Statistics for the Sciences - Part 3

Instructor: Demetrio Labate

November 7, 2023

Covariance and correlation matrices

Covariance and Correlation

The covariance of two random variables X and Y is

$$
\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

and their correlation coefficient is

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Covariance and Correlation - sample

Given a sample consisting of pairs $\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$, the Pearson's correlation coefficient is

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}
$$

where

$$
\begin{aligned}
s_{x y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
s_{x}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
s_{y}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Covariance and Correlation

For random variables X and $Y, \rho_{X Y}$ measures linear dependence between X and Y.
$\rho_{X Y}$ is bouded:

$$
-1 \leq \rho_{X Y} \leq 1
$$

- $\rho_{X Y}=-1$ implies perfect negative linear relationship
- $\rho_{X Y}=1$ implies perfect positive linear relationship
- $\rho_{X Y}=0$ implies no linear relationship

NOTE: Correlation does not implies causation, not independence ($\rho_{X Y}=0$ does not imply that X and Y are independent).

Covariance and Correlation

Property: $\rho_{X Y}$ is unaffected by linear transformations.
Suppose that $X^{\prime}=a X+b$ and $Y^{\prime}=c Y+d$. Then

- $\rho_{X^{\prime} Y^{\prime}}=\rho_{X Y} \quad$ if $\operatorname{sgn}(a)=\operatorname{sgn}(c)$
- $\rho_{X^{\prime} Y^{\prime}}=-\rho_{X Y}$ if $\operatorname{sgn}(a) \neq \operatorname{sgn}(c)$

This property can be proved directly using the definition of correlation.

Covariance and Correlation - sample

Several sets of points with the corresponding Pearson correlation coefficient $r_{x y}$.

- $r_{x y}$ reflects noisiness and direction of linear relationship (top row)
- it does not measure the slope of the relationship (middle row)
- it does not capture many aspects of nonlinear relationships
(bottom row)

Correlation - example

Example. The following survey reports several measurements collected by 5 instructors for students in their classes related to their nutrition education program. We want to explore the relationship between Sodium and Calories.

```
Data <- read.csv("C:/Users/student_survey.csv")
> head(Data)
```

	Instructor	Grade	Weight	Calories	Sodium	Score
1	BrendonSmall	6	43	2069	1287	77
2	BrendonSmall	6	41	1990	1164	76
3	BrendonSmall	6	40	1975	1177	76
4	BrendonSmall	6	44	2116	1262	84
5	BrendonSmall	6	45	2161	1271	86
6	BrendonSmall	6	44	2091	1222	87
\ldots						

Correlation - example

Here is the plot of the data showing the relationship between Calories (y) and Sodium (x).
> plot(Calories ~ Sodium,data=Data,pch=16,ylab = "Calories", xlab = "Sodium")

Correlation - example

Compute correlation in R
Correlation coefficient can be computed using the functions cor () or cor.test()

- cor() computes the correlation coefficient
- cor.test() tests for association/correlation between paired samples. It returns both the correlation coefficient and the significance level (or p-value) of the correlation.

Commands formats are:

- cor (x, y, method = c("pearson", "kendall", "spearman"))
- cor.test(x, y, method=c("pearson", "kendall", "spearman"))

Correlation - example

The Pearson's correlation coefficient is a measure of linear association. The significance test works under the assumption that x and y are sampled from a bivariate normal distribution.
> cor(Data\$Sodium,Data\$Calories, method = "pearson") [1] 0.8489548
The Kendall and Spearman correlation coefficients are rank-based measure of association. This may may be used if the data do not necessarily come from a bivariate normal distribution.
> cor(Data\$Sodium,Data\$Calories, method = "kendall") [1] 0.6490902
> cor (Data\$Sodium,Data\$Calories, method = "spearman") [1] 0.8201766

Correlation - example

Correlation is very sensitive to outliers.
Here we modify a single point in the dataset

Correlation - example

Here are the re-computed correlation coefficients; in parenthesis is the value we calculated above.
> cor(Data2\$Sodium,Data\$Calories, method = "pearson")
[1] $0.6866076(0.8489548)$
> cor(Data2\$Sodium,Data\$Calories, method = "kendall")
[1] 0.5699824 (0.6490902)
> cor(Data2\$Sodium,Data\$Calories, method =
"spearman")
[1] $0.7088825(0.8201766)$

Correlation - example

We want to test if there is a linear relationship between Calories (Y) and Sodium (X) at significance level $\alpha=0.01$.

Hypothesis testing problem:

$$
\begin{array}{ll}
H_{0}: & \rho_{X, Y}=0 \\
H_{1}: & \rho_{X, Y} \neq 0
\end{array}
$$

If (X, Y) follows a bivariate normal distribution with $\rho_{X, Y}=0$ and if the samples $\left\{\left(x_{i}, y_{i}\right): i=1, \ldots n\right\}$ are i.i.d., then

$$
T=\frac{r_{x y} \sqrt{n-2}}{\sqrt{1-r_{x y}^{2}}} \sim t_{n-2}
$$

Hence, we can reject H_{0} if $|T|>t_{\alpha / 2 ; n-2}$ where, as usual, $t_{\alpha / 2 ; n-2}$ is the critical value of the t distribution such that $P\left(T \geq t_{\alpha / 2 ; n-2}\right)>\alpha / 2$.

Correlation - example

Under the assumption above, we can apply the Pearson's correlation analysis
> cor.test(Data\$Sodium,Data\$Calories, method = "pearson")
Pearson's product-moment correlation
data: Data\$Sodium and Data\$Calories
$\mathrm{t}=10.534, \mathrm{df}=43, \mathrm{p}$-value $=1.737 \mathrm{e}-13$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.73976910 .9145785
sample estimates:
cor
0.8489548

Since p-value $=1.737 \mathrm{e}-13$, we reject the null hypothesis at significance level $\alpha=0.01$ (or any other value above the p -value) and accept the alternative hypothesis that $\rho_{X, \zeta} \neq 0$.

Correlation - example

If the assumption that data come from a normal distribution cannot be satisfied, we can apply the Spearman's rho statistic that estimates a rank-based measure of association.
> cor.test(Data\$Sodium,Data\$Calories, method = "spearman")

Spearman's rank correlation rho
data: Data\$Sodium and Data\$Calories
$S=2729.7$, p-value $=5.443 \mathrm{e}-12$
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8201766

Since p-value $=5.443 \mathrm{e}-12$, we reject the null hypothesis at significance level $\alpha=0.01$ (or any other value above the p -value) and accept the alternative hypothesis that $\rho_{X, Y} \neq 0$

Non-parametric correlation

Spearman's rho statistic measures a rank-based measure of association.

This test may be used if the data do not come from a bivariate normal distribution. it only requires that each variable at least be measured on the ordinal scale.

Spearman's correlation determines the strength and direction of the monotonic relationship between your two variables rather than the strength and direction of the linear relationship between your two variables, which is what Pearson's correlation determines.

Monotonicity is less restrictive than a linear relationship.
A monotonic relationship is a relationship that does one of the following: (1) as the value of one variable increases, so does the value of the other variable; or (2) as the value of one variable increases, the other variable value decreases.

Correlation test

If we want to test the more general hypothesis testing problem

$$
\begin{array}{ll}
H_{0}: & \rho_{X, Y}=\rho_{0} \\
H_{1}: & \rho_{X, Y} \neq \rho_{0},
\end{array}
$$

with $\rho_{0} \neq 0$, the mathematical setting becomes more complicated since - still under the assumption that (X, Y) follows a bivariate normal distribution and that the samples $\left\{\left(x_{i}, y_{i}\right): i=1, \ldots n\right\}$ are i.i.d. - the formulation of the test statistic becomes more involved and can be solved using the Fisher's z-transformation.

Correlation test - example

Example: we test $H_{0}: \rho_{X, Y}=0.7$ vs $H_{1}: \rho_{X, Y} \neq 0.7$, with
We define the fisherz function
> fisherz=function(r,n,rho0=0)\{
$+z=\log ((1+r) /(1-r)) / 2$
$+z 0=\log ((1+r h o 0) /(1-r h o 0)) / 2$

+ zstar=(z-z0)*sqrt(n-3)
+ pval=2*(1-pnorm(abs(zstar)))
+ list(pval=pval)\}
In our example, setting $n=45$ and $\rho_{0}=0.7$, we compute
> fisherz(cor(Data\$Sodium,Data\$Calories),45,rho0=0.7)
\$pval $=0.01257023$

Data matrix

In applications, it may be useful to compute correlations for several pairs of variables.

Suppose we have a $n \times p$ data matrix

$$
X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right)
$$

- n items/subjects are listed as rows
- p variables are listed as columns

Example: mtcars (Motor Trend Car Road Tests)

The R data set mtcars was extracted from the 1974 Motor Trend magazine, and comprises fuel consumption and 10 aspects of car design and performance for 32 automobiles models from 1973-74.

Data frame consists of 32 observations on 11 variables.
[,1] mpg Miles/gallon
[,2] cyl Number of cylinders
[,3] disp Displacement (cu.in.)
[,4] hp Gross horsepower
$[, 5]$ drat Rear axle ratio
[,6] wt Weight (Ibs/1000)
[,7] qsec $1 / 4$ mile time
$[, 8] \quad$ vs \quad Engine ($0=\mathrm{V}$-shaped, $1=$ straight $)$
[,9] am Transmission ($0=$ automatic, $1=$ manual)
[,10] gear Number of forward gears
$[, 11]$ carb Number of carburetors

Data matrix example - mtcars

We load the dataset. As remarked above, it consists of 32 observations of 11 variables.
> data(mtcars)
> dim(mtcars)
[1] 3211
> head(mtcars)

	mpg	cyl	disp	hp	drat	$w t$	$q s e c$	vs	am	gear	carb
MazdaRX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
MazdaRX4Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet4Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
HornetSportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Data matrix example - mtcars

One can explore some statistical properties of the dataset using summary (mtcars).

mpg	cyl	disp	hp	drat
Min. $\quad 10.40$	Min. $\quad 4.000$	Min. : 71.1	Min. : 52.0	Min. $: 2.760$
1st Qu.:15.43	1st Qu. 4.000	1st Qu.: 120.8	1st Qu.: 96.5	1st Qu.:3.080
Median : 19.20	Median : 6.000	Median : 196.3	Median : 123.0	Median :3.695
Mean : 20.09	Mean : 6.188	Mean : 230.7	Mean : 146.7	Mean :3.597
3rd Qu.:22.80	3rd Qu.:8.000	3rd Qu.:326.0	3rd Qu. :180.0	3rd Qu.:3.920
Max. $\quad: 33.90$	Max. $\quad: 8.000$ qsec	$\begin{aligned} & \text { Max. }{ }_{\text {vs }}: 472.0 \\ & \hline \end{aligned}$	$\begin{aligned} \text { Max. } & : 335.0 \\ & a \mathrm{am} \end{aligned}$	Max. : 4.930 gear
Min. $\quad: 1.513$	Min. $: 14.50$	Min. $\quad 0.0000$	Min. $\quad 0.0000$	Min. $\quad 3.000$
1st Qu.:2.581	1st Qu.:16.89	1st Qu. 0.0000	1st Qu.:0.0000	1st Qu. 3.000
Median : 3.325	Median : 17.71	Median : 0.0000	Median : 0.0000	Median : 4.000
Mean :3.217	Mean : 17.85	Mean :0.4375	Mean :0.4062	Mean :3.688
3rd Qu.:3.610	3rd Qu.:18.90	3rd Qu.: 1.0000	3rd Qu.: 1.0000	3rd Qu. 4.000
$\begin{aligned} & \text { Max. } \quad: 5.424 \\ & \text { carb } \end{aligned}$	Max. $\quad 22.90$	Max. $: 1.0000$	Max. $: 1.0000$	Max. 5.5 .000
Min. $: 1.000$				
1st Qu.:2.000				
Median :2.000				
Mean $: 2.812$				
3rd Qu.: 4.000				
Max. $\quad 8.000$				

Data matrix example - mtcars

You can also visually explore the dataset by to visualizing the relationship for several pairs of variable
> pairs(mtcars[, c("mpg", "hp", "wt")])

Data matrix - example

We will use this example to illustrate how to work with a data matrix in R .

Computation of column means (first 3 columns)
> X <- as.matrix(mtcars)
> colMeans(X) [1:3]

mpg	cyl	disp
20.09062	6.18750	230.72188

This is an alternate way to carry out the same computation
> apply(X,2,mean) [1:3]

$m p g$	$c y l$	disp
20.09062	6.18750	230.72188

Data matrix - example

One can similarly compute other statistical functions.
Computation of column median (first 3 columns)
> apply(X,2,median) [1:3]

$m p g$	cyl	disp
19.2	6.0	196.3

Computation of column range (first 3 columns)
> apply(X,2,range)[,1:3]

	mpg	cyl	disp
$[1]$,	10.4	4	71.1
$[2]$,	33.9	8	472.0

Correlation matrix

Let X be a $n \times p$ data matrix, containing p vectors of length n ordered by columns.

The correlation matrix of X is the $p \times p$ symmetric matrix

$$
R=\left(\begin{array}{cccc}
1 & r_{12} & \ldots & r_{1 p} \\
r_{21} & 1 & \ldots & r_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
r_{p 1} & r_{p 2} & \ldots & 1
\end{array}\right)
$$

where the entries are the pairwise correlations $r_{i j}=r_{j i}=\frac{s_{i j}}{s_{i} s_{j}}$ for $1 \leq i, j \leq p$ and $r_{i i}=1$.
The matrix R contains all the pair-wise correlation coefficients between any column vectors in the matrix X.

Correlation matrix

We want to compute the correlation matrix of the mtcars matrix
We first remove the categorical variables vs and am.
library (tidyverse)
X <- mtcars \%>\% select(-vs, -am)

The new data matrix X has dimension 32×9
$>\operatorname{dim}(X)$
[1] 329
$>$ head (X)

	mpg	cyl	disp	hp	drat	wt	qsec	gear	carb
MazdaRX4	21.0	6	160	110	3.90	2.620	16.46	4	4
MazdaRX4Wag	21.0	6	160	110	3.90	2.875	17.02	4	4
Datsun710	22.8	4	108	93	3.85	2.320	18.61	4	1
Hornet4Drive	21.4	6	258	110	3.08	3.215	19.44	3	1
HornetSportabout	18.7	8	360	175	3.15	3.440	17.02	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	3	1

Correlation matrix

We compute the correlation matrix of the modified mtcars matrix. For easier reading, correlation coefficients are rounded to 2 decimal digits.
> round (cor(X), digits = 2)

	mpg	cyl	disp	hp	drat	$w t$	qsec	gear	carb
mpg	1.00	-0.85	-0.85	-0.78	0.68	-0.87	0.42	0.48	-0.55
cyl	-0.85	1.00	0.90	0.83	-0.70	0.78	-0.59	-0.49	0.53
disp	-0.85	0.90	1.00	0.79	-0.71	0.89	-0.43	-0.56	0.39
hp	-0.78	0.83	0.79	1.00	-0.45	0.66	-0.71	-0.13	0.75
drat	0.68	-0.70	-0.71	-0.45	1.00	-0.71	0.09	0.70	-0.09
wt	-0.87	0.78	0.89	0.66	-0.71	1.00	-0.17	-0.58	0.43
qsec	0.42	-0.59	-0.43	-0.71	0.09	-0.17	1.00	-0.21	-0.66
gear	0.48	-0.49	-0.56	-0.13	0.70	-0.58	-0.21	1.00	0.27
carb	-0.55	0.53	0.39	0.75	-0.09	0.43	-0.66	0.27	1.00

The matrix is symmetric and has diagonal 1 , as expected.
This correlation matrix gives an overview of the correlations for all combinations of two variables in X.

Note: we can compute in a very similar way the Spearman correlation matrix. The modified command is as follows:
> round(cor(X,method="spearman"), digits = 2)

Correlation matrix

Interpretation of correlation matrix

	$m p g$	$c y l$	disp	$h p$	drat	$w t$	qsec	gear	carb
mpg	1.00	-0.85	-0.85	-0.78	0.68	-0.87	0.42	0.48	-0.55
cyl	-0.85	1.00	0.90	0.83	-0.70	0.78	-0.59	-0.49	0.53
disp	-0.85	0.90	1.00	0.79	-0.71	0.89	-0.43	-0.56	0.39
hp	-0.78	0.83	0.79	1.00	-0.45	0.66	-0.71	-0.13	0.75
drat	0.68	-0.70	-0.71	-0.45	1.00	-0.71	0.09	0.70	-0.09
wt	-0.87	0.78	0.89	0.66	-0.71	1.00	-0.17	-0.58	0.43
qsec	0.42	-0.59	-0.43	-0.71	0.09	-0.17	1.00	-0.21	-0.66
gear	0.48	-0.49	-0.56	-0.13	0.70	-0.58	-0.21	1.00	0.27
carb	-0.55	0.53	0.39	0.75	-0.09	0.43	-0.66	0.27	1.00

The correlation between horsepower (hp) and miles per gallon (mpg) found above is -0.78 , meaning that the 2 variables vary in opposite direction. This makes sense, cars with more horsepower tend to consume more fuel (and thus have a lower millage par gallon). On the contrary, from the correlation matrix we see that the correlation between miles per gallon (mpg) and the time to drive $1 / 4$ of a mile (qsec) is 0.42 , meaning that fast cars (low qsec) tend to have a worse millage per gallon (low mpg). This again make sense as fast cars tend to consume more fuel.

Correlation matrix

The R package corrplot provides a visual exploratory tool for the correlation matrix.
> library(corrplot)
> corrplot(cor(X),method = "number")

	$\begin{aligned} & \text { 을 } \\ & \text { 틍 } \end{aligned}$	ふ	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	오	$\frac{\ddot{0}}{0}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{1}{0} \\ & \stackrel{\circ}{0} \end{aligned}$	응	
mpg	1.00	-0.85	-0.85	-0.78	0.68	-0.87	0.42	0.48	-0.55	
cyl	-0.85	1.00	0.90	0.83	-0.70	0.78	-0.59	-0.49	0.53	
disp	-0.85	0.90	1.00	0.79	-0.71	0.89	-0.43	-0.56	0.39	0.4
hp	-0.78	0.83	0.79	1.00	-0.45	0.66	-0.71		0.75	0.2
drat	0.68	-0.70	-0.71	-0.45	1.00	-0.71		0.70		0
wt	-0.87	0.78	0.89	0.66	-0.71	1.00		-0.58	0.43	-0.2
qsec	0.42	-0.59	-0.43	-0.71		-0.17	1.00	-0.21	-0.66	-0.4
gear	0.48	-0.49	-0.56	-0.13	0.70	-0.58	-0.21	1.00	0.27	
carb	-0.55	0.53	0.39	0.75		0.43	-0.66	0.27	1.00	

Correlation matrix

Since the matrix is symmetric, we only need to visualize the upper or lower half.
> corrplot(cor(X),method = "number",type = "upper")

mpg	$\begin{aligned} & \text { 을 } \\ & \stackrel{0}{E} \end{aligned}$	징	$\frac{0}{\frac{0}{0}}$	읃	$\frac{\square}{0}$		$\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{1}{\mathbb{0}} \\ & \stackrel{1}{\infty} \end{aligned}$	응	
	1.00	-0.85	-0.85	-0.78	0.68	-0.87	0.42	0.48	-0.55	
	cyl	1.00	0.90	0.83	-0.70	0.78	-0.59	-0.49	0.53	6
		disp	1.00	0.79	-0.71	0.89	-0.43	-0.56	0.39	4
			hp	1.00	-0.45	0.66	-0.71	-0.13	0.75	- 0.2
				drat	1.00	-0.71	0.09	0.70	0.09	0
					wt	1.00	-0.17	-0.58	0.43	-0.2
						qsec	1.00	-0.21	-0.66	-0.4
							gear	1.00	0.27	.
								carb	1.00	

Correlation matrix

Rather than displaying numerical values, one can use colors.
> corrplot(cor(X), method = "circle",type = "upper")

Correlation matrix

One important application of the correlation matrix is to investigate if there are patterns among specific groups of variables.

The package corrplot supports automatic variable reordering.
Four order algorithms are available: 'AOE', 'FPC', 'hclust', 'alphabet'.

- 'AOE' is for the angular order of the eigenvectors. It is calculated from the order of the angles corresponding to the largest two eigenvalues of the correlation matrix.
- 'FPC' for the first principal component order.
- 'hclust' for hierarchical clustering order, and 'hclust.method' for the agglomeration method to be used. 'hclust.method' should be one of 'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.
- 'alphabet' for alphabetical order.

Correlation matrix

The option 'hclust' draws rectangles around the plot of correlation matrix based on the results of hierarchical clustering.
> corrplot(cor(X), order = 'hclust', addrect = 2)

Correlation matrix

Here we compute again the correlation matrix with the variables reordered based on the results of hierarchical clustering but we use the Spearman correlation.
> corrplot(cor(X,method="spearman"), order = 'hclust', addrect $=2$)

Correlation matrix

Similar to the cor() command used to compute correlation for several pairs of variables in a matrix, the rcorr() function from the Hmisc package is useful to analyze the correlation matrix.
rcorr(X, type=c("pearson","spearman"))
It returns
(1) the correlation matrix of X
(2) the number of observation
(3) the p-values for all pairwise correlations

Correlation matrix

library (Hmisc)
X <- as.matrix(X) res <- rcorr(X)
> str(res)
List of 3
\$ r: num [1:11, 1:11] 1-0.852-0.848-0.776 0.681 ...
..- $\operatorname{attr}(*$, "dimnames" $)=$ List of 2
.. .. \$: chr [1:11] " mpg" "cyl" "disp" "hp" ...
.. .. : chr [1:11] "mpg" "cyl" "disp" "hp" ...
\$ n: int [1:11, 1:11] 32323232323232323232 ...
..- $\operatorname{attr}(*$, "dimnames" $)=$ List of 2
.. .. \$: chr [1:11] " mpg" "cyl" "disp" "hp" ...
.. .. \$: chr [1:11] " mpg" "cyl" "disp" "hp" ...
\$ P: num [1:11, 1:11] NA 6.11e-10 9.38e-10 1.79e-07 1.78e-05 ...
..- $\operatorname{attr}(*$, "dimnames" $)=$ List of 2
.. .. \$: chr [1:11] " mpg" "cyl" "disp" "hp" ...
.. .. : chr [1:11] " mpg" "cyl" "disp" "hp" ...

- $\operatorname{attr}\left({ }^{*}\right.$, "class" $)=$ chr " rcorr"

Correlation matrix

We are displaying only the matrix of p values, with 3 decimal digits
> round (res\$P, 3)

	mpg	cyl	disp	hp	drat	$w t$	qsec	gear	carb
mpg	NA	0.000	0.000	0.000	0.000	0.000	0.017	0.005	0.001
cyl	0.000	NA	0.000	0.000	0.000	0.000	0.000	0.004	0.002
disp	0.000	0.000	NA	0.000	0.000	0.000	0.013	0.001	0.025
hp	0.000	0.000	0.000	$N A$	0.010	0.000	0.000	0.493	0.000
drat	0.000	0.000	0.000	0.010	NA	0.000	0.620	0.000	0.621
wt	0.000	0.000	0.000	0.000	0.000	NA	0.339	0.000	0.015
qsec	0.017	0.000	0.013	0.000	0.620	0.339	NA	0.243	0.000
gear	0.005	0.004	0.001	0.493	0.000	0.000	0.243	NA	0.129
carb	0.001	0.002	0.025	0.000	0.621	0.015	0.000	0.129	NA

Principal Components Analysis

Principal Components Analysis

Principal Components Analysis (PCA) is a statistical method designed to reduce data dimensionality.

PCA extracts the most significant information from a set of multiple variables and represents this information as a set of new variables, called principal components, obtained as linear combinations of the original ones.

PCA allows one to identify a few principal components that can be visualized graphically with minimal loss of information.

The dominant principal components are the most important for explaining covariation in the data.

Principal Components Analysis

PCA differs from clustering which is also used for data interpretation.

- Clustering assumes that each data point is a member of one, and only one, cluster. Clusters are mutually exclusive.
- PCA assumes that each data point is a linear combination of multiple basic "ingredients" which are not mutually exclusive.

Principal Components Analysis

I will use dataset decathlon2 from the factoextra package to illustrate the ue of PCA.
> install.packages("factoextra")
> library("factoextra")
> data(decathlon2)
> head(decathlon2)

X100m L.jump Shot.put H.jump X400m X110m.hurdle Discus Pole.vault Javeline X1500m Rank Points Competition

SEBRLE	11.04	7.58	14.83	2.07	49.81	14.69	43.75	5.02	63.19	291.7	1	8217	Decastar
CLAY	10.76	7.40	14.26	1.86	49.37	14.05	50.72	4.92	60.15	301.5	2	8122	Decastar
BERNARD	11.02	7.23	14.25	1.92	48.93	14.99	40.87	5.32	62.77	280.1	4	8067	Decastar
YURKOV	11.34	7.09	15.19	2.10	50.42	15.31	46.26	4.72	63.44	276.4	5	8036	Decastar
ZSIVOCZKY	11.13	7.30	13.48	2.01	48.62	14.17	45.67	4.42	55.37	268.0	7	8004	Decastar
McMULLEN	10.83	7.31	13.76	2.13	49.91	14.38	44.41	4.42	56.37	285.1	8	7995	Decastar

Principal Components Analysis

The dataset decathlon2 describes athletes' performance during two sporting events (Desctar and OlympicG).

It contains 27 athletes described by 13 variables (sport disciplines).
For further analysis, I will subset active individuals (rows 1:23) and active variables (columns 1:10) from the decathlon2 dataset, therefore I will create new dataset decathlon2b to conduct the principal component analysis.
decathlon2b <- decathlon2[1:23, 1:10]
The decathlon 2 b dataset consists of 23 observations and 10 variables.
> dim(decathlon2b)
[1] 2310

Principal Components Analysis

The summary statistics below shows the distribution of observations.
> summary(decathlon2b)

X100m	Long.jump	Shot.put	High.jump	X400m
Min. $\quad 10.44$	Min. $: 6.800$	Min. $: 12.68$	Min. $: 1.860$	Min. $: 46.81$
1st Qu.:10.84	1st Qu.:7.165	1st Qu.:14.17	1st Qu.:1.940	1st Qu.: 48.95
Median : 10.97	Median :7.310	Median :14.65	Median :2.010	Median : 49.40
Mean : 11.00	Mean :7.350	Mean : 14.62	Mean $: 2.007$	Mean : 49.43
3rd Qu.: 11.23	3rd Qu.:7.525	3rd Qu.: 15.14	3rd Qu.:2.095	3rd Qu.:50.02
Max. $: 11.64$	Max. : 7.960	Max. :16.36	Max. $: 2.150$	Max. :51.16
X110m.hurdle	Discus	Pole.vault	Javeline	X1500m
Min. $\quad 13.97$	Min. $: 37.92$	Min. $: 4.400$	Min. $: 52.33$	Min. $: 262.1$
1st Qu.:14.17	1st Qu.: 43.74	1st Qu.: 4.610	1st Qu.:55.40	1st Qu.:268.8
Median : 14.37	Median : 44.75	Median : 4.820	Median :57.44	Median :278.1
Mean : 14.53	Mean $: 45.16$	Mean :4.797	Mean :59.11	Mean : 277.9
3rd Qu.:14.94	3rd Qu.: 46.93	3rd Qu.:5.000	3rd Qu.: 62.98	3rd Qu.:283.6
Max. $: 15.67$	Max. 51.65	Max. 5.320	Max. $\quad 70.52$	Max. 301.5

Principal Components Analysis

The R command to perform a principal components analysis on a data matrix x is the following
prcomp(x, retx $=$ TRUE, center $=$ TRUE, scale $=$ FALSE, tol $=$ NULL, ...)

- retx: A logical value indicating whether the rotated variables should be returned. The default is TRUE.
- center: A logical value indicating whether the variables should be shifted to be 0 centered. Alternately, a vector of length equal the number of columns of x can be supplied. The value is passed to scale. The default is TRUE.
- scale: A logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE. In general, scaling is advisable.
- tol: a value indicating the magnitude below which components should be omitted. With the default NULL setting, no components are omitted.

Principal Components Analysis

> res.pca <- prcomp(decathlon2b, scale = TRUE)
> print(res.pca)
Standard deviations (1, .., p=10):

$$
\begin{array}{llllllll}
{[1]} & 2.0308159 & 1.3559244 & 1.1131668 & 0.9052294 & 0.8375875 & 0.6502944 & 0.5500742 \\
{[8]} & 0.5238988 & 0.3939758 & 0.3492435 & & &
\end{array}
$$

Rotation $(\mathrm{n} \times \mathrm{k})=(10 \times 10):$

	PC1	PC2	PC3	PC4	PC5
X100m	-0.418859080	0.13230683	-0.27089959	0.03708806	-0.2321476
Long.jump	0.391064807	-0.20713320	0.17117519	-0.12746997	0.2783669
Shot.put	0.361388111	-0.06298590	-0.46497777	0.14191803	-0.2970589
High.jump	0.300413236	0.34309742	-0.29652805	0.15968342	0.4807859
X400m	-0.345478567	-0.21400770	-0.25470839	0.47592968	0.1240569
X110m.hurdle	-0.376265119	0.01824645	-0.40325254	-0.01866477	0.2676975
Discus	0.365965721	-0.03662510	-0.15857927	0.43636361	-0.4873988
Pole.vault	-0.106985591	-0.59549862	-0.08449563	-0.37447391	-0.2646712
Javeline	0.210864329	-0.28475723	-0.54270782	-0.36646463	0.2361698
X1500m	0.002106782	-0.57855748	0.19715884	0.49491281	0.3142987
	PC6	PC7	PC8	PC9	PC10
X100m	0.054398099	-0.16604375	-0.19988005	-0.76924639	0.12718339
Long.jump	-0.051865558	-0.28056361	-0.75850657	-0.13094589	0.08509665
Shot.put	-0.368739186	-0.01797323	0.04649571	0.12129309	0.62263702
High.jump	-0.437716883	0.05118848	0.16111045	-0.28463225	-0.38244596
X400m	-0.075796432	0.52012255	-0.44579641	0.20854176	-0.09784197
X110m.hurdle	0.004048005	-0.67276768	-0.01592804	0.41058421	-0.04475363
Discus	0.305315353	-0.25946615	-0.07550934	0.03391600	-0.49418361
Pole.vault	-0.503563524	-0.01889413	0.06282691	-0.06540692	-0.39288155
Javeline	0.556821016	0.24281145	0.10086127	-0.10268134	-0.01103627
X1500m	0.064663250	-0.20245828	0.37119711	-0.25950868	0.17991689

Principal Components Analysis

- The prcomp() function was set to center data around 0 by shifting the variables (center $=$ TRUE) and to rescale the variance to 1 (scale $=$ FALSE); data standarization is needed since variables were measured in different scales.
- The prcomp () function computed the 10 principal components which also correspond to the number of variables (10 sport disciplines) in the data. Recall that data matrix contains 23 observations (athletes) of 10 variables (sport disciplines).
- Each principal component (PC) explains a percentage of the total variance in the data set.

Principal Components Analysis

Each PC explains a percentage of the total variance in the data set.
> summary(res.pca)
Importance of components:

| | PC1 | PC2 | PC3 | PC4 | PC5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Standard deviation | 2.0308 | 1.3559 | 1.1132 | 0.90523 | 0.83759 |
| Proportion of Variance | 0.4124 | 0.1839 | 0.1239 | 0.08194 | 0.07016 |
| Cumulative Proportion | 0.4124 | 0.5963 | 0.7202 | 0.80213 | 0.87229 |
| | PC6 | PC7 | PC8 | PC9 | PC10 |
| Standard deviation | 0.65029 | 0.55007 | 0.52390 | 0.39398 | 0.3492 |
| Proportion of Variance | 0.04229 | 0.03026 | 0.02745 | 0.01552 | 0.0122 |
| Cumulative Proportion | 0.91458 | 0.94483 | 0.97228 | 0.98780 | 1.0000 |

- PC1 explains 41.24% of total variance, PC2 explains 18.39% of total variance and so on.
- The Cumulative Proportion section shows that the first 3 PCs explains about 72% of the total variance and the first 4 PCs explains about 80% of the total variance.

Principal Components Analysis

The amount of variation held by each principal component is associated with the eigenvalues of the PCA.

The eigenvalues are extracted by get_eigenvalue() function.
> eig.val<-get_eigenvalue(res.pca)
> eig.val

	eigenvalue variance.percent cumulative.variance.percent		
Dim.1	4.1242133	41.242133	41.24213
Dim.2	1.8385309	18.385309	59.62744
Dim.3	1.2391403	12.391403	72.01885
Dim.4	0.8194402	8.194402	80.21325
Dim.5	0.7015528	7.015528	87.22878
Dim.6	0.4228828	4.228828	91.45760
Dim.7	0.3025817	3.025817	94.48342
Dim.8	0.2744700	2.744700	97.22812
Dim.9	0.1552169	1.552169	98.78029
Dim.10	0.1219710	1.219710	100.00000

Principal Components Analysis

The importance of PCs decreases rapidly with the dimension.
> fviz_eig(res.pca, col.var="blue")
Scree plot

Principal Components Analysis

The Scree plot displays the variance by each PC.
It always displays a downward curve. It typically starts high, then falls rather quickly and finally flattens out. This is because the first component usually explains much of the variability, the next few components explain a moderate amount, and the latter components only explain a small fraction of the overall variability.

The scree plot is useful to decide the number of PCs that are sufficient to provide a satisfactory approximation to explain the data. scree plot criterion looks for the "elbow" in the curve and selects all components just before the line flattens out.

Note: it is called a 'scree' plot (in the PCA literature) because it often looks like a 'scree' slope, where rocks have fallen down and accumulated on the side of a mountain.

Principal Components Analysis

PCA results can be assessed with regard to variables (sport disciplines) and observations/individuals (athletes).

For that purpose, the function get_pca_var() provides a list of matrices containing all the results for the variables: coordinates, correlation between variables and axes, squared cosine, and contributions.

Similarly, the function get_pca_ind() provides a list of matrices containing all the results for the observations/individuals: coordinates, squared cosine, and contributions.

Principal Components Analysis

```
> var <- get_pca_var(res.pca)
> var
Principal Component Analysis Results for variables
=============================
    Name Description
    "$coord" "Coordinates for the variables"
    "$cor" "Correlations between variables and dimensions"
    "$cos2" "Cos2 for the variables"
    "$contrib"
"contributions of the variables"
> ind <- get_pca_ind(res.pca)
> ind
Principal Component Analysis Results for individuals
=============================
    Name Description
1
3 "$contrib" "contributions of the individuals"
```


Principal Components Analysis

We start by assessing PCA results with regard to variables.
In the list above:

- Cos2 is called square cosine and shows the importance of a principal component for a given observation.
- A low value means that the variable is not well represented by that component
- A high value, on the other hand, means a good representation of the variable on that component.
- Contrib indicates the contribution of the variables.

Principal Components Analysis

The code below computes the square cosine value for each variable with respect to the first two principal components PC1, PC2.
> fviz_cos2(res.pca, choice = "var", axes = 1:2)
Cos2 of variables to Dim-1-2

Principal Components Analysis

From the plot, X 100 m , Long jump and Pole vault are the top three variables with the highest $\cos 2$, hence they are well represented in PC1 and PC2.

Cos2 of variables to Dim-1-2

Principal Components Analysis

The code below shows variable contributions to PC1 and PC2.

```
> a1<-fviz_contrib(res.pca, choice = "var", axes = 1)
> a2<-fviz_contrib(res.pca, choice = "var", axes = 2)
> library("gridExtra")
```

> grid.arrange(a1, a2, ncol=2, top='Contribution of the variables to the first two PCs')

Contribution of the variables to the first two PCs

Contribution of variables to Dim-1

Contribution of variables to Dim-2

Principal Components Analysis

The red dashed line on the graph above indicates the expected average contribution. A variable with a contribution exceeding this benchmark is considered as important in contributing to the PC. It can be seen that the variables X 100 m , Long.jump and Pole.vault contribute the most to both dimensions.

Contribution of the variables to the first two PCs
Contribution of variables to Dim-1
Contribution of variables to Dim-2

Principal Components Analysis

The biplot visualizes similarities/dissimilarities between variables.
> fviz_pca_var(res.pca, col.var = "black")
Variables - PCA

Principal Components Analysis

- Variables that are grouped together are positively correlated to each other and variables that are negatively correlated are displayed to the opposite sides of the biplot's origin.

Variables - PCA

Principal Components Analysis

- The higher the distance between the variable and the origin, the better represented that variable is in the principal components PC1 and PC2.

Principal Components Analysis

The quality of representation of variables can be drawn on the plot.
> fviz_pca_var(res.pca, col.var = "cos2", gradient.cols = c("darkorchid4", "gold", "darkorange"),)

Variables - PCA

Principal Components Analysis

In the plot, cos2 values differ by gradient colors: variables with low cos2 values are colored "darkorchid4", medium cos2 values "gold", high co2 values - "darkorange".

Variables - PCA

Principal Components Analysis

X100m, Long.jump and Pole.vault have high cos2 implying a good representation on the principal component. Variables are positioned close to the circumference of the correlation circle.

Variables - PCA

Principal Components Analysis

Javeline has the lowest cos2 indicating that the variable is not well represented by the PCs. The variable is close to the center of the circle, so it is less important for the first components.

Variables - PCA

Principal Components Analysis

We now similarly assess PCA results with regard to individuals using cos2.
> fviz_cos2(res.pca, choice = "ind", axes = 1:2)
Cos2 of individuals to Dim-1-2

Principal Components Analysis

The plot shows the athletes on the left are well represented in PC1, PC2.

Cos2 of individuals to Dim-1-2

Principal Components Analysis

We next assess PCA results for individuals using contrib.
> fviz_contrib(res.pca, choice = "ind", axes = 1:2)
Contribution of individuals to Dim-1-2

Principal Components Analysis

The plot shows the athletes contributing the most to PC1, PC2.
Contribution of individuals to Dim-1-2

