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4 Analysis of Variance



Analysis of Variance

Analysis of Variance or ANOVA is a class of widely used techniques
for statistical analysis.

The term analysis of variance was introduced by R.A. Fisher in
1920 while conducting the analysis of agronomical data
cf. Fisher’s book, “Statistical Methods for Research Workers”

The ANOVA technique is formulated for testing the difference
among several means.

More technically, ANOVA is designed to split the variability of data
into two parts: systematic factors and random factors.

The systematic factors have a statistical influence on the given
data set, while the random factors do not.



Analysis of Variance

There are two main types of ANOVA: one-way and two-way.

A one-way ANOVA evaluates the impact of a single factor
on a single response variable. It determines whether all the
samples are the same. The one-way ANOVA is used to
determine whether there are any statistically significant
differences between the means of three or more independent
(unrelated) groups.

A two-way ANOVA has two independent variable. For
example, a two-way ANOVA allows a company to compare
worker productivity based on two independent variables, such
as salary and skill set. It is utilized to observe the interaction
between the two factors and tests the effect of two factors at
the same time.



One-way ANOVA

The one-way analysis of variance (ANOVA), also known as
one-factor ANOVA, is an extension of independent two-samples
t-test for comparing means in a situation where there are more
than two groups.

In one-way ANOVA, the data is organized into several groups base
on one single grouping variable, also called factor variable.

Example.

There is a group of patients who are suffering from a medical
condition.
They are being given three different treatments (treatment =
factor variable) that have the same functionality, i.e., to cure fever.

The ANOVA test can be applied to evaluate the effectiveness of
each treatment and choose the best among them.



One-way ANOVA

Assumptions of ANOVA test:

1 observations are obtained independently and randomly from
the population defined by the factor levels;

2 data of each factor level are normally distributed;

3 population variances must be equal, i.e., homoscedastic;
homogeneity of variance means that the deviation of scores
(measured by the range or standard deviation for example) is
similar between populations; Levene’s test can be used to
check this property.



One-way ANOVA

The one-way ANOVA test generalizes the 2-population hypothesis
testing problem to the multi-population setting.

Suppose we collected k independent random samples from k
normally distributed population N�µj , σj�, j � 1, . . . , k with the
same variance.

We want to solve the following hypothesis testing problem:

H0 � µ1 � µ2 � � � � � µk

H1 � µi j µj , for some i , j

The F-statistic is used to test if the data are from significantly
different populations, i.e., different sample means (since the rest is
assumed to be equal).

The F-statistic measures the ratio of the among-group variability
over the within-group variability.



One-way ANOVA

The among-group variability reflects the differences between the
groups inside all of the population.

The left plot shows very little variation among the three groups
and it is very likely that the three means tends to the overall mean
i.e., mean for the three groups.
The right plot shows three distributions far apart with minimal
overlap. There is a high chance the difference between the total
mean and the groups mean will be large.



One-way ANOVA
The within group variability reflects the differences within each
individual group: variation comes from individual observations.

The plots show the distributions of three different groups.
On the left: variance is large and observations may be very
different than the group means. On the right: individual groups
have low variability and observations are close to the group means.
In the first case, the F-test will decrease, meaning that you tend to
accept the null hypothesis. In the second case, the F-test will
increase and you tend to favor the alternative hypothesis.



One-way ANOVA - Mathematical formulation

Let X be a random variable defined for k subgroups of a
population.
We assume that the observations from the k groups are
independent and normally distributed, with the normal distribution
N�µj , σ�, j � 1, . . . , k having the same variance σ

2
.

Group 1 2 3 . . . k
X11 X12 X13 . . . X1k

X21 X22 X23 . . . X2k

� � � . . . �

Xn11 Xn22 Xn33 . . . Xnkk

Mean X̄1 X̄2 X̄3 . . . X̄k X̄

X̄j �
1
nj
<ni

i�1 Xi ,j is the mean of observations in the j-th group

X̄ �
1
N
<k

j�1<
nj
i�1 Xi ,j is the mean of all observations

N � <k
j�1 nj



One-way ANOVA - Mathematical formulation

Definitions:

Total sum of squares: SST = <k
j�1<

nj
i�1�Xi ,j � X̄ �2

Within group sum of squares: SSW = <k
j�1<

nj
i�1�Xi ,j � X̄j�2

Sum of squares among groups: SSA = <k
j�1 nj�X̄j � X̄ �2

We have that SST � SSA � SSW

SSA is a measure of how widely dispersed the group averages X̄j

are about their center X̄ .

Thus, SSA is the basis for a test statistic for accepting the
alternative hypothesis that the population means are not all the
same.
To be useful, it has to be compared to SSW which is a measure of
the inherent variability of the data.



One-way ANOVA - Mathematical formulation

Theorem

SSA and SSW are independent random variable.
In addition, SSW

σ2 � χ
2�df � N � k� and, if H0 � µ1 � � � � � µk is

true, SSA
σ2 � χ

2�df � k � 1� and
F �

N � k

k � 1

SSA

SSW

is F-distributed with k � 1 degrees of freedom in the numerator
and N � k degrees of freedom in the denominator.

We define

Mean squares among groups: MSA = SSA
k�1

Mean squares within groups: MSW = SSW
N�k

Hence we can write F �
MSA
MSW

, which is called the variance ratio.



One-way ANOVA - Mathematical formulation

Intuitively, values of the variance ratio F close to 1 support H0;
values of the variance ratio F sufficiently larger than 1 support H1.

We use F as the test statistic for the ANOVA test.

For a given significance level α, let fα�r1, r2� be the 100�1 � α�th
percentile of the F distributions with r1 degrees of freedom in the
numerator and r2 degrees of freedom in the denominator.

We reject H0 is F % fα�k � 1,N � k�.
Otherwise, we accept H0.



One-way ANOVA - Mathematical formulation
Example. In an experiments, k � 4 treatments are considered to
address a medical condition. Each group sample size is n � 10, so
that N � 40 is the total combined sample size.
The summary statistics for samples of observations results in the
following data: SSW � 224.39,SSA � 37.65.
We want to test the hypothesis

H0 � µ1 � µ2 � µ3 � µ4

H1 � µi j µj , for some i , j

using significance level α � 0.05.

We compute the test statistic F �
N�k
k�1

SSA
SSW

�
40�4
4�1

37.65
224.39

� 2.013
We compute the critical value:
fα � qf�0.95, df1 � 3, df2 � 36� � 2.866266.
Conclusion: Since it F $ fα, we accept H0, that is, we cannot
conclude that there is a difference in population means.

We can also compute the p-value:
p-value � P�F % 2.013� � 1 � pf�2.013, 3, 36� � 0.129
Conclusion: Since the p-value is below 0.05, we accept H0.



One-way ANOVA
R example

PlantGrowth is a built-in R dataset containing the weight of
plants obtained under a control and two different treatment
conditions.

> my data <- PlantGrowth

> print(my data)
weight group

1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
. . . . . . . . .
10 5.14 ctrl
11 4.81 trt1
. . . . . . . . .
20 4.69 trt1
21 6.31 trt2
. . . . . . . . .
30 5.26 trt2



One-way ANOVA

We can inspect the format of the file as follows

> str(my data)

’data.frame’: 30 obs. of 2 variables:

$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53

5.33 5.14 ...

$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1

1 1 1 1 1 1 1 1 ...

The report shows that the table includes a column of numerical
values and another column containing the labels describing the
factor levels.

In this case, there are 3 levels associated with the “group” factor



One-way ANOVA

In R terminology, the column “group” is called factor and the
different categories (ctr, trt1, trt2) are named factor levels.

> levels(my data$group)

[1] "ctrl" "trt1" "trt2"

We compute summary statistics, that is, count, we list mean and
standard deviation by groups using the dplyr package.

library(dplyr)

group by(my data, group) %>%

summarise(count = n(),mean = mean(weight, na.rm =

TRUE), sd = sd(weight, na.rm = TRUE))

group count mean sd
1 ctrl 10 5.03 0.583
2 trt1 10 4.66 0.794
3 trt2 10 5.53 0.443



One-way ANOVA
We can visualize summary statistics using boxplots.
For that, we install the ggpubr R package

> install.packages("ggpubr")

> library("ggpubr")

> ggboxplot(my data, x="group", y="weight", color="group",

palette=c("#00AFBB","#E7B800","#FC4E07"), order =

c("ctrl","trt1","trt2"), ylab="Weight",xlab="Treatment")



One-way ANOVA

Alternatively, we can use the command boxplot

> boxplot(weight � group, data = my data, xlab =

"Treatment", ylab = "Weight", frame = FALSE, col =

c("#00AFBB", "#E7B800", "#FC4E07"))



One-way ANOVA

The R function aov() can be used to compute the ANOVA test

> res.aov <- aov(weight � group, data = my data)

> summary(res.aov)

Df SumSq MeanSq Fvalue Pr�% F �
group 2 3.766 1.8832 4.8461 0.0159 �

Residuals 27 10.492 0.3886

Interpretation: Since the p-value is less than the significance level
0.05, then there are significant differences between the groups; this
is highlighted with � in the model summary.

Note that:

Fvalue � MeanSq�group
MeanSq�Residuals

�
1.8832
0.3886

� 4.8461

p-value = 1-pf(4.8461,df1=2,df2=27) = 0.0159

Fvalue � 4.8461 % qf�0.95, df1 � 2, df2 � 27� � 3.354131
confirming that we can reject H0



One-way ANOVA

Alternatively, we can use the R function lm()

> model = lm(weight � group, data = my data)

> anova(model)

Df SumSq MeanSq Fvalue Pr�% F �
group 2 3.766 1.8832 4.8461 0.0159 �

Residuals 27 10.492 0.3886

The output table is the same as the one we obtained above.



One-way ANOVA

In the one-way ANOVA test, a significant p-value indicates that
some of the group means are different; however we do not know
which pairs of groups are different.

To determine which pairs of groups are different, we can perform
multiple pairwise-comparison.

The Tukey HSD (Tukey Honest Significant Differences) performs
multiple pairwise-comparison between the means of groups and is
useful to determine if the mean difference between specific pairs of
group are statistically significant.

R function: TukeyHSD()



One-way ANOVA

> TukeyHSD(res.aov)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight � group, data = my data)

$group
diff lwr upr padj

trt1 � ctrl �0.371 �1.0622161 0.3202161 0.3908711
trt2 � ctrl 0.494 �0.1972161 1.1852161 0.1979960
trt2 � trt1 0.865 0.1737839 1.5562161 0.0120064

diff: difference between means of the two groups
lwr, upr: lower and the upper endpoints of 95% CI
p adj: p-value after adjustment for the multiple comparisons

Interpretation: only the difference between trt2 and trt1 is
significant with an adjusted p-value of 0.012.



One-way ANOVA

The ANOVA test assumes that:

1 the data are normally distributed;

2 the variance across groups are homogeneous.

We will examine the validity of such assumptions on the data of
the example.



One-way ANOVA
To check the normality assumption, we can display the Q-Q plot of
residuals where the quantiles of the residuals are plotted against
the quantiles of the normal distribution.
> plot(res.aov, 2)

As points fall approximately along this reference line, the plot
indicates that the normality assumptions is acceptable.

Note: Points 17, 15, 4 are detected as outliers.



One-way ANOVA

We can also run the Shapiro-Wilk normality test

> aov residuals <- residuals(object = res.aov)

> shapiro.test(x = aov residuals)

Shapiro-Wilk normality test

data: aov residuals

W = 0.96607, p-value = 0.4379

Since the p-value of the test is above 0.05, the test finds no
indication that the normality assumption is violated.



One-way ANOVA
To check the homogeneity of variance assumption, we can display
the residuals versus fits plot.
> plot(res.aov, 1)

As there is no evident relationships between residuals and fitted
values (the mean of each groups), we can assume the homogeneity
of variances.

Note: Points 17, 15, 4 are detected as outliers.



One-way ANOVA

To test the homogeneity assumption, we can run the Levene’s test.

The function leveneTest() is available in the car package (you
might need to install the package first).

> library(car)

> leveneTest(weight � group, data = my data)

Levene’s Test for Homogeneity of Variance (center =

median)

Df Fvalue Pr�% F �
group 2 1.1192 0.3412

27

Since the p-value is above 0.05, there is no evidence to suggest
that there is significant difference in variance across groups.
Hence, we can assume the homogeneity of variances in the
different treatment groups.



One-way ANOVA

If the assumptions required by the ANOVA test are not met, we
can use a non-parametric alternative.

This test is called: Kruskal-Wallis rank sum test

> kruskal.test(weight � group, data = my data)

Kruskal-Wallis rank sum test

data: weight by group

Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value =

0.01842

The p-value less than 0.05 indicates that there is a significant
difference across groups.



One-way ANOVA - RStudio with CSV files

To perform a single factor ANOVA using RStudio, you need to set
up a table with two or more columns.

Although it is possible to enter the data directly into the script, in
practical applications you might want to load the data from a CSV
file, probably one created using Excel or another spreadsheet
software.
You can use the command read.csv() to load the table.

The format of the table typically consists of one column containing
the continuous data to be analyzed and one or more columns
containing values that assign the row to one or more groups.

Note: the names used to assign a row to a given group must be
exactly the same in every row.



One-way ANOVA - RStudio with CSV files

In the following example, we consider the results of an experiment
comparing 72 measurements of the amplitude of the response of
cockroach eyes stimulated by pulses of red, green and blue light
having the same brightness and duration.

> ExpData <- read.csv("C:/ma4310/color-example.csv")

> print(ExpData)

color response
1 red 1.90
2 red 2.60
. . . . . .
25 green 9.10
. . . . . .
48 green 6.8
49 blue 7.6
. . . . . .
72 blue 6.8



One-way ANOVA - RStudio with CSV files
We next exploring the structure of the data file.

> str(ExpData)

’data.frame’: 72 obs. of 3 variables:

$ color : chr "red" "red" "red" "red" ...

$ response: num 1.9 2.6 3.4 0.8 5.3 1.5 4.5 2.6 1.16 ...

Since the color vector is a character, we convert it into a factor.

> ExpData$color <- factor(ExpData$color, levels =

c("red","green","blue"),labels = c("RED", "GREEN","BLUE"))

Now, the data are organized into a numerical vector and a factor
vector with 3 levels.

> str(ExpData)

’data.frame’: 72 obs. of 3 variables:

$ color : Factor w/ 3 levels "RED","GREEN",...: 1 1 1 1

1 1 1 1 1 ...

$ response: num 1.9 2.6 3.4 0.8 5.3 1.5 4.5 2.6 1.16 ...



One-way ANOVA - RStudio with CSV files

For a more detailed analysis of the data file, we can use the
command Summarize from the FSA library.

> install.packages("FSA")

> library(FSA)

> Summarize(response � color, data=ExpData,digits=3)

color n mean sd min Q1 median Q3 max
1 RED 24 2.492 1.546 0.80 1.405 2.0 3.40 6.7
2 GREEN 24 8.530 6.978 1.00 4.000 6.4 9.85 27.2
3 BLUE 24 10.632 5.976 5.27 6.600 8.0 11.75 25.6



One-way ANOVA - RStudio with CSV files

Here is the boxplot

> boxplot(response � color, data = ExpData, xlab =

"Color", ylab = "Response", frame = FALSE, col =

c("#FF0000", "#008000", "#0000FF"))



One-way ANOVA - RStudio with CSV files

We compute the ANOVA test under the null hypothesis is that
there is no difference between the mean response to red light and
the mean response to green light. Note: � � � indicates that
p-value is less than 0.001.

> res.aov <- aov(response � color, data = ExpData)

> summary(res.aov)

Df SumSq MeanSq Fvalue Pr�% F �
color 2 857.2 428.6 14.81 4.44e � 06 � � �

Residuals 69 1996.4 28.9

Interpretation:

As the p-value is less than the significance level 0.05, we conclude
that there are significant differences between the 3 colors



One-way ANOVA - RStudio with CSV files

> TukeyHSD(res.aov)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = response � color, data = ExpData)

$group
diff lwr upr padj

GREEN � RED 6.038750 2.319372 9.758128 0.0006628
BLUE � RED 8.140417 4.421039 11.859795 0.0000049
BLUE � GREEN 2.101667 �1.617711 5.821045 0.3709119

Interpretation: only the differences GREEN-RED and BLUE-RED
are significant but the difference BLUE-GREEN is not.



Two-way ANOVA

Two-way ANOVA test is used to evaluate simultaneously the effect
of two grouping variables on a response variable.

The grouping variables are also known as factors.

The different categories or groups of a factor are called levels. The
number of levels can vary between factors.

The level combinations of factors are called cell.

1 When the sample sizes within cells are equal, we have the
so-called balanced design. In this case, the standard two-way
ANOVA test can be applied.

2 When the sample sizes within each level of the independent
variables are not the same, we have the case of unbalanced
designs and the ANOVA test should be handled differently.



Two-way ANOVA

R Example: we will use the built-in R data set named
ToothGrowth.

It contains data from a study evaluating the effect of vitamin C on
tooth growth in Guinea pigs.

The experiment has been performed on 60 pigs, where each animal
received one of three dose levels of vitamin C (0.5, 1, and 2
mg/day) by one of two delivery methods, (orange juice, coded as
OJ, or ascorbic acid, coded as VC).

Tooth length was measured to test the hypothesis if tooth length
depends on dose and delivery method.

Note: An experiment where we test a combination of the levels of
multiple factors is called a factorial treatment structure or a
factorial design.



Two-way ANOVA

> my data <- ToothGrowth

> print(my data)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
. . . . . . . . . . . .
11 16.5 VC 1.0
. . . . . . . . . . . .
21 23.6 VC 2.0
. . . . . . . . . . . .
31 15.2 OJ 0.5
. . . . . . . . . . . .
41 19.7 OJ 1.0
. . . . . . . . . . . .
51 25.5 OJ 2.0
. . . . . . . . . . . .
60 23.0 OJ 2.0

len = tooth legth; supp = delivery method; dose = dose level



Two-way ANOVA

We can check the data structure

> levels(my data$group)

NULL

> str(my data)

’data.frame’: 60 obs. of 3 variables:

$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7...

$ supp: Factor w/2 levels "OJ","VC":2 2 2 2 2 2 2 2 2...

$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5...

From the output above, R considers dose as a numeric variable.
Hence, we convert it to a factor variable as follows:

> my data$dose <- factor(my data$dose, levels = c(0.5, 1,

2),labels = c("D0.5", "D1.0", "D2.0"))



Two-way ANOVA

We can list the data again

> print(my data)

len supp dose
1 4.2 VC D0.5
2 11.5 VC D0.5
. . . . . . . . . . . .
11 16.5 VC D1.0
. . . . . . . . . . . .
21 23.6 VC D2.0
. . . . . . . . . . . .
31 15.2 OJ D0.5
. . . . . . . . . . . .
41 19.7 OJ D1.0
. . . . . . . . . . . .
51 25.5 OJ D2.0
. . . . . . . . . . . .
60 23.0 OJ D2.0



Two-way ANOVA

We can generate the frequency table to display one factor/group
(dose level) vs the other factor/group (delivery method).

>table(my data$supp, my data$dose)

D0.5 D1.0 D2.0
OJ 10 10 10
VC 10 10 10

Note in the table above:

1 Factorial treatment structure: we observe all possible
combinations of the levels of the factors.

2 Balanced design: the sample size is the same in each cell.



Two-way ANOVA
We can visualize the data using boxplots

Here are the plots using the ggpubr library.

# Plot tooth length ("len") by groups ("dose")

# Color box plot by a second group: "supp"

>library("ggpubr")

>ggboxplot(my data, x = "dose", y = "len", color =

"supp", palette = c("#00AFBB", "#E7B800"))



Two-way ANOVA

Here are the plots using the built-in boxplot command.

>boxplot(len � supp * dose, data=my data, frame =

FALSE, col = c("#00AFBB", "#E7B800"), ylab="Tooth

Length")



Two-way ANOVA

We next compute the two-way ANOVA test in R using the R
function aov()

We use the function summary.aov() to summarize the analysis of
variance model.

>res.aov2 <- aov(len � supp + dose, data = my data)

>summary(res.aov2)

Df SumSq MeanSq Fvalue Pr�% F �
supp 1 205.4 205.4 14.02 0.000429 � � �

dose 2 2426.4 1213.2 82.81 $ 2e � 16 � � �

Residuals 56 820.4 14.7

Table shows that both supp and dose are statistically significant.

Conclusion: both delivery methods and the dose of vitamin C have
a significant impact on the mean tooth length.



Two-way ANOVA

The above fitted model is an additive model.
It assumes that the two factor variables are independent.

In general, the two factors might interact to create an synergistic
effect.
This is called two-way ANOVA with interaction effect.

To solve this modified ANOVA test, we need replace the plus
symbol (+) by an asterisk (*), as follow.

# These two calls are equivalent

>res.aov3 <- aov(len � supp * dose, data = my data)

>res.aov3 <- aov(len � supp + dose + supp:dose, data

= my data)



Two-way ANOVA

> summary(res.aov3)

Df SumSq MeanSq Fvalue Pr�% F �
supp 1 205.4 205.4 15.572 0.000231 � � �

dose 2 2426.4 1213.2 92.000 $ 2e � 16 � � �

supp � dose 2 108.3 54.2 4.107 0.021860 �

Residuals 54 712.1 13.2

The table shows that the two factors (supp and dose) as well as
their interaction are statistically significant.

Specifically:
- the p-value of supp is 0.000429, hence the levels of supp are
associated with significant different tooth length;
- the p-value of dose is below 2e-16, hence the levels of dose are
associated with significant different tooth length;
- the p-value for the interaction between supp and dose is
0.021860, hence the relationships between dose and tooth length
depends on the supp method.



Two-way ANOVA
As the ANOVA test is significant, we compute the Tukey HSD test
for performing pairwise-comparison between the means of groups.
We don’t need to perform the test for the “supp” variable because
it has only two levels, which have been already proven to be
significantly different by ANOVA test. Therefore, we will run the
Tukey HSD test only for the factor variable “dose”.

> TukeyHSD(res.aov3, which = "dose")

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = len � supp � dose, data = my data)
$dose

diff lwr upr padj
D1.0 � D0.5 9.130 6.362488 11.897512 0.0e � 00
D2.0 � D0.5 15.495 12.727488 18.262512 0.0e � 00
D2.0 � D1.0 6.365 3.597488 9.132512 2.7e � 06

diff: difference between means of the two groups
lwr, upr: lower and the upper endpoints of 95% CI
p adj: p-value after adjustment for the multiple comparisons



Two-way ANOVA

The ANOVA test assumes that:

1 the data are normally distributed;

2 the variance across groups are homogeneous.

We will examine the validity of such assumptions on the data of
the example.



Two-way ANOVA
To check the normality assumption, we cdisplay the Q-Q plot of
residuals where the quantiles of the residuals are plotted against
the quantiles of the normal distribution.
> plot(res.aov3, 2)

As points fall approximately along this reference line, the plot
indicates that the normality assumptions is acceptable.

Note: Points 23, 32, 49 are detected as outliers.



Two-way ANOVA

We can also run the Shapiro-Wilk normality test

>aov residuals <- residuals(object = res.aov3)

>shapiro.test(x = aov residuals)

Shapiro-Wilk normality test

data: aov residuals

W = 0.98499, p-value = 0.6694

Since the p-value of the test is above 0.05, the test finds no
indication that the normality assumption is violated.



Two-way ANOVA
To check the homogeneity of variance assumption, we can display
the residuals versus fits plot:
>plot(res.aov3, 1)

As there is no evident relationships between residuals and fitted
values (the mean of each groups), we can assume the homogeneity
of variances.

Note: Points 23, 32, 49 are detected as outliers.



Two-way ANOVA

To test the homogeneity assumption, we can run the Levene’s test.

The function leveneTest() is available in the car package.

>library(car)

>leveneTest(len � supp*dose, data = my data)

Levene’s Test for Homogeneity of Variance (center =

median)

Df Fvalue Pr�% F �
group 5 1.7086 0.1484

54

Since the p-value is above 0.05, there is no evidence to suggest
that there is significant difference in variance across groups.
Hence, we can assume the homogeneity of variances in the
different treatment groups.



Two-way ANOVA - Unbalanced design

In example above, the experiment has equal numbers of subjects in
each group.

An unbalanced design has unequal numbers of subjects in each
group.

There are three fundamentally different ways to run an ANOVA in
an unbalanced design.
They are known as Type-I, Type-II and Type-III sums of squares.
The three methods give the same result when the design is
balanced. However, when the design is unbalanced, they don’t give
the same results.



Two-way ANOVA - Unbalanced design

Type I is also called sequential sum of squares. Because of the
sequential nature and the fact that the two main factors are tested
in a particular order, this type of sums of squares will give different
results for unbalanced data depending on which main effect is
considered first.

Type II tests for each main effect after the other main effect and
assumes no significant interaction. Computationally, this method is
equivalent to running a type I analysis with different orders of the
factors.

Type III tests for the presence of a main effect after the other main
effect and interaction. This approach is therefore valid in the
presence of significant interactions.



Two-way ANOVA - Unbalanced design

The function Anova() in the car package can be used to compute
two-way ANOVA test for unbalanced designs. You might need to
first install (install.packages(\car"))

library(car)

> my anova <- aov(len � supp�dose, data = my data)

> Anova(my anova, type = "III")

Response: len

SumSq Df Fvalue Pr�% F �
�Intercept� 889.35 1 53.3438 1.090e � 09 � � �

supp 227.15 1 13.6246 0.0005073 � � �

dose 711.88 1 42.6991 2.028e � 08 � � �

supp � dose 88.92 1 5.3335 0.0246314 �

Residuals 933.63 56

Note: we apply type III anova since we consider a model with
interaction.



ANOVA with Blocks

Blocks are used in an analysis of variance to account for suspected
variation from factors other than the treatments.

The randomized complete block design, for instance, is a
standard design for agricultural experiments in which similar
experimental units are grouped into blocks or replicates.

Assume that we can divide our experimental units into r groups,
also known as blocks, containing g experimental units each.
Think for example of an agricultural experiment at r different
locations having g different plots of land each. Hence, a block is
given by a location and an experimental unit by a plot of land.

The experimental units should be as similar as possible within the
same block, but can be very different between different blocks.
This design allows us to fully remove the between-block variability.
For the analysis of a randomized complete block design, the block
is treated as a factor in our model.



ANOVA with Blocks

Example. At six different locations (factor block), three plots of
land were available.
Three varieties of oat (factor variety), i.e., Goldenrain, Marvellous
and Victory varieties, were randomized to them, individually per
location.
The response was yield (in 0.25lbs per plot)

We want to test the hypothesis that the yield is the same for all
oat varieties against the alternative hypothesis that the yield is not
the same for all oat varieties.

We will use two-way ANOVA to solve the problem.



ANOVA with Blocks

> block <- factor(rep(1:6, times = 3))

> variety <- factor(rep(c("Goldenrain", "Marvellous",

"Victory"), each = 6))

> yield <- c(133.25, 113.25, 86.75, 108, 95.5,

90.25,129.75, 121.25, 118.5, 95, 85.25, 109,143,

87.25, 82.5, 91.5, 92, 89.5)

> oat.variety <- data.frame(block, variety, yield)

> str(oat.variety)

’data.frame’: 18 obs. of 3 variables:
$ block: Factor w/ 6 levels ”1”,”2”,”3”,”4”,..: 1 2 3 4 5 6 1 2 3 ...
$ variety: Factor w/ 3 levels ”Goldenrain”,”Marvellous”,..: 1 1 1 1
1 1 2 2 2 2 ...
$ yield: num 133.2 113.2 86.8 108 95.5 ...



ANOVA with Blocks

Note that the experiment has a balanced design with the same
number of experimental units in each cell

> table(oat.variety$block, oat.variety$variety)

Goldenrain Marvellous Victory
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1



ANOVA with Blocks

> aov.model <- aov(yield � block + variety, data =

oat.variety)

> summary(aov.model)

Df SumSq MeanSq Fvalue Pr�% F �
block 5 3969 793.8 5.280 0.0124 �

variety 2 447 223.3 1.485 0.2724
Residuals 10 1503 150.3

Conclusion: we accept the null hypothesis that the 3 varieties of
oat give the same yield.
The table also shows that there is a statistically significant
difference among the blocks, suggesting that different locations
have statistically significant different yields (even though this is of
no interest in the experiment).

Note. It is good practice to write the block factor first; in case of

unbalanced data, we would get the effect of variety adjusted for block.



ANOVA with Blocks

Example (from https://rcompanion.org/handbook). Brendon
Small, Coach McGuirk, and Melissa Robbins are 3 instructors
teaching different nutrition education programs. During their
course, they have their students keep diaries of what they eat for a
week and then calculate the daily sodium intake in milligrams.
They want to test if the mean sodium intake is the same among
classes.
They suspect though that the town of residence may have some
effect on sodium intake since each town has varying income, ethnic
makeup, and other demographic factors. Therefore they have
recorded the town each student is from, and they would like to use
this as a blocking variable.



ANOVA with Blocks

Input � �”
Instructor Town Sodium
¬

BrendonSmall
¬

Squiggleville 1200
¬

BrendonSmall
¬

Squiggleville 1400
¬

BrendonSmall
¬

Squiggleville 1350
¬

BrendonSmall
¬

Metalocalypse 950
. . . . . .
¬

CoachMcGuirk
¬

Squiggleville 1100
¬

CoachMcGuirk
¬

Squiggleville 1200
. . . . . .
¬

MelissaRobins
¬

Metalocalypse 900
. . . . . .
¬

MelissaRobins
¬

Squiggleville 1400
¬

MelissaRobins
¬

Metalocalypse 1100
”�

> Data =

read.table(textConnection(Input),header=TRUE)



ANOVA with Blocks

> str(Data)

’data.frame’: 60 obs. of 3 variables:

$ Instructor: chr "Brendon Small" "Brendon Small"

"Brendon Small" "Brendon Small" ...

$ Town : chr "Squiggleville" "Squiggleville"

"Squiggleville" "Metalocalypse" ...

$ Sodium : int 1200 1400 1350 950 1400 1150 1300 1325

1425 1500 ...



ANOVA with Blocks

We redefine Instructor and Town as factors.
> Data$Instructor =

factor(Data$Instructor,levels=unique(Data$Instructor))

> Data$Town = factor(Data$Town,levels=unique(Data$Town))

> str(Data)

’data.frame’: 60 obs. of 3 variables:

$ Instructor: Factor w/ 3 levels "Brendon Small",..: 1 1

1 1 1 1 1 1 1 1 ...

$ Town : Factor w/ 2 levels "Squiggleville",..: 1 1 1 2

1 1 1 2 2 1 ...

$ Sodium : int 1200 1400 1350 950 1400 1150 1300 1325

1425 1500 ...



ANOVA with Blocks

> table(Data$Instructor, Data$Town)

Squiggleville Metalocalypse
BrendonSmall 11 9
CoachMcGuirk 14 6
MelissaRobins 6 14

The table shows that data are unbalanced, with a different number
of experiments for each cell.



ANOVA with Blocks

Before generating the boxplot, for the benefit of visualization, we
relabel the factor levels using shorter symbols.

> Data$Town = factor(Data$Town,levels=unique(Data$Town),

labels=c("S","M"))

> Data$Instructor =

factor(Data$Instructor,levels=unique(Data$Instructor),

labels=c("I1","I2","I3"))



ANOVA with Blocks

> boxplot(Sodium Instructor * Town, data=Data,

frame = FALSE, col = rep(c("#00AFBB",

"#E7B800"),each=3), ylab="Sodium intake")



ANOVA with Blocks - Unbalanced design

We use the function Anova() in the car package to compute
two-way ANOVA test for unbalanced design.

library(car)

> my anova <- aov(Sodium � Town + Instructor, data =

Data)

> Anova(my anova, type = "II")

Response: Sodium

SumSq Df Fvalue Pr�% F �
Town 329551 1 15.9332 0.0001928 � � �

Instructor 148944 2 3.6006 0.0338033 �

Residuals 1158261 56

Conclusion: there is statistically significant difference among
Instructors; also Town has a statistically significant impact (hence
it was useful to use the town as a block factor)



ANOVA with Blocks - Unbalanced design

In this example, the Anova function is useful to compute the
ANOVA test of an unbalanced design experiment.

If we use the standard solution for the balanced design setting, we
do get a different and slightly less accurate result

> summary(my anova)

Df SumSq MeanSq Fvalue Pr�% F �
Town 1 470753 470753 22.760 1.35e � 05 � � �

Instructor 2 148944 74472 3.601 0.0338 �

Residuals 56 1158261 20683



ANOVA with Blocks - Unbalanced design

Remark: we observed above that it is important to write the block
factor first in the aov function in order to get the effect of variety
adjusted for block. If we change the order of the factors, the
standard (balanced) solution changes.
However, the Anova function is not affected by changing the order
of the two factors in aov() function.

> my anova <- aov(Sodium � Town + Instructor, data =

Data)

> summary(my anova)

Df SumSq MeanSq Fvalue Pr�% F �
Instructor 2 290146 145073 7.014 0.001913 ��

Town 1 329551 329551 15.933 0.000193 � � �

Residuals 56 1158261 20683



ANOVA with Blocks - Unbalanced design

Next, we run the Tuckey HSD test to perform pairwise
comparisons between the instructors

> TukeyHSD(my anova, which = "Instructor")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Sodium � Instructor + Town, data =

Data)

$Instructor
diff lwr upr padj

I2 � I1 �41.25 �150.7432 68.24317 0.6381712
I3 � I1 �163.75 �273.2432 �54.25683 0.0019215
I3 � I2 �122.50 �231.9932 �13.00683 0.0248622



Repeated Measures ANOVA

A Repeated Measures experimental design is one in which
measurements of the same variable are made on the same subject
on two or more different occasions

For example, you might measure running speed before, one week
into, and three weeks into a program of exercise. Because
individuals would start with different running speeds, it is better to
analyze using a two-way anova, with ”individual” as one of the
factors, rather than lumping everyone together and analyzing with
a one-way anova.

Sometimes the repeated measures are repeated at different places
rather than different times, such as the hip abduction angle
measured on the right and left hip of individuals. Repeated
measures experiments are often done without replication, although
they could be done with replication.



Repeated Measures ANOVA

The simplest setting for repeated measures design is the one
where, in addition to the treatment variable, one additional
variable (a factor) is considered to isolate its contribution to the
total variability among the observations. This additional factor is
usually referred to as subjects. We refer to this setting as a

single-factor repeated measures design.

In a repeated measures design, one of main effects is usually
uninteresting and the test of its null hypothesis may not be
reported.

For examples, if the goal is to determine whether a particular
exercise program affects running speed, there would be little point
in testing whether subjects differed from each other in their
average running speed; only the change in running speed over time
would be of interest.



Repeated Measures ANOVA

Example A study examined diamondback rattlesnakes in a
”rattlebox,” a box with a lid that would slide open and shut every
5 minutes. At first, the snake would rattle its tail each time the
box opened. After a while, the snake would become habituated to
the box opening and stop rattling its tail. Researchers counted the
number of box openings until a snake stopped rattling; fewer box
openings means the snake was more quickly habituated. They
repeated this experiment on each snake on four successive days,
which we treat as a nominal variable for this example.

The measurement variable is trials to habituation, and the two
nominal variables are day (1 to 4) and snake ID (D1,...,D6). This
is a repeated measures design, as the measurement variable is
measured repeatedly on each snake. It is analyzed using a two-way
anova.



Repeated Measures ANOVA

% Input � �”
Day Snake Openings
1 D1 85
1 D2 107
1 D3 61
. . . . . .
2 D1 58
. . . . . .
3 D1 15
. . . . . .
4 D1 57
. . . . . .
4 D6 16
”�

>Data = read.table(textConnection(Input),header=TRUE)



Repeated Measures ANOVA
> str(Data)

’data.frame’: 24 obs. of 3 variables:

$ Day : int 1 1 1 1 1 1 2 2 2 2 ...

$ Snake : chr "D1" "D2" "D3" "D4" ...

$ Openings: int 85 107 61 22 40 65 58 51 60 41 ...

We convert Day into a factor variable

> Data$Day = as.factor(Data$Day)

> Data$Snake =

factor(Data$Snake,levels=unique(Data$Snake))

> str(Data)

’data.frame’: 24 obs. of 3 variables:

$ Day : Factor w/ 4 levels "1","2","3","4": 1 1 1 1

1 1 2 2 2 2 ...

$ Snake : Factor w/ 6 levels "D1","D2","D3",..: 1 2

3 4 5 6 1 2 3 4 ... ...

$ Openings: int 85 107 61 22 40 65 58 51 60 41 ...



ANOVA with Blocks - Unbalanced design

We use the function Anova() in the car package to compute
two-way ANOVA test for unbalanced design.

library(car)

> my anova <- aov(Openings � Day + Snake, data =

Data)

> Anova(my anova, type = "II")

Response: Openings

SumSq Df Fvalue Pr�% F �
Day 4877.8 3 3.3201 0.04866 �

Snake 3042.2 5 1.2424 0.33818
Residuals 7346.0 15

Conclusion: there is a statistically significant difference among
Days.



Repeated Measures ANOVA

Next, we run the Tuckey HSD test to perform pairwise
comparisons between the Dayss

> TukeyHSD(my anova, which = "Day")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Openings � Day + Snake, data = Data)

$Day
diff lwr upr padj

2 � 1 �16.333333 �53.15762 20.490954 0.5896276
3 � 1 �28.833333 �65.65762 7.990954 0.1529601
4 � 1 �38.000000 �74.82429 �1.175713 0.0420317
3 � 2 �12.500000 �49.32429 24.324287 0.7636046
4 � 2 �21.666667 �58.49095 15.157621 0.3596726
4 � 3 �9.166667 �45.99095 27.657621 0.8886209

There is a statistically significant difference in the pair 4-1.



Nested ANOVA

Nested ANOVA is used when you have one measurement variable
and more than one nominal variable, and the nominal variables are
nested, that is, they form subgroups within groups.
It tests whether there is significant variation in means among
groups and among subgroups within group.
Nested analysis of variance is an extension of one-way ANOVA in
which each group is divided into subgroups

Assumptions: like all ANOVA tests, it assumes that the
observations within each subgroup are normally distributed and
have equal standard deviations.



Nested ANOVA
Example. A laboratory studies uptake of fluorescently labeled
protein in rat kidneys. We want to know whether the two
technicians, Brad and Janet, are performing the procedure
consistently. So Brad and Janet randomly chose 3 rats each, and
each technician measured protein uptake in each rat.
If Brad and Janet had measured protein uptake only once on each
rat, you would have one measurement variable (protein uptake)
and one nominal variable (technician) and you would analyze it
with one-way anova. However, rats are expensive and
measurements are cheap, so Brad and Janet measured protein
uptake at several random locations in the kidney of each rat:



Nested ANOVA

Because there are several observations per rat, the identity of each
rat is a nominal variable. The values of this variable (the
identities of the rats) are nested under the technicians; rat A is
only found with Brad, and rat D is only found with Janet. In this
case, it’s a two-level nested anova; the technicians are groups,
and the rats are subgroups within the groups. If the technicians
had looked at several random locations in each kidney and
measured protein uptake several times at each location, you’d have
a three-level nested anova, with kidney location as subsubgroups
within the rats.
Note: if the subgroups, subsubgroups, etc. are distinctions with
some interest (fixed effects, variables), rather than random, you
should not use a nested anova. For example, Brad and Janet could
have looked at protein uptake in two male rats and two female rats
apiece. In this case you would use a two-way anova to analyze the
data, rather than a nested anova.



Nested ANOVA

Input � �”
Tech Rat Protein
Janet 1 1.119
Janet 1 1.2996
. . . . . .
Janet 2 1.045
. . . . . .
Janet 3 0.9367
Brad 4 1.3883
. . . . . .
Brad 5 1.3952
Brad 6 1.4543
”�
> Data =

read.table(textConnection(Input),header=TRUE)



Nested ANOVA
> str(Data)

’data.frame’: 60 obs. of 3 variables:

$ Tech : chr "Janet" "Janet" "Janet" "Janet" ...

$ Rat : int 1 1 1 1 1 1 1 1 1 1 ...

$ Protein: num 1.12 1.3 1.54 1.51 1.62 ...

We redefine Rat and Tech as factors.

> Data$Rat = factor(Data$Rat,levels=unique(Data$Rat))

> Data$Tech = factor(Data$Tech,levels=unique(Data$Tech))

> str(Data)

’data.frame’: 60 obs. of 3 variables:

$ Tech : Factor w/ 2 levels "Janet","Brad": 1 1 1 1 1 1

1 1 1 1 ...

$ Rat : Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1

1 1 1 1 1 ...

$ Protein: num 1.12 1.3 1.54 1.51 1.62 ...



Nested ANOVA

The aov function in R allows you to specify an error component to
the model. We will use this error to manage the Rat factor.

> my anova = aov(Protein � Tech + Error(Rat),

data=Data)

> summary(my anova)

Error: Rat
Df SumSq MeanSq Fvalue Pr�% F �

Tech 1 0.0384 0.03841 0.268 0.632
Residuals 4 0.5740 0.14349
Error: Within

Df SumSq MeanSq Fvalue Pr�% F �
Residuals 54 1.946 0.03604

Conclusion: the test found that there is no statistically significant
difference between the technicians.



Nested ANOVA

If we want to test whether the technicians or the rats are a
statistically significant factor in the measured protein intake, we
can run a standard two-way ANOVA.

> my anova2 = aov(Protein � Tech + Rat, data=Data)

> summary(my anova2)

Df SumSq MeanSq Fvalue Pr�% F �
Tech 1 0.0384 0.03841 1.066 0.30649
Rat 4 0.5740 0.14349 3.982 0.00666 ��

Residuals 54 1.9460 0.03604



5 Linear Regression



Linear Regression

In some applications, we are interested in obtaining a simple model
that explains the relationship between two or more variables.

For example, suppose that we are interested in studying the
relationship between the income of parents and the income of their
children in a certain country. Even though many factors can
impact the income of a person, we conjecture that children from
wealthier families tend to become wealthier when they grow up.
Here, we consider two variables:

1 The family income x , defined as the average income of
parents at a certain period.

2 The child income y , defined as his/her average income at a
certain period (e.g, age).



Linear Regression

To examine the relationship between the two variables, we collect
some data �xi , yi�, i � 1, . . . , n

where yi is the average income of the i-th child and xi is the
average income of his/her parents.
We are often interested in finding a simple model. A linear model
is the simplest model that we can define:

yi � β1 xi � β0

As there are other factors that impact each child’s future income,
so we might write

yi � β1 xi � β0 � ϵi

where ϵi is modeled as a random variable.



Linear Regression
Our goal is to obtain the values of β0 and β1 resulting in the
smallest errors. That, we want to find the line in the x � y plane

ŷ�x� � β1x � β0

that ‘best’ fits our data points. Such line is the regression line.



Linear Regression Model

The linear regression model is

Y � β1X � β0 � ϵ

Since ϵ is a random variable, Y is also a random variable. The
variable X is called the predictor or the explanatory variable,
and the random variable Y is called the response variable.

We have data points �x1, y1�, �x2, y2�, . . . , �xn, yn� and our goal is
to find the ‘best’ values for β0 and β1 resulting in the line that
provides the ‘best’ fit for the data points. The observed values of
the random variables Y are

yi � β1xi � β0 � ϵi .

We model the terms ϵi ’s as independent and zero-mean normal
random variables, ϵi � N�0, σ2�.



Statistical method to find the regression line
We assume that the xi ‘s are observed values of a random variable
X , so the model is

Y � β1X � β0 � ϵ,

where ϵ � N�0, σ2�.
By taking the expectation on both sides

E�Y � � β1E�X � � β0 � E�ϵ� � β1E�X � � β0

Hence β0 � E�Y � � β1E�X �
From the covariance, observing that X and ϵ are independent

cov�X ,Y � � cov�X , β1X � β0 � ϵ�
� β1 cov�X ,X � � β0 cov�X , 1� � cov�X , ϵ�
� β1 cov�X ,X � � β1var�X �

Hence β1 �
cov�X ,Y �
var�X �



Statistical method to find the regression line
To compute β0, β1 from the observed pairs �x1, y1�, . . . , �xn, yn�,
we introduce the notation

x̄ �
1
n

n

=
i�1

xi , ȳ �
1
n

n

=
i�1

yi , sxx �
n

=
i�1

�xi � x̄�2, sxy � n

=
i�1

�xi � x̄��yi � ȳ�
so we can estimate β0, β1 as

β̂0 � ȳ � β̂1x̄ , β̂1 �
sxy
sxx

and express the regression line as

ŷ � β̂0 � β̂1x .

For each i � 1, . . . , n, the quantity ŷi � β̂0 � β̂1xi is the predicted
value of yi using the regression formula and the error in this
prediction, called a residual, is

ei � yi � ŷi .



Computation of the regression line
Example. Consider the following observed values of �xi , yi�:�1, 3�, �2, 4�, �3, 8�, �4, 9�
Find the estimated regression line based on the observed data.

Solution. We have

x̄ �
1

4
�1 � 2 � 3 � 4� � 2.5, ȳ �

1

4
�3 � 4 � 8 � 9� � 6

sxx � �1 � 2.5�
2
� �2 � 2.5�

2
� �3 � 2.5�

2
� �4 � 2.5�

2
� 5

sxy � �1 � 2.5��3 � 6� � �2 � 2.5��4 � 6� � �3 � 2.5��8 � 6� � �4 � 2.5��9 � 6� � 11

Hence

β̂1 �
sxy
sxx

�
11

5
� 2.2, β̂0 � ȳ � β̂1x̄ � 6 � �2.2��2.5� � 0.5

and the regression line is

ŷ � 0.5 � 2.2x



Computation of the regression line

The fitted values are given by

ŷi � 0.5 � 2.2xi

and the residuals are

e1 � y1 � ŷ1 � 3 � �0.5 � �2.2��1�� � 0.3

e2 � y2 � ŷ2 � 4 � �0.5 � �2.2��2�� � �0.9
e3 � y3 � ŷ3 � 8 � �0.5 � �2.2��3�� � 0.9

e4 � y4 � ŷ4 � 9 � �0.5 � �2.2��4�� � �0.3
We have that e1 � e2 � e3 � e4 � 0

It is true in general that <i ei � 0.



Coefficient of Determination
Our linear regression model for regression is

Y � β̂0 � β̂1X � ϵ, �1�
where ϵ � N�0, σ2� is a random variable independent of X .
X is the only variable that we observe, so we estimate Y using X
as

Ŷ � β̂0 � β̂1X

and the error in our estimate is

ϵ � Y � Ŷ .

The randomness in Y comes from X and ϵ. From (1) we get

Var�Y � � β̂
2
1Var�X � � Var�ϵ�,

showing that the variation in Y is the sum of a part dependent on
Var�X � and a part which is the variance of the error ϵ.



Coefficient of Determination

If Var�ϵ� is small, then Y is close to Ŷ , so our regression model
will be successful in estimating Y . Hence the quantity

β
2
1
Var�X �
Var�Y �

describes the portion of variance of Y that is explained by
variation in X .
Using the formula for β1, we observe that

β
2
1
Var�X �
Var�Y � � �cov�X ,Y ��2�Var�X ��2 Var�X �

Var�Y � � �cov�X ,Y ��2
Var�X �Var�Y � � ρ

2
,

which is the correlation coefficient.
Interpretation: if X and Y are highly correlated (¶ρ¶ close to 1),
then Y is well approximated by a linear function, that is,
Y � Ŷ � β̂0 � β̂1X .



Coefficient of Determination

In practice, we only have access to the observed pairs �x1, y1�,�x2, y2�, . . . , �xn, yn�, so we estimate ρ
2
from the observed data.

We define the coefficient of determination r
2
as

r
2
�

�<n
i�1�xi � x̄��yi � ȳ��2

<n
i�1�xi � x̄�2<n

i�1�yi � ȳ�2 � s
2
xy

sxx syy
,

where

sxx �
n

=
i�1

�xi � x̄�2, syy �
n

=
i�1

�yi � ȳ�2, sxy �
n

=
i�1

�xi � x̄��yi � ȳ�
We have that 0 & r

2
& 1 with larger values indicating that our

linear model ŷi � β̂0 � β̂1xi is a good fit for the data.

r � sqrt�r2� is called the Pearson correlation coefficient.



Computation of the regression line and r
2

Example. Consider the following observed values of �xi , yi�:�1, 3�, �2, 4�, �3, 8�, �4, 9�
We computed the estimated regression line ŷ � 0.5 � 2.2 x .

We found that sxx � 5 and sxy � 11.
A similar calculation gives syy � 26.
Thus

r
2
�

s
2
xy

sxx syy
�

�11�2�5� �26� � 0.931

r �
Ô
r2 � 0.965



Correlation Coefficients

We can use R to compute the Pearson correlation coefficient.

> x=c(1,2,3,4)

> y=c(3,4,8,9)

> cor(x, y, method ="pearson")

[1] 0.9647638

Alternative correlation coefficients:

> cor(x, y, method ="spearman")

[1] 1

> cor(x, y, method ="kendall")

[1] 1



Method of Least Squares
There is a different method to estimate β0 and β1 in the equation
of the regression line. This method will result in the same
estimates as before; however, it is based on a different idea.

Suppose that we have data points �x1, y1�, �x2, y2�, . . . , �xn, yn�.
Consider the model

ŷ � β0 � β1 x

The residuals are given by

ei � yi � ŷi � yi � β0 � β1 xi , i � 1, . . . , n

and the sum of the squared errors is given by

E�β0, β1� � n

=
i�1

e
2
i �

n

=
i�1

�yi � β0 � β1 xi�2.
To find the best fit for the data, we find the values of β̂0, β̂1 such
that the error function E�β0, β1� is minimized.



Method of Least Squares
To minimize the error function E�β0, β1�, we compute the partial
derivatives with respect to β0 and β1, and set them to zero

∂E

∂β0
�

n

=
i�1

2��1��yi � β0 � β1 xi� � 0

∂E

∂β1
�

n

=
i�1

2��xi��yi � β0 � β1 xi� � 0

It follows that

n

=
i�1

yi � nβ0 � β1

n

=
i�1

xi ,
n

=
i�1

xiyi � β0

n

=
i�1

xi � β1

n

=
i�1

x
2
i

By solving these equations for β0, β1, we obtain

β̂0 � ȳ � β̂1x̄ , β̂1 �
sxy
sxx



Linear Regression using R

The basic command in R to compute a regression model is lm
which takes the variables in the format

lm([target variable] � [predictor variables], data =

[data source])

Data can be read from an Excel or csv file
Example. We want to use a linear regression model to describe
the relationship between the height of a child and its age. We
collect the following measurements for children between the age of
18 and 29 months and the data are reported in the table below.

Age (months) 18 19 20 21 22 23 24 25 26 27 28 29

Height (cm) 76.1 77 78.1 78.2 78.8 79.7 79.9 81.1 81.2 81.8 82.8 83.5



Linear Regression using R
We start by loading the data and displaying them in a scatterplot

> age <-c(18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29)

> height <-c(76.1, 77.0, 78.1, 78.2, 78.8, 79.7, 79.9,

81.1, 81.2, 81.8, 82.8, 83.5)

> plot(age, height, main="Scatterplot Height vs Age",

xlab="Age ", ylab="Height ", pch=19)



Linear Regression using R

We next compute and display the regression line

> abline(lm(height � age), col = "blue")



Linear Regression using R

We can display the parameters of the regression equation with the
following command line

> print(lm(height � age))

Call:

lm(formula = height � age)

Coefficients:

(Intercept) age

64.928 0.635

Hence the regression model is

ŷ � 64.928 � 0.635 x



Linear Regression using R

We can display full information of the linear regression model with
the following command line

> summary(lm(height � age))

Call:

lm(formula = height � age)

Residuals:

Min 1Q Median 3Q Max

-0.27238 -0.24248 -0.02762 0.16014 0.47238

Coefficients:

. Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.9283 0.5084 127.71 < 2e-16 ***

age 0.6350 0.0214 29.66 4.43e-11 ***

Residual standard error: 0.256 on 10 degrees of freedom

Multiple R-squared: 0.9888, Adjusted R-squared: 0.9876

F-statistic: 880 on 1 and 10 DF, p-value: 4.428e-11



Linear Regression using R

Comments about the R summary table.

Residuals. In the R summary of the lm function, you can see
descriptive statistics about the residuals of the model. They are
very informative about the quality of the fit of the model. The
closewr to zero, the better the fit.

Coefficient of determination. There are two different R-squared,
one multiple and one adjusted. The multiple is the Coefficient of
determination that we discussed.
One problem with this coefficient is that it cannot decrease as you
add more independent variables to your model, it will continue
increasing as you make the model more complex, even if these
variables don’t add anything to your predictions. For this reason,
the adjusted R-squared is useful if you are adding more than one
variable to the model.
R-squared is about 0.99 in this example, showing that the model
can explain 99% of the total variability.



Linear Regression using R
If data are stored in an Excel file, we can import them into R
> ageandheight <- read csv("ageandheight.csv")

> lmHeight = lm(height � age, data = ageandheight)

> summary(lmHeight)

Call:

lm(formula = height � age, data = ageandheight)

Residuals:

Min 1Q Median 3Q Max

-0.27238 -0.24248 -0.02762 0.16014 0.47238

Coefficients:

. Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.9283 0.5084 127.71 < 2e-16 ***

age 0.6350 0.0214 29.66 4.43e-11 ***

Residual standard error: 0.256 on 10 degrees of freedom

Multiple R-squared: 0.9888, Adjusted R-squared: 0.9876

F-statistic: 880 on 1 and 10 DF, p-value: 4.428e-11



Assessing Linear Regression

The coefficients β̂0 and β̂1 of the linear regression are both
calculated from the data and they are subject to error.

If the true model is
Y � β0 � β1X ,

then β̂0 and β̂1 are point estimators for the true coefficients.

We want to assess the uncertainty of the estimators.

For that, we will examine the sampling distribution of β̂0 and β̂1



Assessing Linear Regression

Proposition. Under the assumption that the error ϵi � N�0, σ2�,
where σ is known, the sampling distribution of β̂1 and β̂0 is normal
with

E�β̂1� � β1 and var�β̂1� � σ
2

<n
i�1�xi � x̄�2 .

and

E�β̂0� � β0 and var�β̂0� � σ
2 �1n � �x̄�2

<n
i�1�xi � x̄�2� .

Hence the �1 � α�100 percent confidence interval of β1 and β0 are

β̂1 � zα
2

σÕ
<n

i�1�xi � x̄�2 and β̂0 � zα
2
σ

Ø
1
n �

�x̄�2
<n

i�1�xi � x̄�2



Assessing Linear Regression

Proof.
Under the assumption that the error ϵi � N�0, σ2�, we have the
responses Yi are also normally distributed Yi � N�β0 � β1xi , σ

2�.
We observe that β̂1 can be written as

β̂1 �
sxy
sxx

�
<n

i�1�xi � x̄��yi � ȳ�
<n

i�1�xi � x̄�2 �
<n

i�1�xi � x̄�yi
<n

i�1�xi � x̄�2 .
Hence, we write the estimator β̂1 as a linear combination of
Y1, . . . ,Yn:

β̂1 �
n

=
i�1

ciYi ,

where ci �
�xi�x̄�

<n
j�1�xj�x̄�

2 and we have the following observations:

<n
i�1 ci � 0, since <n

i�1�xi � x̄� � <n
i�1 xi � nx̄ � nx̄ � nx̄

<n
i�1 cixi � 1, since

<n
i�1�xi�x̄�xi
<n

j�1�xj�x̄�
2 �

<n
i�1�xi�x̄��xi�x̄�

<n
j�1�xj�x̄�

2 �
<n

i�1�xi�x̄�
2

<n
j�1�xj�x̄�

2



Assessing Linear Regression
Using the above observations,

E�β̂1� � n

=
i�1

ciE�Yi� � n

=
i�1

ciE�β0�β1xi� � β0

n

=
i�1

ci�β1

n

=
i�1

cixi � β1

For the variance:

var�β̂1� � n

=
i�1

c
2
i σ

2
� σ

2 <n
i�1�xi � x̄�2�<n
j�1�xj � x̄�2�2 � σ

2

<n
j�1�xj � x̄�2

This shows that β̂1 � N�β1, σ
2

<n
j�1�xj�x̄�

2 �.
We next consider the estimator β̂0 � Ȳ � β̂1x̄ . We can write

β̂0 �
1
n

n

=
i�1

Yi �

n

=
i�1

ciYi x̄ �
n

=
i�1

ki Yi ,

showing that β̂0 is a linear combination of the random variables Yi

where ki �
1
n
� ci x̄ . The rest of the proof is left for exercise.



Assessing Linear Regression
In the last Proposition, we have assumed that the variance of the
noise σ

2
is known.

In practice, σ
2
is unknown and must be estimated from then data.

For that, we replace σ
2
with the mean squared error:

σ̂
2
� MSE �

<n
i�1�yi � ŷi�2

n � 2

so that we estimate the variance of β̂1 as

s
2�β̂1� � MSE

sxx
�

1�n � 2�<n
i�1�yi � ŷi�2
<n

i�1�xi � x̄�2 .
The quantity

s�β̂1� �Ø 1�n � 2�<n
i�1�yi � ŷi�2
<n

i�1�xi � x̄�2 .
is called the standard error of the estimate β1.



Assessing Linear Regression

Similarly, since σ
2
is unknown, we estimate the variance of β̂0 as

s
2�β̂0� � σ̂

2 �1n � �x̄�2
<n

i�1�xi � x̄�2� � <n
i�1�yi � ŷi�2

n � 2
�1n� �x̄�2
<n

i�1�xi � x̄�2 �.
The standard error of the estimate β0 is

s�β̂0� �ÙÛÛÛÛÛÚ<n
i�1�yi � ŷi�2

n � 2
�1n � �x̄�2

<n
i�1�xi � x̄�2�

Replacing σ
2
with σ̂

2
changes the sampling distribution so that β̂0

and β̂1 are associated with a t-distribution with n � 2 degrees of
freedom.



Assessing Linear Regression

Proposition. Under the assumption that the error ϵi � N�0, σ2�,
where σ is unknown, the sampling distribution of β̂1 and β̂0 follow
a t-distribution with

E�β̂1� � β1 and var�β̂1� � σ̂
2

<n
i�1�xi � x̄�2 .

and

E�β̂0� � β0 and var�β̂0� � σ̂
2 �1n � �x̄�2

<n
i�1�xi � x̄�2� .

The �1 � α�100 percent confidence interval of β1 and β0 are

β̂1�tα
2
,n�2

σ̂Õ
<n

i�1�xi � x̄�2 and β̂0�tα
2
,n�2 σ̂

Ø
1
n �

�x̄�2
<n

i�1�xi � x̄�2



Assessing Linear Regression - Confidence interval

Example.
In the example about the relationship between height and age in
children, we found that

β̂0 � 64.9283, β̂1 � 0.6350

The table also reports the standard errors

s�β̂0� � 0.5084, s�β̂1� � 0.0214

Hence the 95% confidence intervals of β0 and β1 are

β̂0�tα
2
,n�2 s�β̂0� � 64.9283��2.228��0.5084� � �63.7956, 66.0610�

β̂1 � tα
2
,n�2 s�β̂1� � 0.6350 � �2.228��0.0214� � �0.5873, 0.6827�

(Note: I used t0.025,10 � 2.228)



Assessing Linear Regression - Hypothesis testing

We test hypotheses about the slope and intercept of the regression
model by computing an appropriate test statistic. Below, we
assume that σ

2
is unknown and that we the estimate value σ̂

2
.

a Hypothesis testing for the slope β̂1.

Test statistic: W1 �
β̂1�β1,0

s�β̂1�

a Hypothesis testing for the intercept β̂0.

Test statistic: W0 �
β̂0�β0,0

s�β̂0�

W0,W1 satisfy a t distribution with n � 2 degrees of freedom.

Hypothesis testing is then carried out in the usual way.

1 Two-tailed test. Rejection region: ¶W ¶ % tα
2
,n�2

2 Lower tailed test. Rejection region: W $ �tα,n�2
3 Upper tailed test. Rejection region: W % tα,n�2



Assessing Linear Regression - Hypothesis testing

Example.
We examine again the relationship between height and age in
children from the example above and consider the following test

H0 � β1 � 0

H1 � β1 j 0

We calculate the test statistic

W �
β̂1

s�β1� � 0.6350

0.0214
� 29.6729

and next apply a two-tailed test.
Since W � 29.6729 % t0.025,10 � 2.228, then we reject H0 with
significance level α � 0.05.

The R table report that the p-value is 4.43 � 10
�11

.



Assessing Linear Regression - Hypothesis testing

Example: house selling price and taxes

Sale price/k 25.9 29.5 27.9 25.9 29.9 29.9 30.9 28.9 35.9 31.5 31.0 30.9

Taxes/k 4.92 5.02 4.54 4.56 5.06 3.89 5.90 5.60 5.83 5.30 6.27 5.96

Independent variable X: Sale Price
Dependent variable Y: Taxes



Assessing Linear Regression - Hypothesis testing
We display a scatterplot

>sale <- c(25.9, 29.5, 27.9, 25.9, 29.9, 34.2, 30.9, 28.9,

35.9, 31.5, 33.0, 30.9)

>tax <- c(4.92, 5.02, 4.84, 4.76, 5.06, 5.89, 5.10, 4.60,

6.23, 5.20, 5.67, 5.06)

> plot(sale, tax, main="Scatterplot Taxes vs Sale Price",

xlab="Sale Price ", ylab="Taxes ", pch=19)



Assessing Linear Regression - Hypothesis testing

> summary(lm(tax � sale))

Call:

lm(formula = tax � sale)

Residuals:

Min 1Q Median 3Q Max

-0.3875 -0.1605 -0.0291 0.1619 0.3586

Coefficients:

. Estimate Std.Error t value Pr(>|t|)

(Intercept) 0.88259 0.68394 1.290 0.226

sale 0.14204 0.02242 6.336 8.51e-05 ***

Residual standard error: 0.2277 on 10 degrees of freedom

Multiple R-squared: 0.8006, Adjusted R-squared: 0.7806

F-statistic: 40.14 on 1 and 10 DF, p-value: 8.506e-05



Assessing Linear Regression - Hypothesis testing

We consider the following test

H0 � β1 � 0

H1 � β1 j 0

From the table: β̂1 � 0.14204, s�β1� � 0.02242.
We calculate the test statistic

W �
β̂1

s�β1� � 0.14204

0.02242
� 6.3354

and next apply a two-tailed test. Note that df=n � 2 � 10.

Since W � 6.3354 % t0.025,10 � 2.228, then we reject H0 with
significance level α � 0.05.

The R table report that the p-value is 8.506 � 10
�5
.



Assessing Linear Regression - Confidence interval

The 95% confidence interval of β1 is

β̂1�t0.025,10 s�β1� � 0.14204��2.228��0.02242� � �0.09209, 0.19199�
> abline(lm(tax � sale), col = "blue")



Assessing Linear Regression - Residuals
We can use R to analyze residuals ei � yi � ŷi

> housesale.lm = lm(tax � sale)

> housesale.res = resid(housesale.lm)

> plot(sale, housesale.res, xlab="Sale Price",

ylab="Taxes", main="Residuals")

> abline(0, 0) # the reference line



Assessing Linear Regression - Prediction Interval
For a given value of x , the interval estimate of the dependent
variable y is called the prediction interval.

In this example, the prediction interval, is the expected value of
the taxes, for a given sale price.

> housesale.lm = lm(tax � sale)

> newdata = data.frame(sale=40)

> predict(housesale.lm, newdata, interval="predict")

. fit lwr upr

1 6.564139 5.849629 7.278649



Assessing Linear Regression - Correlation

The command cor.test is used to test for correlation between
paired samples. It returns both the correlation coefficient and the
p-value of the correlation.

> cor.test(sale, tax, method = "pearson")

Pearson’s product-moment correlation

data: sale and tax

t = 6.3358, df = 10, p-value = 8.506e-05

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6594867 0.9703672

sample estimates:

cor

0.8947449

p-value is the same as the one reported by the lm command.



Multiple Linear Regression

In the above discussion, our model had only one predictor
(explanatory variable), x .
We can consider models with more than one explanatory variable.

For example, suppose that we would like to have a model to
predict house prices based on square footage, age, number of
bedrooms, etc.
Here, the response variable y is the house price and our goal is to
have a linear model

ŷ � β0 � β1 x1 � β2 x2 � � � � � βk xk � ϵ

where x1, x2, . . . , xk are the explanatory variables (square footage,
age, number of bedrooms, etc).

Such a model is a multiple linear regression model.

It is possible to extend the method of least squares to this case to
compute estimates of β0, β1, . . . , βk .



Multiple Linear Regression

Estimates for the parameters β0, β1, . . . , βk of the multiple
regression equation

Y � β0 � β1 X1 � β12X2 � � � � � βk Xk � ϵ

can be obtained using the method of least squares.
That is, we determine the coefficients βi by minimizing the sum of
the squared deviations of the observed values yj of Y (= the sum
of residuals).

Given the observations

yj � β0 � β1 x1j � β2 x2j � � � � � βk xkj � ϵj , j � 1, . . . ,N,

the sum of residuals is written as

=
j

ϵ
2
j �=

j

�yj � β0 � β1 x1j � β2 x2j � � � � � βk xkj�2



Multiple Linear Regression
Using the notation

E�β0, . . . , βk� � N

=
j�1

ϵ
2
j

the solution of the least squares problem for the multiple regression
equation requires to solve the k � 1 equations

∂E

∂βi
� 0, i � 0, 1, . . . k.

Similarly to the linear case, this leads to the equations

N

=
j�1

��1��yj � β0 � β1 x1j � � � � � βk xkj� � 0

N

=
j�1

��xij��yj � β0 � β1 x1j � � � � � βk xkj� � 0, i � 1, . . . k .



Multiple Linear Regression

In the 3-variable case, for example, by minimizing the sum of the
square deviations <j ϵ

2
j , we estimate the parameters β0, β1, β2

determining the regression plane

ŷ � β0 � β1 x1 � β2 x2



Multiple Linear Regression

Example: Suppose we want to predict the amount of water
consumed by football players during practice. The football coach
notices that the water consumption tends to be influenced by the
time that the players are on the field and by the temperature. He
measures the average water consumption, temperature, and
practice time for seven practices and records the following data:

Temperature (F) Practice time (h) Water consumption (oz)

75 1.85 16
83 1.25 20
85 1.5 25
85 1.75 27
92 1.15 32
97 1.75 48
99 1.6 48



Multiple Linear Regression
x1 <- c(75,83,85,85,92,97,99)

x2 <- c(1.85,1.25,1.5,1.75,1.15,1.75,1.6)

y <- c(16,20,25,27,32,48,48)

library(scatterplot3d)

plot3d <- scatterplot3d(x1,x2,y,angle=45, scale.y=0.9,

+ pch=16, color ="red", main ="Scatterplot")



Multiple Linear Regression

dataset = cbind.data.frame(x1,x2,y)

relation <- lm(y � x1+x2, data = dataset)

print(relation)

Call:

lm(formula = y � x1+x2, data = dataset)

Coefficients:

(Intercept) x1 x2

-121.655 1.512 12.532

The multilinear regression solution is

ŷ � �121.655 � 1.512 x1 � 12.532 x2



Multiple Linear Regression
plot3d <- scatterplot3d(x1,x2,y,angle=55, scale.y=0.7,

+ pch=16, color ="red", main ="Regression Plane")

plot3d$plane3d(relation, lty.box = "solid")



Multiple Linear Regression

print(summary(relation))
Call:

lm(formula = y � x1 + x2, data = dataset)

Residuals:

1 2 3 4 5 6 7

1.0441 0.4642 -0.6935 -1.8264 0.1061 1.0252 -0.1197

Coefficients:

. Estimate Std. Error t value Pr(>|t|)

(Intercept) -121.65500 6.54035 -18.601 4.92e-05 ***

x1 1.51236 0.06077 24.886 1.55e-05 ***

x2 12.53168 1.93302 6.483 0.00292 **

Residual standard error: 1.245 on 4 degrees of freedom

Multiple R-squared: 0.9937, Adjusted R-squared: 0.9905

F-statistic: 313.2 on 2 and 4 DF, p-value: 4.027e-05



Multiple Linear Regression

Interpretation
The regression coefficients in the multilinear regression solution

ŷ � �121.655 � 1.512 x1 � 12.532 x2

tells us something about the relationship between the predictor
variable and the predicted outcome.
The temperature coefficient of 1.51 tells us that for every degree
increase in temperature, we predict there to be an increase of 1.512
ounces of water consumed, if we hold the practice time constant.
Similarly, for every one-hour increase in practice time, we predict
players will consume an additional 12.532 ounces of water, if we
hold the temperature constant.

Based on the value of 0.9937 for the Multiple R-squared, we can
conclude that approximately 99% of the variance in the outcome
variable Y can be explained by the variance in the combined
predictor variables.



Multiple Linear Regression

Also for multiple linear regression you can test the strength of the
linear relationship between Y and the independent variables.

To test the null hypothesis that βi � βi0, i � 1, . . . , k , we compute
the test statistic

t �
β̂i � βi0

sβ̂i

where the degrees of freedom is n � k � 1 and sβ̂i
is the standard

deviation of β̂i .

In the example above, we may want to test

H0 � β1 � 0 vs. H1 � β1 j 0

using significance level α � 0.05



Multiple Linear Regression

In the output table computed above using R, we have

t �
β̂1
sβ̂1

�
1.51236

0.06077
� 24.8866

Hence the p-value is
> 2*(1-pt(24.8866,df=4))= 1.547493e-05

showing that we can reject the null hypothesis.

A similar computation can be carried out to test the hypothesis

H0 � β2 � 0 vs. H1 � β2 j 0



Multiple Linear Regression

We can compute the confidence intervals of the parameters βi as
we did for the linear regression.

A 100�1 � α�% confidence intervals of βi is given by

β̂i � tα
2
,n�k�1 s�β̂i�

For instance, in the exmaple above, a 95% confidence intervals of
β1 is

β̂1 � t0.025,4 s�β̂1� � 1.512 � �2.776��0.061� � �1.343, 1.681�
Note t0.025,4 � qt�1 � 0.05©2, 4� � 2.776445



Non-Linear Regression

The linear regression model works under the assumption of a linear
relationship between the independent (X) and dependent (Y)
variables.
Below is a hypothetical, linear relationship between X and Y,
showing the regression line passing through the observations:



Non-Linear Regression

If we plot the residuals against X, we produce the residual plot:

The plot is what we expect to see, with points distributed along
the horizontal line Y � 0 and the distribution of the points around
the line remaining constant w.r. to X.



Non-Linear Regression

What if your residual plot looks like this?

The pattern of residuals seen above is the result of trying to fit a
straight line to a non-linear relationship.



Non-Linear Regression

The data corresponding to the residual plot are plotted below.
They show sunfish mass vs sunfish length.

It is visually clear that the regression line is not a good
approximation of the data.



Non-Linear Regression
Data transformations can applied to transform a non-linear
relationship Y vs X into a linear relationship.



Non-Linear Regression
Data transformations can applied to transform a non-linear
relationship Y vs X into a linear relationship.



Non-Linear Regression
Data transformations can applied to transform a non-linear
relationship Y vs X into a linear relationship.



Non-Linear Regression
Example. Suppose we have the following data:

X � �7, 14, 24, 30, 45, 57�
Y � �24, 34, 45, 50, 61, 69�

> x <-c(7, 14, 24, 30, 45, 57)

> y <-c(24, 34, 45, 50, 61, 69)

> plot(x, y, main="R-squared = 0.9784", xlab="x ", ylab="y

", pch=19); abline(lm(y � x), col = "blue")



Non-Linear Regression
We now apply the transformation

x (
Ó
x

> x <-c(7, 14, 24, 30, 45, 57)

> y <-c(24, 34, 45, 50, 61, 69)

> plot(sqrt(x), y, main="R-squared = 0.9999",

xlab="sqrt(x) ", ylab="y ", pch=19);abline(lm(y �

sqrt(x)), col = "blue")



Non-Linear Regression
Example. During a memory retention experiment, 13 subjects
were asked to memorize a list of disconnected items. The subjects
were then asked to recall the items at various times up to a week
later. The proportion of items y correctly recalled at various times
x (time in minutes) since the list was memorized were recorded.
x <- c( 1, 5, 15, 30, 60, 120, 240, 480, 720, 1440, 2880, 5760, 10080)

y <- c(0.84, 0.71, 0.61, 0.56, 0.54, 0.47, 0.45, 0.38, 0.36, 0.26, 0.20, 0.16, 0.08)

plot(x, y, main="Scatterplot", xlab=" time ", ylab=" proportion ", pch=19)



Non-Linear Regression
Clearly, a linear regression model is not a satisfactory fit to the data

> plot(x, y, main="Linear regression", xlab=" time ",

ylab=" proportion ", pch=19)

> abline(lm(y � x), col = "blue")

> print(summary(lm(y � x)))

...

Multiple R-squared: 0.5709, Adjusted R-squared: 0.5318



Non-Linear Regression

We now apply the transformation

x ( log x

> plot(log(x), y, main="Linear regression", xlab="

log(time) ", ylab=" proportion ", pch=19)



Non-Linear Regression
The analysis below shows that this transformation is very effective
> plot(log(x), y, main="Linear regression", xlab="

log(time) ", ylab=" proportion ", pch=19)

> abline(lm(y � log(x)), col = "blue")

> print(summary(lm(y � log(x))))

...

Multiple R-squared: 0.9899, Adjusted R-squared: 0.989



Non-Linear Regression

R includes an environment for general curve fitting using the least
squares method

nls {stats} R Documentation

Nonlinear Least Squares

Description

Determine the nonlinear (weighted) least-squares estimates

of the parameters of a nonlinear model.

Usage

nls(formula, data, start, control, algorithm, trace, subset,

weights, na.action, model,lower, upper, ...)



Non-Linear Regression

The Michaelis-Menten Kinetics model is a very popular kinetics
model, used for modeling enzyme kinetics in biochemistry. The
model describes the rate of enzymatic reactions by relating the
reaction rate to the concentration of a substrate:

V �
VMS

K � S

where

V is the rate of the enzymatic reaction

S is the concentration of the substrate

VM is the maximum rate achieved by the system

K is the Michaelis coefficient



Non-Linear Regression
Here is a set of data that we would like to fit to the Michaelis
Menten model:
> S <- c(3.6, 1.8, 0.9, 0.45, 0.225, 0.1125, 3.6, 1.8, 0.9, 0.45, 0.225, 0.1125, 3.6, 1.8, 0.9,

0.45, 0.225, 0.1125, 0)

> V <- c(0.004407692, 0.004192308, 0.003553846, 0.002576923, 0.001661538, 0.001064286,

0.004835714, 0.004671429, 0.0039, 0.002857143,0.00175, 0.001057143, 0.004907143,

0.004521429,0.00375, 0.002764286, 0.001857143, 0.001121429,0)

> plot(S, V, main="Scatterplot", xlab="S ", ylab="V ", pch=19)



Non-Linear Regression
Clearly, a linear regression model works poorly in this case

> summary(lm(y � x))

Call:

lm(formula = y � x)

.....

Multiple R-squared: 0.6799, Adjusted R-squared: 0.6611



Non-Linear Regression

> data = cbind.data.frame(S,V)

> mm.model.nls <- nls(V � Vm*S/(K+S), data=data, start =

list(K=max(data$V)/2, Vm=max(data$V)))

> summary(mm.model.nls)

Formula: V � Vm * S/(K + S)

Parameters:

. Estimate Std. Error t value Pr(>|t|)

K 0.4398016 0.0311612 14.11 8.1e-11 ***

Vm 0.0054252 0.0001193 45.47 < 2e-16 ***

Residual standard error: 0.0001727 on 17 degrees of

freedom

Number of iterations to convergence: 7

Achieved convergence tolerance: 4.666e-07



Non-Linear Regression

To calculating the R-squared value, we proceed as follows

> (RSS.p <- sum(residuals(m)
2
)) # Residual sum of squares

[1] 5.071155e-07

> (TSS <- sum((V - mean(V))
2
))

[1] 4.203714e-05

> 1 - (RSS.p/TSS)

[1] 0.9879365



Non-Linear Regression
> plot(S, V, main="Nonlin Regression", xlab="S ", ylab="V

", pch=19)

> s <- seq(from = 0, to = 3.6, length = 50)

> K =coef(mm.model.nls)[1];Vm =coef(mm.model.nls)[2]

> lines(s,Vm*s/(K+s),lty=4,col = "blue")



Non-Linear Regression
One can use the predict function to plot the fitting curve directly
from the model

> plot(S, V, main="Nonlin Regression", xlab="S ", ylab="V

", pch=19)

> s <- seq(from = 0, to = 3.6, length = 50)

> lines(s, predict(mm.model.nls, list(S = s)), col =

"green")



Qualitative independent variables in Regression Models
It is common to use dummy variables as explanatory variables in
regression models, if qualitative independent variables are likely to
influence the outcome variable.

For instance, consider the following dataset where we would like to
use age and marital status to predict income:



Dummy variables in Regression Models

To use marital status as a predictor variable in a regression model,
we must convert it into a dummy variable.

Since the marital status is a categorical variable that can take on
k � 3 different values (“Single”, “Married”, or “Divorced”), we
need to create k � 1 � 3 � 1 � 2 dummy variables. Hence we use
the model:

yi � β0 � β1x1i � β2x2i � β3x3i

where x1i is the non-categorical variable (Income) and

x2i � 1 if “Married”, x2i � 0 if not “Married”

x3i � 1 if “Divorced”, x13 � 0 if not “Divorced”

Note that:
the configuration x2i � 0, x3i � 0 corresponds to “Single”



Dummy variables in Regression Models

This is the transformation of the data table:



Dummy variables in Regression Models

Here is the analysis of the problem using R

> df <- data.frame(income=c(45000, 48000, 54000,

57000, 65000, 69000, 78000, 83000, 98000, 104000,

107000), age=c(23, 25, 24, 29, 38, 36, 40, 59, 56,

64, 53),status=c(’Single’, ’Single’, ’Single’,

’Single’,’Married’, ’Single’, ’Married’,

’Divorced’,’Divorced’, ’Married’, ’Married’))

Create dummy variables:

> married <- ifelse(df$status == ’Married’, 1, 0)

> divorced <- ifelse(df$status == ’Divorced’, 1, 0)

Create data frame to use for regression

> df reg <- data.frame(income = df$income, age =

df$age, married = married, divorced = divorced)



Dummy variables in Regression Models

> model <- lm(income � age + married + divorced, data

= df reg)

> summary(model)

Call:
lm(formula = income � age + married + divorced, data = df reg)

Coefficients:
Estimate Std .Error tvalue Pr�% ¶t¶��Intercept� 14276.1 10411.5 1.371 0.21266

age 1471.7 354.4 4.152 0.00428 ��

married 2479.7 9431.3 0.263 0.80018
divorced �8397.4 12771.4 �0.658 0.53187

The solution of the regression problem is:

income = 14276.1+1471.7*(age)+2479.7*(married)–8397.4*(divorced)



Dummy variables in Regression Models
> plot(age,income, main="Income vs age + marital status",

xlab="age", ylab="income", pch=19)

> abline(lm(income�age,data=df reg),col="blue")

> abline(lm(income+2479.7�age,data=df reg),col="red")

> abline(lm(income-8397.4�age,data=df reg),col="green")



Dummy variables in Regression Models

Interpretation:

Age: Each one year increase in age is associated with an
average increase of $1,471.70 in income. Since the p-value
(.004) is less than .05, age is a statistically significant
predictor of income.

Married: A married individual, on average, earns $2,479.70
more than a single individual. Since the p-value (0.800) is not
less than .05, this difference is not statistically significant.

Divorced: A divorced individual, on average, earns $8,397.40
less than a single individual. Since the p-value (0.532) is not
less than .05, this difference is not statistically significant.

Since both dummy variables were not statistically significant,
we could drop marital status as a predictor from the model.



Dummy variables in Regression Models

It is possible to include the effect of interaction of the categorical
variables with the non-categorical ones.

In this case, the regression model becomes

yi � β0 � β1x1i � β2x2i � β3x3i � β4x1ix2i � β5x1ix3i

Note that we do not include the cross term x2ix3i since this
product is always zero

Observe that the contribution due to the interaction will affect also
the slope, not only the intercept



Dummy variables in Regression Models

Here is the modified R script

> model <- lm(income � age + married + divorced +

age:married + age:divorced, data = df reg)

> summary(model)

Call:
lm(formula = income � age + married + divorced + age:married
+ age:divorced, data = df reg)

Coefficients:
Estimate Std .Error tvalue Pr�% ¶t¶��Intercept� 9143.1 20256.1 0.451 0.67066

age 1659.0 728.4 2.278 0.0717.
married 6741.1 27343.8 0.247 0.8151
divorced 368856.9 211102.8 1.747 0.1410
age � married �169.5 816.2 �0.208 0.8437
age � divorced �6659.0 3725.1 �1.788 0.1339



Logistic regression

Linear regression is not an appropriate model if the predictor
variable Y is a dichotomous variable.

The logistic regression is a method used for fitting a regression
curve

y � f �x�
when y is a categorical variable.

The typical use of this model is predicting y given a set of
predictors x .

The predictors can be continuous, categorical or a mix of both.



Logistic regression

Consider a predictor variable Y taking values in the set r0, 1x
If we let p � P�Y � 1� then

the quantity p
1�p

can take values on �0,��
the quantity ln p

1�p
can take values on ���,��

Thus we have the logistic regression model

ln � p

1 � p

 � β0 � β1x

which can be also written as

p �
exp�β0 � β1x�

1 � exp�β0 � β1x�
where the right hand side is a sigmoid function. The

transformation p � ln p
1�p

is called the logit transformation



Logistic regression

With a simple manipulation

P�Y � � p �
exp�β0 � β1x�

1 � exp�β0 � β1x� � 1

1 � exp��β0 � β1x�

To solve the logistic regression problem, we do not use least
squares minimization but maximum likelihood estimation with the

assumption that Yi � binom�1, p � exp��

1�exp��
�



Logistic regression

Let ln � p�x�

1�p�x�
	 � β0 � β1x

Hence ln � p�x�1�

1�p�x�1�
	 � β0 � β1�x � 1� and the log odds ratio is

β1 � ln � p�x � 1�
1 � p�x � 1�
 � ln � p�x�

1 � p�x�
 � ln
����

p�x�1�

1�p�x�1�

p�x�

1�p�x�

���
The odds ratio is

e
β1
�

p�x�1�

1�p�x�1�

p�x�

1�p�x�

Interpretation: for an increase of 1 of the explanatory variable x ,
the odds increases by a factor of e

β1



Logistic regression

Note about terminology.

In probability, given a probability p, we define

odds for success �
p

1 � p
�

probability of success

probability of failure

Given two probabilities p1 and p2 (not necessarily adding up to 1,
we use the following terminology

relative risk �
p1
p2

odds ratio �
p1

1�p1
p2

1�p2

� �p1
p2
	 1�p2

1�p1

Interpretation: the odds ratio measures how much greater or
smaller the odda are for a subject possessing a risk factor to
experience a particular outcome.

Note that relative risk and odds ratio are very close if p1 and p2
are both small (e.g., probability of diseases).



Logistic regression

Solution of logistic regression using R

Example. The in-built data set mtcars in R describes different
models of a car with their various engine specifications. In this
data set, the transmission mode (automatic or manual) is
described by the column am which is a binary value (0 or 1).
We can create a logistic regression model between the columns
”am” and the other columns ”hp”, ”wt”, ”cyl”, associated with
horse power, weight and cylinders, respectively.

> input <- mtcars[,c("am","cyl","hp","wt")]

> input

am cyl hp wt
MazdaRX4 1 6 110 2.620
MazdaRX4Wag 1 6 110 2.875
Datsun710 1 4 93 2.320
Hornet4Drive 0 6 110 3.215
. . . . . . . . . . . .



Logistic regression

We start by considering a simple logistic regression model where we
examine the effect of the weight wt on the transmission mode am.
We use the glm function to create the logistic regression model.

> am.data = glm(formula = am � wt, data = input, family =

binomial)

> print(summary(am.data))

Call:

glm(formula = am � wt, family = binomial, data = input)

Coefficients:
Estimate Std .Error zvalue Pr�% ¶z¶�

�Intercept� 12.040 4.510 2.670 0.00759 ��

wt �4.024 1.436 �2.801 0.00509 ��

Since the p-value in the last column for the variables ”wt” is less
than 0.05, the weight ”wt” has a significant impacts on the ”am”
value in this regression model.



Logistic regression

The logistic regression is

ln � p
1�p

	 � β0 � β1x � 12.040 � 4.024x

Hypothesis testing shows that we can reject the null hypothesis
that β1 � 0 since the p-value is less than 0.05.

We can also exponentiate the coefficients to compute the
odds-ratio

> exp(coef(am.data))

�Intercept� wt
1.694596e � 05 1.788183e � 02
Hence the odds ratio is

e
β1
� 1.788183e � 02



Logistic regression
To display the logistic regression, we proceed as follows
> wt <-input$wt

> am <-input$am

> plot(wt, am, pch = 16, xlab = "weight", ylab =

"transmission mode")

> xwt <- seq(1, 6, 0.1)

> yam <- predict(am.data, list(wt = xwt),type="response")

> lines(xwt, yam)



Logistic regression

We can compute the 95% confidence interval of β0 and β1 as
follows
> confint(am.data, level=0.95)

2.5% 97.5%�Intercept� 5.213795 23.628911
wt �7.698930 �1.833365

Similarly, we can compute the 95% confidence interval of e
β0 and

e
β1 as follows
> exp(confint(am.data, level=0.95))

2.5% 97.5%�Intercept� 1.837902e � 02 1.827703e � 10
wt 4.533119e � 04 1.598747e � 01



Logistic regression

We can run the anova function on the model to analyze the table
of deviance to assess the goodness of fit.

The difference between the null deviance and the residual deviance
shows how our model is doing against the null model (a model
with only the intercept). The wider this gap, the better.

> anova(am.data, test="Chisq")

Analysis of Deviance Table
Model: binomial, link: logit
Response: am
Terms added sequentially (first to last)

Df DevianceResid . Df Resid .Dev Pr�% Chi�
NULL 31 43.230
wt 1 24.054 30 19.176 9.369e � 07 � � �



Logistic regression

While there is no exact equivalent to the coefficient of
determination R2 of linear regression, there are some pseudo R
squared measures playing a similar role for the logistic regression.
> library(pscl)

> pR2(am.data)

fitting null model for pseudo-r2
llh llhNull G2 McFadden r2ML r2CU

�9.588042 �21.614866 24.053648 0.556414 0.528424 0.713123

llh: The log-likelihood from the fitted model

llhNull: The log-likelihood from the intercept-only restricted
model

G2: Minus two times the difference in the log-likelihoods

McFadden: McFadden’s pseudo r-squared

r2ML: Maximum likelihood pseudo r-squared

r2CU: Cragg and Uhler’s pseudo r-squared



Multiple Logistic regression

In the example above, we have considered a simple logistic
regression model where the weight wt is the only the effect on the
transmission mode am. We can modified the model to also
consider the effect of the variables cyl and hp.

The multiple logistic equation is the multivariate equation

ln � p
1�p

	 � β0 � β1x1 � . . . βkxk

where there are multiple predictor variables x1, . . . , xk
We have

p �
exp�β0 � β1x1 � . . . βkxk�

1 � exp�β0 � β1x1 � . . . βkxk� � 1

1 � exp��β0 � β1x1 � . . . βkxk�



Multiple Logistic regression

The solution of the multiple logistic regression In R requires a
relatively simple modification in the use of the command glm

Let us re-examine the example where are trying to predict the
transmission mode am of a car.
We now modify the regression model to consider not only the effect
of the weight wt but also the effect of the variables cyl and hp.



Multiple Logistic regression

We use the glm function to create the multiple logistic regression
model.

> am.data = glm(formula = am � cyl + hp + wt, data =

input, family = binomial)

> print(summary(am.data))

Call:
glm(formula = am � cyl + hp + wt, family = binomial, data = input)

Coefficients:
Estimate Std .Error zvalue Pr�% ¶z¶�

�Intercept� 19.70288 8.11637 2.428 0.0152 �

cyl 0.48760 1.07162 0.455 0.6491
hp 0.03259 0.01886 1.728 0.0840 .
wt �9.14947 4.15332 �2.203 0.0276 �

Again, the first column reports the values of the logistic regression
coefficients; the other columns contain information about the
goodness of the fit



Logistic regression

The logistic regression is

ln � p
1�p

	 � 19.703 � 0.488 cyl � 0.033 hp � 9.149 wt

From the table, the solution of the hypothesis testing problem
H0 � βi � 0 vs H0 � βi j 0 shows that we can reject H0 for β3 since
the corresponding p-value is less than 0.05 but not for β1 and β2.

We can exponentiate the coefficients to compute the odds-ratios

> exp(coef(am.data))

�Intercept� cyl hp wt
3.604568e � 08 1.628400e � 00 1.033129e � 00 1.062760e � 04
Hence the odds ratios are

e
β1
� 1.628400e � 00, e

β2
� 1.033129e � 00, e

β3
� 1.062760e � 04



Logistic regression

We can compute the 95% confidence interval of β0, β1, β2, and β3
as follows

> confint(am.data, level=0.95)

2.5% 97.5%�Intercept� 8.555361001 44.25163736
cyl �1.532997981 3.12047408
hp 0.003320913 0.08838958
wt �21.363156479 �3.48150672
We can also compute the pseudo R2 > pR2(am.data)

fitting null model for pseudo-r2
llh llhNull G2 McFadden r2ML r2CU

�4.9207458 �21.6148666 33.3882416 0.7723444 0.6477389 0.8741409



Multiple Logistic regression

Example. A researcher is interested in how GRE (Graduate Record
Exam scores), GPA (grade point average) and prestige of the
undergraduate institution, affect admission into graduate school.
The response variable, admit/don’t admit, is a binary variable.

> mydata <-

read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

## view the first 6 rows of the data

> head(mydata)

admit gre gpa rank
1 0 380 3.61 3
2 1 660 3.67 3
3 1 800 4.00 1
4 1 640 3.19 4
5 0 520 2.93 4
6 1 760 3.00 2



Multiple Logistic regression

This dataset has a binary response (outcome, dependent) variable
called admit taking values in r0, 1x.
There are three predictor variables: gre, gpa and rank.

We will treat the variables gre and gpa as continuous.

The variable rank is a categorical variable which takes on the
values 1 through 4. Institutions with a rank of 1 have the highest
prestige, while those with a rank of 4 have the lowest.



Multiple Logistic regression
> str(mydata)

’data.frame’: 400 obs. of 4 variables:

$ admit: int 0 1 1 1 0 1 1 0 1 0 ...

$ gre : int 380 660 800 640 520 760 560 400 540 700 ...

$ gpa : num 3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 ...

$ rank : int 3 3 1 4 4 2 1 2 3 2 ...

First, we convert rank to a factor to indicate that rank should be
treated as a categorical variable.

> mydata$rank <- factor(mydata$rank)

> str(mydata)

’data.frame’: 400 obs. of 4 variables:

$ admit: int 0 1 1 1 0 1 1 0 1 0 ...

$ gre : int 380 660 800 640 520 760 560 400 540 700 ...

$ gpa : num 3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 ...

$ rank : Factor w/ 4 levels "1","2","3","4": 3 3 1 4 4 2

1 2 3 2 ...



Multiple Logistic regression

> mylogit <- glm(admit � gre + gpa + rank, data = mydata,

family = "binomial")

> summary(mylogit)

Call:

glm(formula = admit � gre + gpa + rank, family =

"binomial", data = mydata)

Coefficients:
Estimate Std .Error zvalue Pr�% ¶z¶��Intercept� �3.989979 1.139951 �3.500 0.000465 � � �

gre 0.002264 0.001094 2.070 0.038465 �

gpa 0.804038 0.331819 2.423 0.015388 �

rank2 �0.675443 0.316490 �2.134 0.032829 �

rank3 �1.340204 0.345306 �3.881 0.000104 � � �

rank4 �1.551464 0.417832 �3.713 0.000205 � � �



Multiple Logistic regression

Interpretation:

According to the table, both gre and gpa are statistically
significant, as are the three terms for rank.
The logistic regression coefficients give the change in the log odds
of the outcome for a one unit increase in the predictor variable.

For every one unit change in gre, the log odds of admission
(versus non-admission) increases by 0.002.

For a one unit increase in gpa, the log odds of being admitted
to graduate school increases by 0.804.

The indicator variables for rank have a different
interpretation. For example, having attended an
undergraduate institution with rank of 2, versus an institution
with a rank of 1, changes the log odds of admission by -0.675.



Multiple Logistic regression

You can also exponentiate the coefficients and interpret them as
odds-ratios.

> exp(coef(mylogit))

�Intercept� gre gpa rank2 rank3 rank4
0.0185001 1.0022670 2.2345448 0.5089310 0.2617923 0.2119375

Now we can say that for a one unit increase in gre, the odds of
being admitted to graduate school (versus not being admitted)
increase by a factor of 1.00; that for a one unit increase in gpa, the
odds of being admitted to graduate school (versus not being
admitted) increase by a factor of 2.23.



Poisson regression

Poisson regression is used to model count variables.

As for the logistic model, we develop a model for count data using
a link function.

A Poisson regression model is given by the function

y � exp�β0 � β1x � � � � � � βkxk�
Equivalently

ln y � β0 � β1x � � � � � � βkxk



Poisson regression

Example. We want to predict the number of awards earned by
students at one high school using as predictors the type of program
in which the student was enrolled (e.g., vocational, general or
academic) and the score on their final exam in math.

In this example, num awards is the outcome variable and indicates
the number of awards earned by students at a high school in a
year, math is a continuous predictor variable and represents
students’ scores on their math final exam, and prog is a
categorical predictor variable with three levels indicating the type
of program in which the students were enrolled. It is coded as 1 =
“General”, 2 = “Academic” and 3 = “Vocational”.



Poisson regression

> mydata <-

read.csv("https://stats.idre.ucla.edu/stat/data/poisson sim.csv")

> head(mydata)

id num awards prog math
1 45 0 3 41
2 108 0 1 41
3 15 0 3 44
4 67 0 3 42
5 153 0 3 40
6 51 0 1 42



Poisson regression
> str(mydata)

’data.frame’: 200 obs. of 4 variables:

$ id : int 45 108 15 67 153 51 164 133 2 53 ...

$ num awards: int 0 0 0 0 0 0 0 0 0 0 ...

$ prog : int 3 1 3 3 3 1 3 3 3 3 ...

$ math : int 41 41 44 42 40 42 46 40 33 46 ...

> mydata$prog =

factor(mydata$prog,levels=unique(mydata$prog),

labels=c("gen","acad","voc"))

> str(mydata)

’data.frame’: 200 obs. of 4 variables:

$ id : int 45 108 15 67 153 51 164 133 2 53 ...

$ num awards: int 0 0 0 0 0 0 0 0 0 0 ...

$ prog : Factor w/ 3 levels "gen","acad","voc": 1 2 1 1

1 2 1 1 1 1 ...

$ math : int 41 41 44 42 40 42 46 40 33 46 ...



Poisson regression

> require(ggplot2)

> ggplot(mydata, aes(num awards, fill = prog)) +

+ geom histogram(binwidth=.5, position="dodge")



Poisson regression

We can now perform the Poisson model analysis using the glm
function.

> p.model <- glm(num awards � prog + math,

family="poisson", data=mydata)

> summary(p.model)

Call:

glm(formula = num awards � prog + math, family = ”poisson”, data =

mydata)

Coefficients:
Estimate Std .Error zvalue Pr�% ¶z¶��Intercept� �4.87732 0.62818 �7.764 8.21e � 15 � � �

progacad �0.36981 0.44107 �0.838 0.4018
progvoc 0.71405 0.32001 2.231 0.0257 �

math 0.07015 0.01060 6.619 3.63e � 11 � � �



Poisson regression
The table shows that math has a statistically significant impact on
num awards.

The coefficient for math is .07. This means that the expected log
count for a one-unit increase in math is .07.

The indicator variable progacad compares prog = “Academic” and
prog = “General”, the expected log count for prog = “Academic”
decreases by about 0.37. The indicator variable progvoc is the
expected difference in log count (approx .71) between prog =
“Vocational” and the reference group prog = “General”.

The information on deviance is also provided. We can use the
residual deviance to perform a goodness of fit test for the overall
model. The residual deviance is the difference between the
deviance of the current model and the maximum deviance of the
ideal model where the predicted values are identical to the
observed. Therefore, if the residual difference is small enough, the
goodness of fit test will not be significant, indicating that the
model fits the data.



Goodness-of-Fit Tests

Goodness-of-fit tests are used to compare proportions of levels of a
nominal variable to theoretical proportions. Common
goodness-of-fit tests are chi-square, G-test (also called likelihood
ratio tests), and binomial or multinomial exact tests.

In general, there are no assumptions about the distribution of data
for these tests. However, the results of chi-square tests and G-tests
can be inaccurate if statistically expected cell counts are low. A
rule of thumb is that all statistically expected cell counts should be
5 or greater for chi-square- and G-tests.



Chi-square Test

Assumptions:

A nominal variable with two or more levels

Theoretical, typical, or neutral values for the proportions for
this variable are needed for comparison

chi-square and G-test may not be appropriate if there are cells
with low expected counts

Hypotheses

1 Null hypothesis: The proportions for the levels for the nominal
variable are not different from the theoretical proportions.

2 Alternative hypothesis (two-sided): The proportions for the
levels for the nominal variable are different from the
theoretical proportions.



Chi-square Test

Example.
A shop owner claims that an equal number of customers come into
his shop each weekday. To test this hypothesis, a researcher
records the number of customers that come into the shop in a
given week and finds the following:

Monday: 50 customers

Tuesday: 60 customers

Wednesday: 40 customers

Thursday: 47 customers

Friday: 53 customers

Hence our observations are
O1 � 50,O2 � 60,O3 � 40,O4 � 47,O5 � 53

Note: total number of customers = 250



Chi-square Test
We test the hypothesis

1 H0: the number of customers is the same every day.

2 H1: the number of customers is not the same every day.

If the number of customers is the same every day, then the
expected observations would be E1 � � � � � E5 � 50

To test the hypothesis, we compute the test statistics

X
2

� =
i�15

�Oi�Ei �
2

Ei

�
�50�50�

2

50
�

�60�50�
2

50
�

�40�50�
2

50
�

�47�50�
2

50
�

�53�50�
2

50
� 4.36

To test the hypothesis at significance level α � 0.05, we compute
χ0.05,4 � qchisq(0.95,4) = 9.487729.

Since X
2
is not larger than 9.487729, we cannot reject the null

hypothesis. That is, we accept that the number of customers is the
same every day.



Chi-square Test

To carry out a Chi-Square Goodness of Fit Test in R we use the
function

chisq.test(x, p)

where:

x: A numerical vector of observed frequencies.

p: A numerical vector of expected proportions.

The elements in x are numbers
The expected proportions must add up to 1



Chi-square Test

Solution of the example using R.

observed <- c(50, 60, 40, 47, 53)

expected <- c(.2, .2, .2, .2, .2)

Note: the expected vector is a set of probabilities adding up to 1

> chisq.test(x=observed, p=expected)

Chi-squared test for given probabilities

data: observed

X-squared = 4.36, df = 4, p-value = 0.3595

Conclusion: Since p-value = 0.3595, we do not reject the nulll
hypothesis at significance level 0.05



Chi-square Test

Note about R: The total number of observations is 250
Hence, if observations were uniform, there would be 50
observations for each bin.

One can run the Chi-square test in R alternatively as follows

> observed <- c(50, 60, 40, 47, 53)

> expected <- c(50, 50, 50, 50, 50)

> chisq.test(x=observed, p=expected,rescale.p = TRUE)

Chi-squared test for given probabilities

data: observed

X-squared = 4.36, df = 4, p-value = 0.3595



Chi-square Test

Example. Here is the distribution of the number of girls per family
in a sample of 100 families of 5 children

index girls frequency
1 0 5
2 1 12
3 2 28
4 3 33
5 4 17
6 5 5

Do the observed frequencies satisfy a binomial distribution?



Chi-square Test

We test the hypothesis

1 H0: the number of girls follows a binomial distribution.

2 H1: the number of girls does not follow a binomial
distribution.

The expected frequencies, assuming a probability of 0.5 of having a
girl for each of the 5 children, are given by the probabilities

p�k� � �5i ��0.5�k�0.5�5�k � dbinom�k, size � 5, prob � 0.5�,
for k � 0, . . . 5



Chi-square Test

Solution in R

We build a vector with the expected relative frequencies according
to the binomial pmf

> x <- 0:5

> expected = dbinom(x, size = 5, prob = 0.5)

> expected

[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

Note > sum(expected)

[1] 1



Chi-square Test

> observed <-c(5,12,28,33,17,5)

> chisq.test(x=observed, p=expected)

Chi-squared test for given probabilities

data: observed
X-squared = 3.648, df = 5, p-value = 0.6011

Conclusion: Since p-value = 0.6011, we do not reject the nulll
hypothesis at significance level 0.05



Chi-square Test

Example. As part of a demographic survey of students in his
environmental issues webinar series, Alucard recorded the race and
ethnicity of his students. He wants to compare the data for his
class to the demographic data of the County.

Race Alucard’s class County proportion
White 20 0.775
Black 9 0.132
American Indian 9 0.012
Asian 1 0.054
Pacific Islander 1 0.002
Two or more races 1 0.025
Total 41 1.000

Ethnicity Alucard’s class County proportion
Hispanic 7 0.174
Not Hispanic 34 0.826
Total 41 1.000



Chi-square Test

To facilitate race data visualization, the vector of counts is
converted to proportions, and the theoretical and observed
proportions are combined into a table.

> observed = c(20, 9, 9, 1, 1, 1)

> theoretical = c(0.775, 0.132, 0.012, 0.054, 0.002,

0.025)

> Observed.prop = observed / sum(observed)

> Theoretical.prop = theoretical

> Observed.prop = round(Observed.prop, 3)

> Theoretical.prop = round(Theoretical.prop, 3)

> XT = rbind(Theoretical.prop, Observed.prop)

> colnames(XT) = c("White", "Black", "AI", "Asian","PI",

"Two+")

> XT
White Black AI Asian PI Two+

Theoretical.prop 0.775 0.132 0.012 0.054 0.002 0.025
Observed.prop 0.488 0.220 0.220 0.024 0.024 0.024



Chi-square Test
> barplot(XT,beside = T,xlab = "Race",col =

c("cornflowerblue","blue"),legend = rownames(XT))



Chi-square Test

For the ethnicity data visualization, we proceed exactly the same
way.

> observed = c(7, 34)

> theoretical = c(0.174, 0.826)

> Observed.prop = observed / sum(observed)

> Theoretical.prop = theoretical

> Observed.prop = round(Observed.prop, 3)

> Theoretical.prop = round(Theoretical.prop, 3)

> XT = rbind(Theoretical.prop, Observed.prop)

> colnames(XT) = c("Hispanic", "Not Hispanic")

> XT
Hispanic Not Hispanic

Theoretical.prop 0.174 0.826
Observed.prop 0.171 0.829



Chi-square Test
> barplot(XT,beside = T,xlab = "Ethnicity",col =

c("firebrick1","firebrick"),legend = rownames(XT),ylim =

c(0, 1.2))



Chi-square Test

Analysis of the race data.

> observed = c(20, 9, 9, 1, 1, 1)

> theoretical = c(0.775, 0.132, 0.012, 0.054, 0.002,

0.025)

> chisq.test(x = observed,p = theoretical)

Chi-squared test for given probabilities

data: observed
X-squared = 164.81, df = 5, p-value $ 2.2e � 16

Test indicates that observed data do not fit theoretical data.



Chi-square Test

We check expected counts to assess if the test is appropriate.

> Test = chisq.test(x = observed, p = theoretical)

> Test$expected

[1] 31.775 5.412 0.492 2.214 0.082 1.025

The low expected counts: 0.492, 0.082, and 1.025, suggests that
the test may not be valid.

A way to address this problem would be to aggregate some races
into the same bin



Chi-square Test

Analysis of the ethnicity data.

> observed = c(7, 34)

> theoretical = c(0.174, 0.826)

> chisq.test(x = observed,p = theoretical)

Chi-squared test for given probabilities

data: observed
X-squared = 0.0030472, df = 1, p-value = 0.956

Test indicates that observed data fit theoretical data.



Chi-square Test

We check expected counts to assess if the test is appropriate.

> Test = chisq.test(x = observed, p = theoretical)

> Test$expected

[1] 7.134 33.866

There are no low expected counts, so there are no concerns about
the validity of the test.



Chi-square Test

Post-hoc analysis. If the goodness of fit test is significant, a
post-hoc analysis can be conducted to determine which counts
differ from their theoretical proportions.

One approach is to look at the standardized residuals from the
chi-square analysis. Cells with a standardized residual whose
absolute value is greater than 1.96 indicate a cell differing from
theoretical proportions. (The 1.96 cutoff is analogous to alpha =
0.05 for a hypothesis test, or 2.58 for alpha = 0.01.)



Chi-square Test

Post-hoc analysis of race data

> observed = c(20, 9, 9, 1, 1, 1)

> theoretical = c(0.775, 0.132, 0.012, 0.054, 0.002,

0.025)

> chisq.test(x = observed, p = theoretical)$stdres

[1] -4.403792 1.655440 12.202995 -0.838850 3.209005 -0.0250078

Cells with standardized residuals whose absolute value is greater
than 1.96 are White, American Indian, and Pacific Islander; hence
counts in these cells differ from theoretical proportions.



Chi-square Test

Post-hoc analysis of ethnicity data

> observed = c(7, 34)

> theoretical = c(0.174, 0.826)

> chisq.test(x = observed, p = theoretical)$stdres

[1] [1] -0.05520116 0.05520116

In this case, the goodness of fit test is not significant. Post-hoc
analysis shows that no cells have standardized residuals with
absolute value is greater than 1.96.



Chi-square Test of Independence

Recall that two random events A and B are called independent if
P�A = B� � P�A�P�B�
Suppose that Oi ,j is the observed frequency count of events
belonging to both i-th category of A and j-th category of B.

Also suppose that Ei ,j is the corresponding expected count if A
and B are independent.

The null hypothesis of the independence assumption is to be
rejected if the p-value of the following Chi-squared test statistics

X
2
�=

i ,j

�Oi ,j � Ei ,j�2
Ei ,j

is less than a given significance level α.



Chi-square Test of Independence

Example. The following example examines the students smoking
habit against their exercise level.

In the contingency table below the column records the students
smoking habit (”Heavy”, ”Never”, ”Occas”, ”Regul”) while the
column records their exercise level (”Freq”, ”None”, ”Some”).

> library(MASS)

> tbl = table(survey$Smoke, survey$Exer)

> tbl
Freq None Some

Heavy 7 1 3
Never 87 18 84
Occas 12 3 4
Regul 9 1 7



Chi-square Test of Independence

Problem: Test the hypothesis whether the students smoking habit
is independent of their exercise level at .05 significance level.

We apply the chisq.test function to the contingency table tbl

> chisq.test(tbl)

Pearson’s Chi-squared test
data: tbl
X-squared = 5.4885, df = 6, p-value = 0.4828

Conclusion: Since p-value = 0.482, we do not reject the null
hypothesis and we accept the hypothesis that the smoking habit is
independent of the exercise level of the students.



Chi-square Test of Independence

The R solution from the example above contains a warning
message:
In chisq.test(table(surveySmoke, surveyExer)):
Chi-squared approximation may be incorrect

The warning message is due to the small cell values in the
contingency table.
To avoid such warning, we combine the second and third columns
of tbl, and save it in a new table named ctbl.
> ctbl = cbind(tbl[,"Freq"], tbl[,"None"] +

tbl[,"Some"])

> ctbl �, 1� �, 2�
Heavy 7 4
Never 87 102
Occas 12 7
Regul 9 8



Chi-square Test of Independence

We can now compute our revised solution by applying the
chisq.test function against ctbl.

> chisq.test(ctbl)

Pearson’s Chi-squared test
data: ctbl
X-squared = 3.2328, df = 3, p-value = 0.3571

Conclusion: Since p-value = 0.3571, we do not reject the null
hypothesis. Also in this case we accept the hypothesis that the
smoking habit is independent of the exercise level of the students.



Chi-square Test of Independence
Example. On April 14th 1912 the ship the Titanic sank. Only 705
passengers and crew out of the total 2228 population on board
survived. Information on 1309 of those on board will be used to
demonstrate summarizing categorical variables.
> Tdata <-

data.frame(read.csv(’C:/Users/dlabate/Desktop/Teaching/ma4310/titanic.csv’,header=T,sep=’,’)) >

str(Tdata)

’data.frame’: 1310 obs. of 14 variables:

$ pclass : int 1 1 1 1 1 1 1 1 1 1 ...

$ survived : int 1 1 0 0 0 1 1 0 1 0 ...

$ name : chr "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss.

Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...

$ sex : chr "female" "male" "female" "male" ...

$ age : num 29 0.917 2 30 25 ...

$ sibsp : int 0 1 1 1 1 0 1 0 2 0 ...

$ parch : int 0 2 2 2 2 0 0 0 0 0 ...

$ ticket : chr "24160" "113781" "113781" "113781" ...

$ fare : num 211 152 152 152 152 ...

$ cabin : chr "B5" "C22 C26" "C22 C26" "C22 C26" ...

$ embarked : chr "S" "S" "S" "S" ...

$ boat : chr "2" "11" "" "" ...

$ body : int NA NA NA 135 NA NA NA NA NA 22 ...

$ home.dest: chr "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville,

ON" "Montreal, PQ / Chesterville, ON" ...



Chi-square Test of Independence

We want to test the following hypotheses:

H0: Port of Embarkation (C = Cherbourg; Q = Queenstown;
S = Southampton) is not associated with survival.

H1: Port of Embarkation is associated with survival

We first convert the relevant variables into factors

> Tdata$survived=factor(Tdata$survived,

levels=unique(Tdata$survived),

labels=c("survived","died"))

> Tdata$embarked=factor(Tdata$embarked,

levels=unique(Tdata$embarked))



Chi-square Test of Independence

Here is the table of the data

> tbl = table(Tdata$survived, Tdata$embarked)

> tbl
S C Q

survived 304 150 46
died 610 120 79

We next run the chi-square test of independence

> chisq.test(tbl)

Pearson’s Chi-squared test

data: tbl

X-squared = 44.002, df = 2, p-value = 2.787e-10

Conclusion: Since p-value is less than 0.05, we reject the null
hypothesis that survival is not associated with port of embarkation.



Chi-square Test of Independence

We now want to test the following hypotheses:

H0: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) is not
associated with survival.

H1: Passenger Class is associated with survival

We first convert the relevant variable into a factor
> Tdata$pclass=factor(Tdata$pclass,

levels=unique(Tdata$pclass), labels=c("1","2","3"))

> tbl = table(Tdata$survived, Tdata$pclass)

> tbl
1 2 3

survived 200 119 181
died 123 158 528



Chi-square Test of Independence

We next run the chi-square test of independence

> chisq.test(tbl)

Pearson’s Chi-squared test

data: tbl

X-squared = 127.86, df = 2, p-value < 2.2e-16

Conclusion: Since p-value is less than 0.05, we reject the null
hypothesis that survival is not associated with passenger class.



Chi-square Test of Independence

We can carry out a post-hoc analysis by inspecting the values of
the standardized residuals.

Recall that absolute values above 1.96 indicate that the difference
from the theoretical value (of independence) is significant with
significance level at least 0.05.

> chisq.test(tbl)$stdres

1 2 3
survived 10.110480 1.837589 �10.254442
died �10.110480 �1.837589 10.254442



Chi-square Test of Independence

Comment: A positive result from a chi-squared test, like what we
found concerning survival and point of embark, indicates that there
is some kind of relationship between two variables but we do not
know what sort of relationship it is. Further analysis is needed.

The following table shows port of embarkation vs passenger class.

> tbl2 = table(Tdata$pclass, Tdata$embarked)

> tbl2

S C Q
1 177 141 5
2 242 28 7
3 495 101 113

The distribution of passengers among the three passenger classes is
very different depending on the port of embarkation: 52% of
passengers embarked at C are in class 1 as compared with 19%
and 4% of those embarked at S and Q, respectively.



2 � 2 Contingency Table

Sometimes each of two criteria of classification can be broken
down into two categories.
In this case, the result is a 2 � 2 Contingency Table

1 2
1 a b
2 c d

and the test statistic has a closed formula

X
2
�

n �ad � cb�2�a � c��b � d��a � b��c � d�
where n � a � b � c � d



2 � 2 Contingency Table

Example. Some males and females are randomly surveyed whether
they like sushi or not.
> counts <- c(19, 24, 18, 21)

> gender <- gl(n = 2, k = 1, length = 4, labels =

c("Male", "Female"))

> interest <- gl(n = 2, k = 2, length = 4, labels =

c("Yes", "No"))

> survey data <- data.frame(counts, gender, interest)

> survey data

counts gender interest
1 19 Male Yes
2 24 Female Yes
3 18 Male No
4 21 Female No



2 � 2 Contingency Table

We display the data using a Contingency Tables (2 by 2 Case)

> cont table <- xtabs(counts � gender + interest)

> cont table

interest
gender Yes No
Male 19 18
Female 24 21

We want test the hypothesis

1 H0: the interest into sushi is independent of gender

2 H1: the interest into sushi is dependent of gender



2 � 2 Contingency Table

We apply the Chi square test

> chisq.test(cont table)

Pearson’s Chi-squared test with Yates’ continuity correction

data: cont table
X-squared = 0, df = 1, p-value = 1

Conclusion: We accept the hypothesis that the interest into sushi
is independent of gender

Note that R applied the Yates’ continuity correction, due to the
numbers in the table being small.



2 � 2 Contingency Table

The Fisher’s Exact Test for Count Data offers an alternative
approach to analyze contingency tables with small samples.

> fisher.test(cont table)

Fisher’s Exact Test for Count Data

data: cont table
p-value = 1
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3537211 2.4128090
sample estimates:
odds ratio
0.9245076



6 Non-parametric Statistics



Non-parametric Methods

A statistical method is called non-parametric (or
distribution-free) if it makes no assumption on the population
distribution or sample size.

This is in contrast with parametric methods in elementary
statistics that assume that the data is quantitative and the
population follows a probability distribution, e.g., the normal
distribution, or that the sample size is sufficiently large so that we
can apply the Centrl Limit Theorem.

Non-parametric methods make fewer assumptions, are more
flexible, more robust, and applicable to non-quantitative data. The
cost to pay for the fewer assumptions is that, in general,
conclusions drawn from non-parametric methods are not as
powerful as the parametric ones.



Non-parametric Methods

Nonparametric methods are useful for data that do not meet the
assumptions of parametric analyses.

For instance, there are some situations when it is clear that data
does not follow a normal distribution:

data is an ordinal variable or a rank,

data is definite outliers or

data has clear limits of detection.

Additional situations where to use nonparametric methods include
data that are skewed, non-normal, contain outliers, or, possibly, are
censored, where censored data is data where there is an upper or
lower limit to values. For example, if ages under 5 are reported as
“under 5”.



Non-parametric Methods
A large class of nonparametric tests are rank-based tests.
Instead of using the numeric values of the dependent variable, the
dependent variable is converted into relative ranks.

Example. Suppose we have the heights of eight students in
centimeters.

> Height = c(110, 132, 137, 139, 140, 142, 142, 145)

> names(Height) = letters[1:8]

Height
a b c d e f g h
110 132 137 139 140 142 142 145

> rank(Height)

a b c d e f g h
1.0 2.0 3.0 4.0 5.0 6.5 6.5 8.0

a has the smallest height and so is ranked 1. b has the next
smallest height and so is ranked 2. And so on. Note that f and g
are tied for spots 6 and 7, and so share a rank of 6.5.



Non-parametric Methods

Note that information about the absolute height values is lost, and
only the relative ranking is retained in the ranks.

In fact, the value of a is quite a bit smaller than the others, but its
rank is simply 1. That is, if the value of a were changed to 100 or
5 or –10, its rank would remain 1 in this data set.

The advantage of using these rank-based tests is that they don’t
make many assumptions about the distribution of the data.
Instead, their conclusions are based on the relative ranks of values
in the groups being tested.



One-sample Wilcoxon Signed-rank Test

The one-sample Wilcoxon test is a rank-based test to compare a
set of values to a given default value.

It is useful to test a null hypothesis about a population mean when
the z- or t-test are not applicable, e.g., when the sample size is
small and the population is grossly non-normally distributed

The Wilcoxon Signed-rank Test assumes that

The sample is random

The variable is continuous

The population is symmetrically distributed about its mean

The measurement scale is at least interval

For purely ordinal data, the one-sample sign test (to be discussed
next) could be used instead.



One-sample Wilcoxon Signed-rank Test

Hypotheses

1 Null hypothesis: The population mean is equal (larger, less)
than the default value.

2 Alternative hypothesis: The population man is different (less,
larger) than the default value.



One-sample Wilcoxon Signed-rank Test

Let x1, . . . xN be a random sample that we want to test about
some unknown population mean µ0

The Wilcoxon Signed-rank Test is performed as follows

1 Calculates the difference between each observation and the
hypothesized mean µ0:

di � xi � µ0

2 Rank the values di from the smallest to the largest in absolute
value. If two or more of the ¶di ¶ are equal, assign each tied
valu the mean of the rank positions they occupy. For instance,
if the three smallest ¶di ¶ are equal, place them in rank
position 1,2,3 bu assign each a rank �1 � 2 � 3�©3 � 2

3 Assign each rank the sign of the corresponding di
4 Compute T�, the sum of ranks with positive signs, and T�,

the sum of ranks with negative signs.



One-sample Wilcoxon Signed-rank Test

The test statistics of the Wilcoxon Signed-rank Test is

1 T� if we are testing H0 � µ ' µ0 against H1 � µ $ µ0

2 T� if we are testing H0 � µ & µ0 against H1 � µ % µ0

3 T � minrT�,T�x if we are testing H0 � µ � µ0 against H1 �

µ j µ0

Critical values of the Wilcoxon Signed-rank Test are tabulated.

In R, for a two-sided test, they are found using
qsignrank(.025,n) -1

where n is the sample size and α � 0.05.

For instance, for n � 15, qsignrank(.025,15) -1=25



One-sample Wilcoxon Signed-rank Test

Example. Here are the values of the cardiac output (l/min)
measured by thermodilution in a random sample of n � 15 patients

4.91, 4.10, 6.74, 7.27, 7.42, 7.50, 6.65, 4.64, 5.98, 3.14, 3.23, 5.80, 6.17, 5.39, 5.77

We want to test if the population mean is different from 5.05 at
significance level α � 0.05

1 H0 � µ � 5.05

2 H1 � µ j 5.05



One-sample Wilcoxon Signed-rank Test

We compute the signed ranks of the ¶di ¶
> x <-c(4.91, 4.10, 6.74, 7.27, 7.42, 7.50, 6.65, 4.64,

5.98, 3.14, 3.23, 5.80, 6.17, 5.39, 5.77)

> x-5.05

[1] -0.14 -0.95 1.69 2.22 2.37 2.45 1.60 -0.41 0.93 -1.91

-1.82 0.75 1.12 0.34 0.72

> rank(abs(x-5.05))

[1] 1 7 10 13 14 15 9 3 6 12 11 5 8 2 4

> y=rank(abs(x-5.05))*sign(x-5.05)

> y

[1] -1 -7 10 13 14 15 9 -3 6 -12 -11 5 8 2 4



One-sample Wilcoxon Signed-rank Test

We now compute T� and T�

> Tplus=sum(y*(y>0))

> Tminus=-sum(y*(y<0))

> Tminus

[1] 34

> Tplus

[1] 86

The test statistic is T � minrT�,T�x � 34
and the rejection region is T $ Tcrtitical .

Since T % qsignrank�.025, 15� � 1 � 25, we accept H0.



One-sample Wilcoxon Signed-rank Test

Here is the solution in R using the built-in command wilcox.test

> x <-c(4.91, 4.10, 6.74, 7.27, 7.42, 7.50, 6.65, 4.64,

5.98, 3.14, 3.23, 5.80, 6.17, 5.39, 5.77)

> wilcox.test(x,mu=5.05)

Wilcoxon signed rank exact test

data: x
V = 86, p-value = 0.1514
alternative hypothesis: true location is not equal to 5.05



One-sample Wilcoxon Signed-rank Test

Example. An instructor (Maggie Simpson) is being anonymously
rated by the students in the course with scores (the likert score)
ranging from 1 (”Strongly agree”) to 5 (”Strongly disagree”). We
want to answers the question, “Are the instructor’s scores
significantly different from a ‘neutral’ score of 3?”

Hence, we want test the hypothesis:

H0 � The likert score of Maggie Simpson is 3

H1 � The likert score of Maggie Simpson is different from 3



One-sample Wilcoxon Signed-rank Test

Data = read.table(header=TRUE, stringsAsFactors=TRUE,

text="
Instructor Rater Likert
¬
MaggieSimpson

¬
1 3

¬
MaggieSimpson

¬
2 4

¬
MaggieSimpson

¬
3 5

¬
MaggieSimpson

¬
4 4

¬
MaggieSimpson

¬
5 4

¬
MaggieSimpson

¬
6 4

¬
MaggieSimpson

¬
7 4

¬
MaggieSimpson

¬
8 3

¬
MaggieSimpson

¬
9 2

¬
MaggieSimpson

¬
10 5

”)



One-sample Wilcoxon Signed-rank Test

We convert the Likert variable into a factor
> Data$Likert.f = factor(Data$Likert,ordered = TRUE)

We diplay the data table
> xtabs( � Instructor + Likert.f,data = Data)

Likert.f
Instructor 2 3 4 5
Maggie Simpson 1 2 5 2



One-sample Wilcoxon Signed-rank Test
Here is the bar plot of the data

> XT = xtabs(� Likert.f,data=Data)

> barplot(XT,col="dark gray",xlab="Maggie’s

Likert",ylab="Frequency")



One-sample Wilcoxon Signed-rank Test
To run the one-sample Wilcoxon signed-rank test in R, we call the
wilcox.test function

In the wilcox.test function, the mu option indicates the value of
the default value to compare to.

> wilcox.test(Data$Likert,mu=3,conf.int=TRUE,

conf.level=0.95)

Wilcoxon signed rank test with continuity correction

data: Data$Likert

V = 32.5, p-value = 0.04007

alternative hypothesis: true location is not equal to 3

95 percent confidence interval:

3.000044 4.500083

sample estimates:

(pseudo)median

4.000032



One-sample Wilcoxon Signed-rank Test

Conclusion:
Since the p-value = 0.04007, we reject H0 (the likert score of
Maggie Simpson is 3) and accept H1 (the likert score of Maggie
Simpson is different from 3) at significance leve;l α � 0.05.

From the output of the one-sample Wilcoxon Signed-rank Test we
also have that:

the 95 percent confidence interval of the likert score is
[3.000044 4.500083]

the pseudo-median likert score is 4.000032



Sign Test for One-sample Data

The one-sample sign test compares the number of observations
greater than or less than the default value without accounting for
the magnitude of the difference between each observation and the
default value.

The test is similar in purpose to the one-sample Wilcoxon
signed-rank test, but looks specifically at the median value, and is
not affected by the distribution of the data.

Hypotheses

1 Null hypothesis: The median of the population from which
the sample was drawn is equal to the default value.

2 Alternative hypothesis (two-sided): The median of the
population from which the sample was drawn is not equal to
the default value.



Sign Test for One-sample Data
Example. An instructor (Maggie Simpson) is being rated by the
students in the course with scores (the likert score) ranging from
1 (”Strongly agree”) to 5 (”Strongly disagree”). Are the
instructor’s scores significantly different from a ‘neutral’ score of 3?

> library(nonpar)

> signtest(Data$Likert, m=3, conf.level=0.95, exact=FALSE)

Exact Sign Test
H0: The population median is = 3
HA: The population median is not equal to 3
B = 7

Significance Level = 0.05
The p-value is 0.07032
There is not enough evidence to conclude that the population
median is different than 3 at a significance level of 0.05

The 95 % confidence interval is [2 , 4].



Sign Test for One-sample Data

Alternatively, we can call the SIGN.test command from the
BSDA library.

> if(!require(BSDA))install.packages("BSDA")

> library(BSDA)

> SIGN.test(Data$Likert, md = 3)

One-sample Sign-Test

data: Data$Likert
s = 7, p-value = 0.07031
alternative hypothesis: true median is not equal to 3
95 percent confidence interval:
3.000000 4.675556
sample estimates:
median of x
4



Two-sample Mann–Whitney U Test

The two-sample Mann–Whitney U test is a rank-based test
that compares values for two groups. It is equivalent to a
two-sample Wilcoxon rank-sum test.

The test assumes that the observations are independent. Hence, it
is not appropriate for paired observations or repeated measures
data.

Without assumptions about the distribution of the data, this test
does not address hypotheses about the medians of the groups.
Instead, the test addresses if it is likely that an observation in one
group is greater than an observation in the other. This is
sometimes stated as testing if one sample has stochastic
dominance compared with the other.



Two-sample Mann–Whitney U Test

Assumptions:

Two-sample data. That is, one-way data with two groups only

Dependent variable is ordinal, interval, or ratio

Independent variable is a factor with two levels. That is, two
groups

Observations between groups are independent. That is, not
paired or repeated measures data.

In order to be a test of medians, the distributions of values for
each group need to be of similar shape and spread. Otherwise,
the test is typically a test of stochastic equality

Hypotheses

1 Null hypothesis: The two groups are sampled from
populations with identical distributions.

2 Alternative hypothesis (two-sided): The two groups are
sampled from populations with different distributions.



Two-sample Mann–Whitney U Test
Example. We want to compare the ratings scores of two
instructors, Pooh and Piglet, who have been rated independently.

Data = read.table(header=TRUE,stringsAsFactors=TRUE,text="

Instructor Likert Instructor Likert
Pooh 3 Piglet 1
Pooh 5 Piglet 2
Pooh 4 Piglet 3
Pooh 4 Piglet 2
Pooh 4 Piglet 2
Pooh 4 Piglet 3
Pooh 4
Pooh 4
Pooh 5
Pooh 5
Piglet 2
Piglet 4
Piglet 2
Piglet 2

”)



Two-sample Mann–Whitney U Test

We convert the Likert variable into a factor

Data$Likert.f = factor(Data$Likert, ordered = TRUE)

We diplay the data as a table

> xtabs( � Instructor + Likert.f,data = Data)
Likert.f

Instructor 1 2 3 4 5
Piglet 1 6 2 1 0
Pooh 0 0 1 6 3



Two-sample Mann–Whitney U Test

Here are the histograms of the Likert scores for the two instructors
>histogram(� Likert.f | Speaker,

data=Data,layout=c(1,2))



Two-sample Mann–Whitney U Test

To run the Two-sample Mann–Whitney U Test we apply the
wilcox.test command as follows.

> wilcox.test(Likert � Instructor,data=Data)

Wilcoxon rank sum test with continuity correction

data: Likert by Instructor
W = 5, p-value = 0.0004713
alternative hypothesis: true location shift is not equal to 0

Conclusion: since p-value = 0.0004713, there is a statistically
significant difference between the scores of the two instructors



Two-sample Mann–Whitney U Test

R note

The command wilcox.test performs one- and two-sample
Wilcoxon tests on vectors of data; the latter is also known as
‘Mann-Whitney’ test.

Usage
wilcox.test(x, ...)

method for default
wilcox.test(x, y = NULL, alternative = c(”two.sided”, ”less”,
”greater”), mu = 0, paired = FALSE, exact = NULL, correct
= TRUE, conf.int = FALSE, conf.level = 0.95)

method for formula
wilcox.test(formula, data, subset, na.action)



Two-sample Mann–Whitney U Test

Example[Hollander & Wolfe (1973)]
We compare the permeability constants of the human
chorioamnion (a placental membrane) at term (x) and between 12
to 26 weeks gestational age (y). The alternative of interest is
greater permeability of the human chorioamnion for the term
pregnancy.

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91,

1.64, 0.73, 1.46)

y <- c(1.15, 0.88, 0.90, 0.74, 1.21)

wilcox.test(x, y, alternative = "greater")

Alternatively
wilcox.test(permeability � group, alternative =

"greater", data=Data)



Mood’s Median Test for Two-sample Data

The Mood’s median test compares the medians of two or more
groups.

Assumptions:

One-way data with two or more groups

Dependent variable is ordinal, interval, or ratio

Independent variable is a factor with levels indicating groups

Observations between groups are independent. That is, not
paired or repeated measures data.

Hypotheses

1 Null hypothesis: The medians of the populations from which
the groups were sampled are equal.

2 Alternative hypothesis (two-sided): The medians of the
populations from which the groups were sampled are not
equal.



Mood’s Median Test for Two-sample Data
Example. We want to compare the ratings scores of two
instructors, Pooh and Piglet, who have been rated independently.
We want to answer the question, “Are Pooh’s scores significantly
different from those of Piglet?” Same data as above.

> X = Data$Likert[Data$Instructor=="Pooh"]

> Y = Data$Likert[Data$Instructor=="Piglet"]

> library(nonpar)

> mediantest(x = X, y = Y, exact=TRUE)

Exact Median Test
H0: The 2 population medians are equal.
HA: The 2 population medians are not equal.

Significance Level = 0.05
The p-value is 0.0010825088224469
There is enough evidence to conclude that the population medians
are different at a significance level of 0.05.



Two-sample Paired Signed-rank Test

The two-sample paired signed-rank test (also called Wilcoxon
paired signed-rank test) is used to compare values for two
groups where each observation in one group is paired with one
observation in the other group.

The test is useful, for instance, to compare scores on a pre-test vs.
scores on a post-test, or scores or ratings from two speakers, two
different presentations, or two groups of audiences when there is a
reason to pair observations, such as being done by the same rater.

Because the first step in the calculations is the subtraction of the
paired values, one from the other, the data must be at least ordinal
in nature.

The test is equivalent to using a one-sample signed-rank test on
the difference of the paired values.



Two-sample Paired Signed-rank Test

Assumptions:

Two-sample paired data. That is, one-way data with two
groups only, where the observations are paired between
groups.

Dependent variable is interval or ratio.

Independent variable is a factor with two levels; that is, two
groups.

For the test to be a test of the median of the differences, the
distribution of differences in paired samples needs to be
symmetric.

Hypotheses

1 Null hypothesis: The population of the differences of paired
values is symmetric around zero.

2 Alternative hypothesis (two-sided): The population of the
differences of paired values is not symmetric around zero.



Two-sample Paired Signed-rank Test

Example. We want to compare Likert scores for Pooh between
Time 1 and Time 2.
Data = read.table(header=TRUE,stringsAsFactors=TRUE,text="
Instructor Time Student Likert
Pooh 1 a 1
Pooh 1 b 4
Pooh 1 c 3
Pooh 1 d 3
Pooh 1 e 3
Pooh 1 f 3
Pooh 1 g 4
Pooh 1 h 3
Pooh 1 i 3
Pooh 1 j 3
Pooh 2 a 4
Pooh 2 b 5
Pooh 2 c 4
Pooh 2 d 5
Pooh 2 e 4
Pooh 2 f 5
Pooh 2 g 3
Pooh 2 h 4
Pooh 2 i 3
Pooh 2 j 4

”)



Two-sample Paired Signed-rank Test
In the data table, we recorded the identity of the student raters,
and Pooh’s score for each rater.

Summary table of the data shows that each student has paired
observations.

> xtabs( � Student + Time,data = Data)
Time

Student 1 2
a 1 1
b 1 1
c 1 1
d 1 1
e 1 1
f 1 1
g 1 1
h 1 1
i 1 1
j 1 1



Two-sample Paired Signed-rank Test
Data is arranged in long form. To apply the statistical test, data
must be ordered so that observations are paired.
> Time.1 = Data$Likert[Data$Time==1]

> Time.2 = Data$Likert[Data$Time==2]

> Difference = Time.2 - Time.1

> barplot(Difference,col="dark gray",

xlab="Observation",ylab="Difference (Time 2 - Time 1)")



Two-sample Paired Signed-rank Test

To run the two-sample paired signed-rank test, we call the
command wilcox.test with the parameter paired = TRUE.

> wilcox.test(Likert � Time,data = Data,paired =

TRUE,conf.int = TRUE,conf.level = 0.95)

Wilcoxon signed rank test with continuity correction

data: Likert by Time
V = 3.5, p-value = 0.02355
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.000051e+00 -1.458002e-05
sample estimates:
(pseudo)median
-1.000083



Two-sample Paired Signed-rank Test

Equivalently, one can run the Two-sample Paired Signed-rank Test
with the command wilcox.test and the parameter paired =

TRUE as follows.

> wilcox.test(Time.1,Time.2,paired = TRUE,conf.int =

TRUE,conf.level = 0.95)

Wilcoxon signed rank test with continuity correction

data: Likert by Time
V = 3.5, p-value = 0.02355
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.000051e+00 -1.458002e-05
sample estimates:
(pseudo)median
-1.000083



Two-sample Paired Signed-rank Test

Example. In the built-in data set named immer, the barley yield in
years 1931 and 1932 of the same field are recorded. Without
assuming the data to have normal distribution, we want to test at
.05 significance level if the barley yields of 1931 and 1932 in data
set immer have identical data distributions.

> library(MASS)

> head(immer)
Loc Var Y 1 Y 2

1 UF M 81.0 80.7
2 UF S 105.4 82.3
3 UF V 119.7 80.4
4 UF T 109.7 87.2
5 UF P 98.3 84.2
6 W M 146.6 100.4



Two-sample Paired Signed-rank Test
> Year1 = immer$Y1

> Year2 = immer$Y2

> wilcox.test(Year1,Year2,paired = TRUE,conf.int =

TRUE,conf.level = 0.95)

Wilcoxon signed rank test with continuity correction

data: Year1 and Year2
V = 368.5, p-value = 0.005318
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
5.900029 27.499955
sample estimates:
(pseudo)median
18.89997

We conclude that, at .05 significance level, the barley yields of
1931 and 1932 from the data set immer are nonidentical
populations.



Two-sample Paired Signed-rank Test
NOTE: Under the assumption that data are normally distributed,
we could run a paired sample t-test on the same data.

> t.test(Year1,Year2,paired = TRUE,conf.int =

TRUE,conf.level = 0.95)

Paired t-test

data: Year1 and Year2
t = 3.324, df = 29, p-value = 0.002413
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
6.121954 25.704713
sample estimates:
mean difference
15.91333

Also in this case we can reject the null hypothesis. The p-value
obtained from the paired sample t-test is smaller than the paired
signed-rank Test.



Kruskal–Wallis Test

The Kruskal–Wallis test is a rank-based test that is similar to the
Mann–Whitney U test, but can be applied to one-way data with
more than two groups.

Without any assumptions about the distribution of the data, the
Kruskal–Wallis test does not address hypotheses about the
medians of the groups. Instead, the test addresses if it is likely that
an observation in one group is greater than an observation in the
other. This is sometimes stated as testing if one sample has
stochastic dominance compared with the other.

NOTE: the test assumes that the observations are independent.
Hence it is not appropriate for paired observations or repeated
measures data.



Kruskal–Wallis Test
Assumptions:

One-way data with two or more groups

Dependent variable is ordinal, interval, or ratio

Independent variable is a factor with two or more levels.

Observations between groups are independent. That is, not
paired or repeated measures data

In order to be a test of medians, the distributions of values for
each group need to be of similar shape and spread. Otherwise,
the test is typically a test of stochastic equality.

Hypotheses

1 Null hypothesis: The groups are sampled from populations
with identical distributions. Typically, that the sampled
populations exhibit stochastic equality.

2 Alternative hypothesis (two-sided): The groups are sampled
from populations with different distributions. Typically, that
one sampled population exhibits stochastic dominance.



Kruskal–Wallis Test
Interpretation of the Kruskal–Wallis Test.

Significant results indicate that: There was a significant difference
in values among groups.
Post-hoc analysis is needed to be able to conclude if there was a
significant difference in values between groups A and B, and so on.

Remark. The Mood’s median test is also compares multiple
populations, specifically itcompare the medians of groups.

There is conflicting information in the literature about the
Mann–Whitney and Kruskal–Wallis tests. Some authors state that
they test medians, usually adding an assumption that the
distributions of the groups need to be of the same shape and
spread. If this assumption holds, then, yes, these tests can be
thought of as tests of location such as the median.
Without this assumption, these tests compare the stochastic
dominance of the groups. Once a rank transformation is applied,
stochastic dominance is exhibited simply by the groups with higher
values.



Kruskal–Wallis Test
Example. We want to compare the following likert scores.
Data = read.table(header=TRUE,stringsAsFactors=TRUE,text="

Speaker Likert
Pooh 3
Pooh 5
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 5
Pooh 5
Piglet 2
Piglet 4
Piglet 2
Piglet 2
Piglet 1
Piglet 2
Piglet 3
Piglet 2
Piglet 2
Piglet 3
Tigger 4
Tigger 4
Tigger 4
Tigger 4
Tigger 5
Tigger 3
Tigger 5
Tigger 4
Tigger 4
Tigger 3

”)



Kruskal–Wallis Test

We order levels of the factor, otherwise R will alphabetize them

> Data$Speaker = factor(Data$Speaker,

levels=unique(Data$Speaker))

We create a new variable which is the likert scores as an ordered
factor

Data$Likert.f = factor(Data$Likert, ordered = TRUE)

Here is the table orf the data

> xtabs( � Speaker + Likert.f,data = Data)

Likert.f
Speaker 1 2 3 4 5
Pooh 0 0 1 6 3
Piglet 1 6 2 1 0
Tigger 0 0 2 6 2



Kruskal–Wallis Test
Here we show bar plots of data by group

> library(lattice)

> histogram(� Likert.f | Speaker,data=Data,layout=c(1,3))



Kruskal–Wallis Test

We now run the Kruskal–Wallis Test in R

> kruskal.test(Likert � Speaker,data = Data)

Kruskal-Wallis rank sum test

data: Likert by Speaker
Kruskal-Wallis chi-squared = 16.842, df = 2, p-value = 0.0002202

Since the p-value is less that 0.05, we conclude that we reject the
null hypothesis at significance level 0.05.

There is a significant difference between the scores of the 3
speakers.



Kruskal–Wallis Test

If the Kruskal–Wallis test is significant, a post-hoc analysis can
be performed to determine which groups differ from each other
group. The most popular post-hoc test is the Dunn test.
Because the post-hoc test produces multiple p-values, adjustments
to the p-values is made.

> library(FSA)

> dunnTest(Likert � Speaker,data=Data,method="bh")

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted
with the Benjamini-Hochberg method.

Comparison Z P.unadj P.adj
1 Piglet � Pooh �3.7702412 0.0001630898 0.0004892695
2 Piglet � Tigger �3.2889338 0.0010056766 0.0015085149
3 Pooh � Tigger 0.4813074 0.6302980448 0.6302980448

Conclusion: Piglet vs Pooh and Piglet vs Tigger are statistically different.



Mood’s Median Test

Mood’s median test compares the medians of two or more groups.
The test can be conducted with the median test function in the
coin package.

Post-hoc tests: The outcome of Mood’s median test tells you if
there are differences among the groups, but doesn’t tell you which
groups are different from other groups. In order to determine
which groups are different from others, post-hoc testing can be
conducted. The function pairwiseMedianTest in the R companion
package can perform the post-hoc tests. It simply passes data for
pairs of groups to coin::median test and produces a table of output.



Mood’s Median Test
Example. We want to compare the following likert scores.
Data = read.table(header=TRUE,stringsAsFactors=TRUE,text="

Speaker Likert
Pooh 3
Pooh 5
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 4
Pooh 5
Pooh 5
Piglet 2
Piglet 4
Piglet 2
Piglet 2
Piglet 1
Piglet 2
Piglet 3
Piglet 2
Piglet 2
Piglet 3
Tigger 4
Tigger 4
Tigger 4
Tigger 4
Tigger 5
Tigger 3
Tigger 5
Tigger 4
Tigger 4
Tigger 3

”)



Mood’s Median Test

To apply the test, we need to load the coin library

> library(coin)

> media test(Likert � Speaker,data = Data)

Asymptotic K-Sample Brown-Mood Median Test

data: Likert by Speaker (Pooh, Piglet, Tigger)
chi-squared = 3.248, df = 2, p-value = 0.1971

Note: An interesting thing happened with the result here. The test
counts how many observations in each group are greater than the
global median for all groups together, in this case 4. It then tests if
there is a significant difference in this proportion among
groups. For this data set, however, both Pooh and Tigger have a
majority of observations equal to the global median. Because they
are equal to the global median, they are not greater than the
global median, and so aren’t much different than Piglet’s scores on
this count. The result in this case is a non-significant p-value.



Mood’s Median Test

The test would come out differently if we were counting
observation less than the global median, because Pooh and Tigger
have few of these, and Piglet has relatively many.

To achieve that, we will invert the scale we are using. This is really
an arbitrary change, but for this test, it can make a difference.
Imagine if our original scale interpreted 5 to be the best, and 1 to
be the worst. When we designed the survey tool, we could just as
easily have made 1 the best and 5 the worst. And then instead of
ranking “good” with a 4, the respondents would have marked it 2,
and so on. By the way the calculations are done, this arbitrary
change in scale will change the results of Mood’s median test.

For a 5-point scale, we do this inversion by simply by making a
new variable equal to 6 minus the original score.



Mood’s Median Test

Data$Likert.inv = 6 - Data$Likert

> head(Data)

Speaker Likert Likert.f Likert.inv
1 Pooh 3 3 3
2 Pooh 5 5 1
3 Pooh 4 4 2
4 Pooh 4 4 2
5 Pooh 4 4 2
6 Pooh 4 4 2

Note:

> median(Data$Likert)

[1] 4

> median(Data$Likert.inv)

[1] 2



Mood’s Median Test

In the prior application of the test, using Data$Likert, we tested
if any population has median above the global median of 4.

Using Data$Likert.inv, we now test if any population is above
the global median of 2 which is equivalent to test if any population
has Data$Likert with median below the global median of 4.

> median test(Likert.inv � Speaker,data = Data)

Asymptotic K-Sample Brown-Mood Median Test

data: Likert.inv by Speaker (Pooh, Piglet, Tigger)
chi-squared = 15.306, df = 2, p-value = 0.0004747

Now we obtain a significant result, consistent with the observation
that ”Piglet” has a median below the global median of 4, as shown
in the bar plots.



Mood’s Median Test

If Mood’s median test is significant, a post-hoc analysis can be
performed to determine which groups differ from each other group.

For this we use the pairwiseMedianTest function in the
rcompanion package, which conducts Mood’s median test on all
pairs of groups from one-way data. Because the post-hoc test will
produce multiple p-values, adjustments to the p-values are made.

> Data$Speaker =

factor(Data$Speaker,levels=c("Pooh","Tigger","Piglet"))

> library(rcompanion)

> pairwiseMedianTest(Likert.inv �

Speaker,data=Data,exact=NULL,method="fdr")

Comparison p.value p.adjust
1 Pooh � Tigger � 0 0.5416 0.541600
2 Pooh � Piglet � 0 0.0004883 0.001465
3 Tigger � Piglet � 0 0.001381 0.002072



Nonparametric tests - Summary
Hypothesis testing for the mean - one sample.
Method: One-sample Wilcoxon Signed-rank Test.
R-implementation: wilcox.test
(Corresp. parametric test: t-test, R implementation t.test)

Hypothesis testing for the mean - two samples, independent.
Method: Two-sample Mann–Whitney U test.
R-implementation: wilcox.test
(Corresp. parametric test: t-test, R implementation t.test)

Hypothesis testing for the mean - two samples, paired.
Method: Two-sample Paired Signed-rank test.
R-implementation: wilcox.test
(Corresp. parametric test: Paired t-test, R implementation
t.test)

Hypothesis testing for the mean - three or more samples.
Method: Kruskal-Wallis test.
R-implementation: kruskal.test
(Corresp. parametric test: ANOVA, R implementation aov)



Nonparametric regression

There are different techniques that are considered to be forms of
nonparametric, semi-parametric, or robust regression:

Kendall–Theil regression fits a linear model between one x
variable and one y variable using a completely nonparametric
approach.

Rank-based estimation regression is another robust approach.

Quantile regression is a very flexible approach that can find a
linear relationship between a dependent variable and one or
more independent variables.

Local regression fits a smooth curve to the dependent variable
and can accommodate multiple independent variables.

Generalized additive models are a powerful and flexible
approach.



Kendall–Theil regression

Kendall–Theil regression (sometimes called Theil–Sen regression)
is a completely nonparametric approach to linear regression where
there is one independent and one dependent variable. A modified,
and preferred, method is named after Siegel.

It is robust to outliers in the dependent variable.

It simply computes all the lines between each pair of points, and
uses the median of the slopes of these lines.

The method yields a slope and intercept for the fit line, and a
p-value for the slope can be determined as well.

Typically, no measure analogous to r-squared is reported.



Kendall–Theil regression

Example. The following survey reports several measurements
collected by 5 instructors for students in their classes related to
their nutrition education program. We want to explore the
relationship between Sodium and Calories.

Data <- read.csv("C:/Users/student survey.csv")

> head(Data)

Instructor Grade Weight Calories Sodium Score
1 BrendonSmall 6 43 2069 1287 77
2 BrendonSmall 6 41 1990 1164 76
3 BrendonSmall 6 40 1975 1177 76
4 BrendonSmall 6 44 2116 1262 84
5 BrendonSmall 6 45 2161 1271 86
6 BrendonSmall 6 44 2091 1222 87



Kendall–Theil regression
The inspection of the data shows that the relationship between
Calories (y) and Sodium (x) variables is not particularly linear.

> plot(Calories � Sodium,data=Data,pch=16,ylab =

"Calories", xlab = "Sodium")



Kendall–Theil regression

We can try to fit the data using a standard linear regression

> model = lm(Calories � Sodium, data = Data)

> summary(model)

Call:
lm(formula = Calories � Sodium, data = Data)

Min 1Q Median 3Q Max
�149.678 �60.777 �7.621 46.122 277.188

Coefficients:
Estimate Std .Error tvalue Pr�% ¶t¶��Intercept� �398.1311 256.9580 �1.549 0.129

Sodium 2.0071 0.1905 10.534 1.74e � 13 � � �

Residual standard error: 91.94 on 43 degrees of freedom
Multiple R-squared: 0.7207, Adjusted R-squared: 0.7142
F-statistic: 111 on 1 and 43 DF, p-value: 1.737e-13



Kendall–Theil regression
The plot below shows that the linear regression line is not a good
fit.

> plot(Calories � Sodium,data=Data,pch=16,ylab =

"Calories", xlab = "Sodium")

> abline(model,col = "blue",lwd = 2)



Kendall–Theil regression
There is a clear nonlinearity in the data which is apparent in the
plot of residuals vs. fitted values.

> plot(fitted(model),residuals(model))



Kendall–Theil regression

We next compute the Kendall–Theil regression.
For that, we apply the mblm function in the mblm package.

> library(mblm)

> model.k = mblm(Calories � Sodium, data=Data)

> summary(model.k)

Call:
mblm(formula = Calories � Sodium, dataframe = Data)

Residuals:
Min 1Q Median 3Q Max
�130.18 �41.27 0.00 48.85 299.56

Coefficients:
Estimate MAD V value Pr�% ¶V ¶��Intercept� �208.5875 608.4540 230 0.000861 � � �

Sodium 1.8562 0.4381 1035 5.68e � 14 � � �

Residual standard error: 93.64 on 43 degrees of freedom.



Kendall–Theil regression
Here is the plot of the Kendall–Theil regression line.

> plot(Calories � Sodium,data=Data,pch=16,ylab =

"Calories", xlab = "Sodium")

> abline(model.k,col = "blue",lwd = 2)



Kendall–Theil regression
Here we compare the regression lines.
> plot(Calories � Sodium,data=Data,pch=16,ylab = "Calories", xlab = "Sodium")

> abline(model.k,col = "blue",lwd = 2)

> abline(model,col = "red",lty = "dashed",lwd = 2)

> legend(1180, 2700, legend=c("Kendall-Theil regression", "Linear

regression"),col=c("blue","red"), lty=1:2, cex=1)



Kendall–Theil regression

Summary result:

The Kendall–Theil regression line is

y � �208.5875 � 1.8562 x

as compared with the standard regression line

y � �398.1311 � 2.0071 x

The lower value of the slope in the Kendall–Theil regression line is
explained with the reduce sensitivity of this method to the larger
data variability observed for larger values of the Sodium.



Rank-based regression

Rank-based estimation regression uses estimators and inference
that are robust to outliers.

It is implemented using the rfit command from the Rfit package.

> library(Rfit)

> model.r = rfit(Calories � Sodium, data = Data)

> summary(model.r)

Call:
rfit.default(formula = Calories � Sodium, data = Data)

Coefficients:
Estimate Std .Error tvalue p.value�Intercept� �213.08411 248.42488 �0.8577 0.3958

Sodium 1.85981 0.18407 10.1036 6.307e � 13 � � �

Multiple R-squared (Robust): 0.6637139
Reduction in Dispersion Test: 84.86733 p-value: 0



Rank-based regression
Here we compare the regression lines.
> plot(Calories � Sodium,data=Data,pch=16,ylab = "Calories", xlab = "Sodium")

> abline(model.r,col = "blue",lwd = 2)

> abline(model,col = "red",lty = "dashed",lwd = 2)

> legend(1180, 2700, legend=c("Rank-based regression", "Linear regression"),col=c("blue","red"),

lty=1:2, cex=1)



Rank-based regression

Summary result:

The Kendall–Theil regression line is

y � �213.0841 � 1.8598 x

as compared with the standard regression line

y � �398.1311 � 2.0071 x

The lower value of the slope in the rank-based regression line is
explained with the reduce sensitivity of this method to the larger
data variability observed for larger values of the Sodium.



Quantile regression

While traditional linear regression models the conditional mean of
the dependent variable, quantile regression models the conditional
median or other quantile. Medians are most common, but for
example, if the factors predicting the highest values of the
dependent variable are to be investigated, a 95th percentile could
be used. Likewise, models for several quantiles, e.g., 25th , 50th,
75th percentiles, could be investigated simultaneously.

In the example reported below, we choose to model the median of
dependent variable, which is indicated with the tau = 0.5 option.

Quantile regression makes no assumptions about the distribution of
the underlying data, and is robust to outliers in the dependent
variable.

It does assume the dependent variable is continuous. However,
there are functions for other types of dependent variables.



Quantile regression

Quantile regression is implemented using the rq command from
the quantreg package.

> library(quantreg)

> model.q = rq(Calories � Sodium, data = Data, tau =

0.5)

> summary(model.q)

Call: rq(formula = Calories � Sodium, tau = 0.5, data = Data)

tau: [1] 0.5

Coefficients:
coefficients lowerbd upperbd�Intercept� �84.12409 �226.58102 134.91738

Sodium 1.76642 1.59035 1.89615



Rank-based regression
Here we compare the regression lines.
> plot(Calories � Sodium,data=Data,pch=16,ylab = "Calories", xlab = "Sodium")

> abline(model.q,col = "blue",lwd = 2)

> abline(model,col = "red",lty = "dashed",lwd = 2)

> legend(1180, 2700, legend=c("Quantile regression", "Linear regression"),col=c("blue","red"),

lty=1:2, cex=1)



Local regression

The basic idea of local regression is to fit a curve to data by
averaging, or otherwise summarizing, data points that are next to
one another.

Local regression is useful for investigating the behavior of the
response variable in more detail than would be possible with a
simple linear model.

Local polynomial regression is computed using the function
loess in the native stats package. It can be used for one
continuous dependent variable and up to four independent
variables.

The process is essentially nonparametric, and is robust to outliers
in the dependent variable.



Local regression

The loess function includes several optional parameters

loess(formula, data, weights, subset, na.action,

model = FALSE, span = 0.75, enp.target, degree = 2,

parametric = FALSE, drop.square = FALSE, normalize =

TRUE, family = c("gaussian", "symmetric"),method =

c("loess", "model.frame"),control = loess.control()))

subset: an optional specification of a subset of the data to be
used.

span: it controls the degree of smoothing.

degree: the degree of the polynomials to be used, normally 1
or 2.

family: if ”gaussian”, fitting is done by least-squares; if
”symmetric”, a re-descending M estimator is used with
Tukey’s biweight function.



Local regression

Here we choose a local polynomial regression of order 2, using
least squares to fit the data.

> model.l = loess(Calories � Sodium,data = Data,span

= 0.75,degree=2,family="gaussian")

> summary(model.l)

Call: loess(formula = Calories � Sodium, data = Data, span =
0.75, degree = 2, family = ”gaussian”)

Number of Observations: 45
Equivalent Number of Parameters: 4.19
Residual Standard Error: 91.97
Trace of smoother matrix: 4.57 (exact)



Local regression
To plot the local regression curve, we use the plotPredy
command from the rcompanion library.

> library(rcompanion)

> plotPredy(data = Data, x = Sodium, y = Calories,

model = model.l, xlab = "Sodium", ylab = "Calories")



Generalized additive models (GAMs)

This is a flexible and smooth technique to capture nonlinearities in
the data.

GAMs are a generalized version of classical Linear Models in which
the Predictors Xi depend linearly or nonlinearly on some smooth
nonlinear functions like polynomials, splines or step functions.

Given a set of predictors Xi , this method looks for a regression
equation of the form

f �x� � yi � α � f1�xi1� � f2�xi2� � � � � � fp�xip� � ϵi

where the function f1, . . . , fp are different nonlinear functions on
variables Xp.



Generalized additive models (GAMs)
The gam function in the mgcv package uses smooth functions plus
a conventional parametric component.

> library(mgcv)

> model.g = gam(Calories � s(Sodium),data = Data,

family=gaussian())

> summary(model.g)

Formula:
Calories � Sodium

Parametric coefficients:
Estimate Std .Error tvalue Pr�% ¶t¶��Intercept� 2304.87 13.62 169.2 $ 2e � 16 � � �

Approximate significance of smooth terms:
edf Ref .df F p � value

s�Sodium� 1.347 1.613 66.65 $ 2e � 16 � � �

R-sq.(adj) = 0.718 Deviance explained = 72.6%
GCV = 8811.5 Scale est. = 8352 n = 45



Generalized additive models (GAMs)
We use plotPredy to plot the result.
> library(rcompanion)

> plotPredy(data = Data, x = Sodium, y = Calories, model =

model.g, xlab = "Sodium", ylab = "Calories")

> abline(model,col = "red",lty = "dashed",lwd = 2)

> legend(1180, 2700, legend=c("GAM regression", "Linear

regression"),col=c("blue","red"), lty=1:2, cex=1)



Generalized additive models (GAMs)

WARNING: The command gam without the function s() in front
of the explanatory variable will simply yield the linear regression
(provided the gaussian family is selected)!

> library(mgcv)

> model.g = gam(Calories � Sodium,data = Data,

family=gaussian())

> summary(model.g)

Formula:
Calories � Sodium

Parametric coefficients:
Estimate Std .Error tvalue Pr�% ¶t¶��Intercept� �398.1311 256.9580 �1.549 0.129

Sodium 2.0071 0.1905 10.534 1.74e � 13 � � �

R-sq.(adj) = 0.718 Deviance explained = 72.6%
GCV = 8811.5 Scale est. = 8352 n = 45



Non-parametric correlation
As we observed above, the inspection of the data shows that the
relationship between Calories (y) and Sodium (x) variables is not
particularly linear.

> plot(Calories � Sodium,data=Data,pch=16,ylab =

"Calories", xlab = "Sodium")



Non-parametric correlation

We can analyze the correlation

> cor.test(Data$Sodium,Data$Calories, method =

"pearson")

Pearson’s product-moment correlation

data: Data$Sodium and Data$Calories

t = 10.534, df = 43, p-value = 1.737e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7397691 0.9145785

sample estimates:

cor

0.8489548



Non-parametric correlation

Are the data from each of the 2 variables �x , y� following a normal
distribution?

> shapiro.test(Data$Calories)

Shapiro-Wilk normality test

data: Data$Calories
W = 0.98697, p-value = 0.8873

> shapiro.test(Data$Sodium)

Shapiro-Wilk normality test

data: Data$Sodium
W = 0.85661, p-value = 5.441e-05



Non-parametric correlation

The Spearman’s rho statistic is used to estimate a rank-based
measure of association.
This test may be used if data do not come from a bivariate normal
distribution.

> cor.test(Data$Sodium,Data$Calories, method =

"spearman")

Spearman’s rank correlation rho

data: Data$Sodium and Data$Calories
S = 2729.7, p-value = 5.443e-12
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8201766



Non-parametric correlation

Spearman’s rho statistic is also used to estimate a rank-based
measure of association.

This test may be used if the data do not come from a bivariate
normal distribution. it only requires that each variable at least be
measured on the ordinal scale.

Spearman’s correlation determines the strength and direction of
the monotonic relationship between your two variables rather
than the strength and direction of the linear relationship between
your two variables, which is what Pearson’s correlation determines.

Monotonicity is less restrictive than a linear relationship.

A monotonic relationship is a relationship that does one of the
following: (1) as the value of one variable increases, so does the
value of the other variable; or (2) as the value of one variable
increases, the other variable value decreases.
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