = div (D(∇uσ)∇u )
u(0, ·) = f

(D(∇uσ)∇u )T n = 0,

see, e.g., [9]. Anisotropic diffusion is closely related to variational approaches via
the Euler-Lagrange equation. Consider the functional

E(u) =
1

2
‖f − u‖2L2

+ λ

∫

Ω

ϕ(∇u(x)) dx

with a positive, convex, positively-homogeneous function ϕ : R2 → R. Let
Wϕ := {y ∈ R2 : 〈y, x〉 ≤ ϕ(x) ∀x ∈ R2} denotes the Wulff shape of ϕ. If
f := 1Wϕ , then for λ smaller than some constant the minimizer of E is given
by u = c 1Wϕ for some c > 0, see [2]. Moreover there exist relations between
anisotropic diffusion and Haar wavelet shrinkage which can be found in [8, 4, 10].

However, the classical structure tensor cannot find the directions at corners and
X-junctions and is moreover not useful in the presence of impulse noise. Therefore
we suggest to use the more general structure tensor of Aach et al. [1]. Using this
structure tensor one can find the two directions r1 and r2 at corners (occlusion
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model) orX-junctions (transparent model). Then we apply the occlusion structure
tensor to preserve sharp corners within the variational setting

E(u) =
1

2
‖f − u‖22 + λ‖V (x)T∇u(x)‖1 =

1

2
‖f − u‖22 + λ(‖rT1 ∇u‖1 + ‖rT2∇u‖1)

and the transparent structure tensor to get sharp X junctions within the infimal-
convolution regularization setting

E(u) =
1

2
‖f − u‖2L2

+ λ inf
u1+u2=u

∫

Ω

|〈r1,∇u1(x)〉| + |〈r2,∇u2(x)〉| dx.

This leads to very good denoising and segmentation results, see [7, 6].
Finally, we replace the classical structure tensor which can also be written as

matrix mean

Jρ(i0, j0) =

∑

(i,j)∈N (i0,j0)

wi0−i,j0−jPi,j

∑

(i,j)∈N (i0,j0)

wi0−i,j0−j

= argminX∈R2,2

∑

(i,j)∈N (i0,j0)

wi0−i,j0−j‖X − Pi,j‖2F

by special matrix medians

X(i0, j0) := argminX∈R2,2

∑

(i,j)∈N (i0,j0)

wi0−i,j0−j‖X − Pi,j‖•

where ‖ · ‖• stands for a unitarily invariant matrix norm. Here we restrict our at-
tention to the nuclear norm, the Frobenuis norm and the spectral norm. We show
how to find a minimizer of this functional by various numerical methods as the
alternating direction method of multipliers, the parallel proximal algorithm, the
primal-dual hybrid gradient method and second order cone programming. More-
over, we discuss relations between these matrix medians and Euclidian vector
medians based on the isometry T : Sym2(R) → R3 given by

T (X) :=
1√
2
(x1,1 − x2,2, 2x1,2, x1,1 − x2,2)

T.

For the involved vector medians it appears that the Weiszfeld algorithm performs
well. Finally, we present numerical results. This last part of the talk is based on
[5].
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Interpolating Refinable Function Vectors and Matrix Extension with
Symmetry

Xiaosheng Zhuang

(joint work with Bin Han)

A function (vector) φ = [φ1, · · · , φr]T : R 7→ Cr×1 is d-refinable if

φ = d
∑

k∈Z

a(k)φ(d · −k).

Refinable functions play an important role in both theory and application. On the
one hand, functions composed from linear combinations of shifts of a refinable
function φ can be computed using a simple subdivision scheme, which makes
subdivision curves and surfaces very attractive for interactive geometric modeling
applications. On the other hand, it allows for the definition of a nested sequences of
shift-invariant spaces. This so-called “multiresolution analysis (MRA)” is the key
to wavelet constructions. It has been realized that the most desired properties of
wavelets are orthogonality, symmetry, interpolation, compact support, regularity
and so on. These properties usually conflict to each other. With “MRA”, the
design of wavelets with desired properties is significantly reduced to the design
of a d-refinable function (vector) with certain properties. Once φ is obtained,
the wavelets (multiwavelets, framelets) can be derived under some “Extension
Principle” (unitary extension principle, oblique extension principle).

Among many subdivision schemes, interpolatory subdivision schemes and Her-
mite interpolatory subdivision schemes are of great interest in sampling theory,
numerical algorithms, computer graphics and so on. For example, wavelets con-
structed by means of an interpolating refinable function provide a nice Shannon-
like sampling theorem which proved to be useful in signal processing. In image
processing, orthogonal wavelets are often used in denoising and compression. And
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it is known that the Daubechies orthogonal wavelets can be obtained from inter-
polatory masks via Rieze lemma. Also, functions with interpolation property have
been intensively studied and play an fundamental roles in approximation theory.

While orthogonality and interpolation property are important in applications,
there is no compact 2-refinable function that is both interpolating and orthogonal.
In order to achieve both interpolation and orthogonality, in which case, the coeffi-
cients in the multiresolution representatition can be realized by sampling instead
of inner product, it is necessary to consider either d-refinable functions with d > 2
or refinable function vectors. Our work is related to the later one which allows us
to construct mutliwavelets that are both interpolating and orthogonal. Here is a
summary of our work on this subject (see [1, 2]):

(1) We introduce a new notation of interpolating d-refinable function vectors
of type (r, h), which includes both the definitions of refinable interpolants
and refinable Hermite interpolants. An interpolating d-refinable function
vectors of type (r, h) is a d-refinable function vector that interpolates on
the lattice r−1

Z up to Hermite order h.
(2) Provide a complete mathematical characterization for such interpolating

d-refinable function vectors of type (r, h) in terms of their masks and derive
the sum rule structure of such interpolatory masks explicitly, which are
crucial in the construction of interpolating d-refinable function vector of
type (r, h).

(3) Construct a family of d-refinable function vectors of type (r, h) with ar-
bitrary orders of sum rules in 1D. Provide examples with properties of
orthogonality, interpolation and symmetry.

(4) Provide a characterization of such interpolating refinable function vectors
in any dimension to be symmetry with respect to a general symmetry
group (D4, D6 for example) in terms of their masks. Construct several ex-
amples of interpolating refinable function vectors in 2D that are symmetry
with respect to symmetry groups D4, D6.

As mentioned, once φ is obtained, the construction of wavelets from φ is reduced
to a extension problem. For the construction of orthogonal multiwavelets, the
problem is: “Let P be an n×r matrix of Laurent polynomials with P∗P = Ir. How
to extend it to a square (n × n) unitary(paraunitary) matrix A = [P Q].” Here,
P is constructed from the polyphase representation of the mask a for φ. Even
without considering any symmetry issue, as far as we know, there are no results
for general r ≥ 1 showing that the support of the extension matrix is controlled by
the original P. When comes to symmetry, things get much more complicated. The
difficulties lie in “extension with symmetry” and “support control of the extension
matrix”. Yet both symmetry and small support of wavelet systems are important
and sometimes crucial in wavelet applications. Even if we leave aside double
reduction of the computational costs of symmetric system, the “Linear Phase”
property, which significantly reduces visual artifacts in image processing, can not
be compensated by any other properties. We solve this problem completely under
the symmetry setting. Here is a summary (see [3]):
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(1) Under a natural symmetry condition on P, we prove that P can be extended
to a unitary matrix A such that A has certain symmetry pattern closely
related to that of P, the support of A is controlled by that of P in a subtle
way, i.e., the support control is column-wised, and A can be represented as
a serial of low degree unitary matrices (a cascade structure in engineering).

(2) We develop a simple step-by-step algorithm producing the extension uni-
tary matrix A such that A has certain symmetry pattern, its support is
controlled by the support of P and A is represented by a serial of low
degree unitary matrices.

(3) Matrix extension plays an important role in many areas of electronic en-
gineering, system sciences, applied mathematics, as well as pure mathe-
matics. As a application of our general result on matrix extension with
symmetry, we obtain a satisfactory algorithm for constructing high-pass
filters with symmetry from given low-pass filters in paraunitary multi-
wavelet filter banks.

(4) Unlike most known results working only on R or C, our work is under a
general field F, which can be any subfield of C that is closed under square
root and complex conjugate.
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