
Statistics for the Sciences - Part 3

Instructor: Demetrio Labate

November 23, 2024

Covariance and correlation
matrices

Covariance and Correlation

The covariance of two random variables X and Y is

σXY � E��X � µX � �Y � µY ��
and their correlation coefficient is

ρXY �
σXY
σX σY

Covariance and Correlation - sample

Given a sample consisting of pairs r�xi , yi� � i � 1, . . . , nx, the
Pearson’s correlation coefficient is

rxy �
sxy
sx sy

where

sxy �
1

n�1

n

=
i�1

�xi � x̄��yi � ȳ�

s
2
x �

1
n�1

n

=
i�1

�xi � x̄�2

s
2
y �

1
n�1

n

=
i�1

�yi � ȳ�2

Covariance and Correlation

For random variables X and Y , ρXY measures linear dependence
between X and Y .
ρXY is bouded:

�1 & ρXY & 1

ρXY � �1 implies perfect negative linear relationship

ρXY � 1 implies perfect positive linear relationship

ρXY � 0 implies no linear relationship

NOTE: Correlation does not implies causation, not independence
(ρXY � 0 does not imply that X and Y are independent).

Covariance and Correlation

Property: ρXY is unaffected by linear transformations.

Suppose that X
¬

� aX � b and Y
¬

� cY � d . Then

ρX ¬Y ¬ � ρXY if sgn�a� � sgn�c�
ρX ¬Y ¬ � �ρXY if sgn�a� j sgn�c�

This property can be proved directly using the definition of
correlation.

Covariance and Correlation - sample

Several sets of points with the corresponding Pearson correlation
coefficient rxy .

- rxy reflects noisiness and direction of linear relationship (top row)
- it does not measure the slope of the relationship (middle row)
- it does not capture many aspects of nonlinear relationships
(bottom row)

Correlation - example

Example. The following survey reports several measurements
collected by 5 instructors for students in their classes related to
their nutrition education program. We want to explore the
relationship between Sodium and Calories.

Data <- read.csv("C:/Users/student survey.csv")

> head(Data)

Instructor Grade Weight Calories Sodium Score
1 BrendonSmall 6 43 2069 1287 77
2 BrendonSmall 6 41 1990 1164 76
3 BrendonSmall 6 40 1975 1177 76
4 BrendonSmall 6 44 2116 1262 84
5 BrendonSmall 6 45 2161 1271 86
6 BrendonSmall 6 44 2091 1222 87
. .

Correlation - example
Here is the plot of the data showing the relationship between
Calories (y) and Sodium (x).

> plot(Calories � Sodium,data=Data,pch=16,ylab =

"Calories", xlab = "Sodium")

Correlation - example

Compute correlation in R

Correlation coefficient can be computed using the functions cor()
or cor.test()

cor() computes the correlation coefficient

cor.test() tests for association/correlation between paired
samples. It returns both the correlation coefficient and the
significance level (or p-value) of the correlation .

Commands formats are:

cor(x, y, method = c("pearson", "kendall",

"spearman"))

cor.test(x, y, method=c("pearson", "kendall",

"spearman"))

Correlation - example

The Pearson’s correlation coefficient is a measure of linear
association. The significance test works under the assumption that
x and y are sampled from a bivariate normal distribution.
> cor(Data$Sodium,Data$Calories, method = "pearson")

[1] 0.8489548

The Kendall and Spearman correlation coefficients are rank-based
measure of association. This may may be used if the data do not
necessarily come from a bivariate normal distribution.

> cor(Data$Sodium,Data$Calories, method = "kendall")

[1] 0.6490902

> cor(Data$Sodium,Data$Calories, method = "spearman")

[1] 0.8201766

Correlation - example

Correlation is very sensitive to outliers.

Here we modify a single point in the dataset

Correlation - example

Here are the re-computed correlation coefficients; in parenthesis is
the value we calculated above.

> cor(Data2$Sodium,Data$Calories, method = "pearson")

[1] 0.6866076 (0.8489548)

> cor(Data2$Sodium,Data$Calories, method = "kendall")

[1] 0.5699824 (0.6490902)

> cor(Data2$Sodium,Data$Calories, method =

"spearman")

[1] 0.7088825 (0.8201766)

Correlation - example

We want to test if there is a linear relationship between Calories
(Y) and Sodium (X) at significance level α � 0.01.

Hypothesis testing problem:

H0 � ρX ,Y � 0

H1 � ρX ,Y j 0

If �X ,Y � follows a bivariate normal distribution with ρX ,Y � 0 and

if the samples r�xi , yi� � i � 1, . . . nx are i.i.d., then

T �
rxy

Ó
n � 2Õ

1 � r2xy
� tn�2

Hence, we can reject H0 if ¶T ¶ % tα©2;n�2 where, as usual, tα©2;n�2
is the critical value of the t distribution such that
P�T ' tα©2;n�2� % α©2.

Correlation - example
Under the assumption above, we can apply the Pearson’s
correlation analysis

> cor.test(Data$Sodium,Data$Calories, method = "pearson")

Pearson’s product-moment correlation

data: Data$Sodium and Data$Calories

t = 10.534, df = 43, p-value = 1.737e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7397691 0.9145785

sample estimates:

cor

0.8489548

Since p-value = 1.737e-13, we reject the null hypothesis at
significance level α � 0.01 (or any other value above the p-value)
and accept the alternative hypothesis that ρX ,Y j 0.

Correlation - example
If the assumption that data come from a normal distribution
cannot be satisfied, we can apply the Spearman’s rho statistic
that estimates a rank-based measure of association.

> cor.test(Data$Sodium,Data$Calories, method = "spearman")

Spearman’s rank correlation rho

data: Data$Sodium and Data$Calories
S = 2729.7, p-value = 5.443e-12
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8201766

Since p-value = 5.443e-12, we reject the null hypothesis at
significance level α � 0.01 (or any other value above the p-value)
and accept the alternative hypothesis that ρX ,Y j 0.

Non-parametric correlation

Spearman’s rho statistic measures a rank-based measure of
association.

This test may be used if the data do not come from a bivariate
normal distribution. it only requires that each variable at least be
measured on the ordinal scale.

Spearman’s correlation determines the strength and direction of
the monotonic relationship between your two variables rather
than the strength and direction of the linear relationship between
your two variables, which is what Pearson’s correlation determines.

Monotonicity is less restrictive than a linear relationship.

A monotonic relationship is a relationship that does one of the
following: (1) as the value of one variable increases, so does the
value of the other variable; or (2) as the value of one variable
increases, the other variable value decreases.

Correlation test

If we want to test the more general hypothesis testing problem

H0 � ρX ,Y � ρ0

H1 � ρX ,Y j ρ0,

with ρ0 j 0, the mathematical setting becomes more complicated
since - still under the assumption that �X ,Y � follows a bivariate
normal distribution and that the samples r�xi , yi� � i � 1, . . . nx are
i.i.d. - the formulation of the test statistic becomes more involved
and can be solved using the Fisher’s z-transformation.

Correlation test - example

Example: we test H0 � ρX ,Y � 0.7 vs H1 � ρX ,Y j 0.7, with

We define the fisherz function

> fisherz=function(r,n,rho0=0){
+ z=log((1+r)/(1-r))/2

+ z0=log((1+rho0)/(1-rho0))/2

+ zstar=(z-z0)*sqrt(n-3)

+ pval=2*(1-pnorm(abs(zstar)))

+ list(pval=pval)}

In our example, setting n � 45 and ρ0 � 0.7, we compute

> fisherz(cor(Data$Sodium,Data$Calories),45,rho0=0.7)

$pval = 0.01257023

Data matrix

In applications, it may be useful to compute correlations for several
pairs of variables.

Suppose we have a n � p data matrix

X �

��������

x11 x12 . . . x1p
x21 x22 . . . x2p
� � � �

xn1 xn2 . . . xnp

�������
n items/subjects are listed as rows

p variables are listed as columns

Example: mtcars (Motor Trend Car Road Tests)

The R data set mtcars was extracted from the 1974 Motor Trend
magazine, and comprises fuel consumption and 10 aspects of car
design and performance for 32 automobiles models from 1973-74.

Data frame consists of 32 observations on 11 variables.

[,1] mpg Miles/gallon
[,2] cyl Number of cylinders
[,3] disp Displacement (cu.in.)
[,4] hp Gross horsepower
[,5] drat Rear axle ratio
[,6] wt Weight (lbs/1000)
[,7] qsec 1/4 mile time
[,8] vs Engine (0 = V-shaped, 1 = straight)
[,9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors

Data matrix example - mtcars

We load the dataset. As remarked above, it consists of 32
observations of 11 variables.

> data(mtcars)

> dim(mtcars)

[1] 32 11

> head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
MazdaRX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
MazdaRX4Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet4Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
HornetSportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Data matrix example - mtcars

One can explore some statistical properties of the dataset using
summary(mtcars).

Data matrix example - mtcars
You can also visually explore the dataset by to visualizing the
relationship for several pairs of variable

> pairs(mtcars[, c("mpg", "hp", "wt")])

Data matrix - example

We will use this example to illustrate how to work with a data
matrix in R.

Computation of column means (first 3 columns)

> X <- as.matrix(mtcars)

> colMeans(X)[1:3]

mpg cyl disp
20.09062 6.18750 230.72188

This is an alternate way to carry out the same computation

> apply(X,2,mean)[1:3]

mpg cyl disp
20.09062 6.18750 230.72188

Data matrix - example

One can similarly compute other statistical functions.

Computation of column median (first 3 columns)

> apply(X,2,median)[1:3]

mpg cyl disp
19.2 6.0 196.3

Computation of column range (first 3 columns)

> apply(X,2,range)[,1:3]

mpg cyl disp
�1, � 10.4 4 71.1
�2, � 33.9 8 472.0

Correlation matrix

Let X be a n � p data matrix, containing p vectors of length n
ordered by columns.

The correlation matrix of X is the p � p symmetric matrix

R �

��������

1 r12 . . . r1p
r21 1 . . . r2p
� � � �

rp1 rp2 . . . 1

�������
where the entries are the pairwise correlations rij � rji �

sij
si sj

for

1 & i , j & p and rii � 1.

The matrix R contains all the pair-wise correlation coefficients
between any column vectors in the matrix X .

Correlation matrix

We want to compute the correlation matrix of the mtcars matrix

We first remove the categorical variables vs and am.

library(tidyverse)

X <- mtcars %>% select(-vs, -am)

The new data matrix X has dimension 32 � 9
> dim(X)

[1] 32 9

> head(X)
mpg cyl disp hp drat wt qsec gear carb

MazdaRX4 21.0 6 160 110 3.90 2.620 16.46 4 4
MazdaRX4Wag 21.0 6 160 110 3.90 2.875 17.02 4 4
Datsun710 22.8 4 108 93 3.85 2.320 18.61 4 1
Hornet4Drive 21.4 6 258 110 3.08 3.215 19.44 3 1
HornetSportabout 18.7 8 360 175 3.15 3.440 17.02 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 3 1

Correlation matrix

We compute the correlation matrix of the modified mtcars matrix.
For easier reading, correlation coefficients are rounded to 2 decimal
digits.

> round(cor(X), digits = 2)
mpg cyl disp hp drat wt qsec gear carb

mpg 1.00 �0.85 �0.85 �0.78 0.68 �0.87 0.42 0.48 �0.55
cyl �0.85 1.00 0.90 0.83 �0.70 0.78 �0.59 �0.49 0.53
disp �0.85 0.90 1.00 0.79 �0.71 0.89 �0.43 �0.56 0.39
hp �0.78 0.83 0.79 1.00 �0.45 0.66 �0.71 �0.13 0.75
drat 0.68 �0.70 �0.71 �0.45 1.00 �0.71 0.09 0.70 �0.09
wt �0.87 0.78 0.89 0.66 �0.71 1.00 �0.17 �0.58 0.43
qsec 0.42 �0.59 �0.43 �0.71 0.09 �0.17 1.00 �0.21 �0.66
gear 0.48 �0.49 �0.56 �0.13 0.70 �0.58 �0.21 1.00 0.27
carb �0.55 0.53 0.39 0.75 �0.09 0.43 �0.66 0.27 1.00

The matrix is symmetric and has diagonal 1, as expected.
This correlation matrix gives an overview of the correlations for all
combinations of two variables in X .

Note: we can compute in a very similar way the Spearman
correlation matrix. The modified command is as follows:
> round(cor(X,method="spearman"), digits = 2)

Correlation matrix

Interpretation of correlation matrix
mpg cyl disp hp drat wt qsec gear carb

mpg 1.00 �0.85 �0.85 �0.78 0.68 �0.87 0.42 0.48 �0.55
cyl �0.85 1.00 0.90 0.83 �0.70 0.78 �0.59 �0.49 0.53
disp �0.85 0.90 1.00 0.79 �0.71 0.89 �0.43 �0.56 0.39
hp �0.78 0.83 0.79 1.00 �0.45 0.66 �0.71 �0.13 0.75
drat 0.68 �0.70 �0.71 �0.45 1.00 �0.71 0.09 0.70 �0.09
wt �0.87 0.78 0.89 0.66 �0.71 1.00 �0.17 �0.58 0.43
qsec 0.42 �0.59 �0.43 �0.71 0.09 �0.17 1.00 �0.21 �0.66
gear 0.48 �0.49 �0.56 �0.13 0.70 �0.58 �0.21 1.00 0.27
carb �0.55 0.53 0.39 0.75 �0.09 0.43 �0.66 0.27 1.00

The correlation between horsepower (hp) and miles per gallon (mpg)

found above is -0.78, meaning that the 2 variables vary in opposite

direction. This makes sense, cars with more horsepower tend to consume

more fuel (and thus have a lower millage par gallon). On the contrary,

from the correlation matrix we see that the correlation between miles per

gallon (mpg) and the time to drive 1/4 of a mile (qsec) is 0.42, meaning

that fast cars (low qsec) tend to have a worse millage per gallon (low

mpg). This again make sense as fast cars tend to consume more fuel.

Correlation matrix
The R package corrplot provides a visual exploratory tool for the
correlation matrix.

> library(corrplot)

> corrplot(cor(X),method = "number")

Correlation matrix
Since the matrix is symmetric, we only need to visualize the upper
or lower half.

> corrplot(cor(X),method = "number",type = "upper")

Correlation matrix

Rather than displaying numerical values, one can use colors.

> corrplot(cor(X), method = "circle",type = "upper")

Correlation matrix

One important application of the correlation matrix is to
investigate if there are patterns among specific groups of variables.

The package corrplot supports automatic variable reordering.

Four order algorithms are available: ’AOE’, ’FPC’, ’hclust’,
’alphabet’.

’AOE’ is for the angular order of the eigenvectors. It is
calculated from the order of the angles corresponding to the
largest two eigenvalues of the correlation matrix.

’FPC’ for the first principal component order.

’hclust’ for hierarchical clustering order, and ’hclust.method’
for the agglomeration method to be used. ’hclust.method’
should be one of ’ward’, ’ward.D’, ’ward.D2’, ’single’,
’complete’, ’average’, ’mcquitty’, ’median’ or ’centroid’.

’alphabet’ for alphabetical order.

Correlation matrix
The option ’hclust’ draws rectangles around the plot of
correlation matrix based on the results of hierarchical clustering.

> corrplot(cor(X), order = ’hclust’, addrect = 2)

Correlation matrix
Here we compute again the correlation matrix with the variables
reordered based on the results of hierarchical clustering but we use
the Spearman correlation.

> corrplot(cor(X,method="spearman"), order = ’hclust’,

addrect = 2)

Correlation matrix

Similar to the cor() command used to compute correlation for
several pairs of variables in a matrix, the rcorr() function from
the Hmisc package is useful to analyze the correlation matrix.

rcorr(X, type=c("pearson","spearman"))

It returns

1 the correlation matrix of X

2 the number of observation

3 the p-values for all pairwise correlations

Correlation matrix
library(Hmisc)

X <- as.matrix(X) res <- rcorr(X)

> str(res)

List of 3

$ r: num [1:11, 1:11] 1 -0.852 -0.848 -0.776 0.681 ...

..- attr(*, ”dimnames”)=List of 2

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

$ n: int [1:11, 1:11] 32 32 32 32 32 32 32 32 32 32 ...

..- attr(*, ”dimnames”)=List of 2

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

$ P: num [1:11, 1:11] NA 6.11e-10 9.38e-10 1.79e-07 1.78e-05 ...

..- attr(*, ”dimnames”)=List of 2

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

.. ..$: chr [1:11] ”mpg” ”cyl” ”disp” ”hp” ...

- attr(*, ”class”)= chr ”rcorr”

Correlation matrix

We are displaying only the matrix of p values, with 3 decimal digits

> round(res$P, 3)

mpg cyl disp hp drat wt qsec gear carb
mpg NA 0.000 0.000 0.000 0.000 0.000 0.017 0.005 0.001
cyl 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.004 0.002
disp 0.000 0.000 NA 0.000 0.000 0.000 0.013 0.001 0.025
hp 0.000 0.000 0.000 NA 0.010 0.000 0.000 0.493 0.000
drat 0.000 0.000 0.000 0.010 NA 0.000 0.620 0.000 0.621
wt 0.000 0.000 0.000 0.000 0.000 NA 0.339 0.000 0.015
qsec 0.017 0.000 0.013 0.000 0.620 0.339 NA 0.243 0.000
gear 0.005 0.004 0.001 0.493 0.000 0.000 0.243 NA 0.129
carb 0.001 0.002 0.025 0.000 0.621 0.015 0.000 0.129 NA

Principal Components Analysis

Principal Components Analysis

Principal Components Analysis (PCA) is a statistical method
designed to reduce data dimensionality.

PCA extracts the most significant information from a set of
multiple variables and represents this information as a set of new
variables, called principal components, obtained as linear
combinations of the original ones.

PCA allows one to identify a few principal components that can be
visualized graphically with minimal loss of information. It is
especially useful when dealing with three or higher dimensional
data.

The dominant principal components are the most important for
explaining covariation in the data.

Principal Components Analysis

The key idea is to apply a change of coordinates where the new
coordinate axes are aligned along the directions of largest variation.

In the 2-dimensional examples below, the PC1 axis is the first
principal direction along which the samples show the largest
variation. The PC2 axis is the second most important direction,
and it is orthogonal to the PC1 axis.

Principal Components Analysis

PCA differs from clustering which is also used for data
interpretation.

Clustering assumes that each data point is a member of one,
and only one, cluster. Clusters are mutually exclusive.

PCA assumes that each data point is a linear combination of
multiple basic “ingredients” which are not mutually exclusive.

Principal Components Analysis

I will use dataset decathlon2 from the factoextra package to
illustrate the ue of PCA.

> install.packages("factoextra")

> library("factoextra")

> data(decathlon2)

> head(decathlon2)

Principal Components Analysis

The dataset decathlon2 describes athletes’ performance during
two sporting events (Desctar and OlympicG).

It contains 27 athletes described by 13 variables (sport disciplines).

For further analysis, I will subset active individuals (rows 1:23) and
active variables (columns 1:10) from the decathlon2 dataset,
therefore I will create new dataset decathlon2b to conduct the
principal component analysis.

decathlon2b <- decathlon2[1:23, 1:10]

The decathlon2b dataset consists of 23 observations and 10
variables.

> dim(decathlon2b)

[1] 23 10

Principal Components Analysis

The summary statistics below shows the distribution of
observations.

> summary(decathlon2b)

Principal Components Analysis

The R command to perform a principal components analysis on a
data matrix x is the following

prcomp(x, retx = TRUE, center = TRUE, scale = FALSE,

tol = NULL, ...)

retx: A logical value indicating whether the rotated variables should
be returned. The default is TRUE.

center: A logical value indicating whether the variables should be
shifted to be 0 centered. Alternately, a vector of length equal the
number of columns of x can be supplied. The value is passed to
scale. The default is TRUE.

scale: A logical value indicating whether the variables should be
scaled to have unit variance before the analysis takes place. The
default is FALSE. In general, scaling is advisable.

tol: a value indicating the magnitude below which components
should be omitted. With the default NULL setting, no components
are omitted.

Principal Components Analysis
> res.pca <- prcomp(decathlon2b, scale = TRUE)

> print(res.pca)

Principal Components Analysis

The prcomp() function was set to center data around 0 by
shifting the variables (center = TRUE) and to rescale the
variance to 1 (scale = FALSE); data standarization is needed
since variables were measured in different scales.

The prcomp() function computed the 10 principal
components which also correspond to the number of variables
(10 sport disciplines) in the data.
Recall that data matrix contains 23 observations (athletes) of
10 variables (sport disciplines).

Each principal component (PC) explains a percentage of the
total variance in the data set.

Principal Components Analysis

Each PC explains a percentage of the total variance in the data set.

> summary(res.pca)

PC1 explains 41.24% of total variance, PC2 explains 18.39%
of total variance and so on.

The Cumulative Proportion section shows that the first 3 PCs
explains about 72% of the total variance and the first 4 PCs
explains about 80% of the total variance.

Principal Components Analysis

The amount of variation held by each principal component is
associated with the eigenvalues of the PCA.

The eigenvalues are extracted by get eigenvalue() function.

> eig.val<-get eigenvalue(res.pca)

> eig.val

Principal Components Analysis
The importance of PCs decreases rapidly with the dimension.

> fviz eig(res.pca, col.var="blue")

Principal Components Analysis

The Scree plot displays the variance by each PC.

It always displays a downward curve. It typically starts high, then
falls rather quickly and finally flattens out. This is because the first
component usually explains much of the variability, the next few
components explain a moderate amount, and the latter
components only explain a small fraction of the overall variability.

The scree plot is useful to decide the number of PCs that are
sufficient to provide a satisfactory approximation to explain the
data. scree plot criterion looks for the “elbow” in the curve and
selects all components just before the line flattens out.

Note: it is called a ‘scree’ plot (in the PCA literature) because it often

looks like a ‘scree’ slope, where rocks have fallen down and accumulated

on the side of a mountain.

Principal Components Analysis

PCA results can be assessed with regard to variables (sport
disciplines) and observations/individuals (athletes).

For that purpose, the function get pca var() provides a list of
matrices containing all the results for the variables: coordinates,
correlation between variables and axes, squared cosine, and
contributions.

Similarly, the function get pca ind() provides a list of matrices
containing all the results for the observations/individuals:
coordinates, squared cosine, and contributions.

Principal Components Analysis

> var <- get pca var(res.pca)

> var

Principal Component Analysis Results for variables
=============================

Name Description
1 ”$coord” ”Coordinates for the variables”
2 ”$cor” ”Correlations between variables and dimensions”
3 ”$cos2” ”Cos2 for the variables”
4 ”$contrib” ”contributions of the variables”

> ind <- get pca ind(res.pca)

> ind

Principal Component Analysis Results for individuals
=============================

Name Description
1 ”$coord” ”Coordinates for the individuals”
2 ”$cos2” ”Cos2 for the individuals”
3 ”$contrib” ”contributions of the individuals”

Principal Components Analysis

We start by assessing PCA results with regard to variables.

In the list above:

Cos2 is called square cosine and shows the importance of a
principal component for a given observation.

A low value means that the variable is not well represented by
that component
A high value, on the other hand, means a good representation
of the variable on that component.

Contrib indicates the contribution of the variables.

Principal Components Analysis

The code below computes the square cosine value for each variable
with respect to the first two principal components PC1, PC2.
> fviz cos2(res.pca, choice = "var", axes = 1:2)

Principal Components Analysis

From the plot, X100m, Long jump and Pole vault are the top three
variables with the highest cos2, hence they are well represented in
PC1 and PC2.

Principal Components Analysis
The code below shows variable contributions to PC1 and PC2.
> a1<-fviz contrib(res.pca, choice = "var", axes = 1)

> a2<-fviz contrib(res.pca, choice = "var", axes = 2)

> library("gridExtra")

> grid.arrange(a1,a2,ncol=2, top=’Contribution of the variables to the first two PCs’)

Principal Components Analysis
The red dashed line on the graph above indicates the expected
average contribution. A variable with a contribution exceeding this
benchmark is considered as important in contributing to the PC. It
can be seen that the variables X100m, Long.jump and Pole.vault
contribute the most to both dimensions.

Principal Components Analysis
The biplot visualizes similarities/dissimilarities between variables.

> fviz pca var(res.pca, col.var = "black")

Principal Components Analysis
a Variables that are grouped together are positively correlated to
each other and variables that are negatively correlated are
displayed to the opposite sides of the biplot’s origin.

Principal Components Analysis
a The higher the distance between the variable and the origin, the
better represented that variable is in the principal components PC1
and PC2.

Principal Components Analysis
The quality of representation of variables can be drawn on the plot.
> fviz pca var(res.pca, col.var = "cos2", gradient.cols =

c("darkorchid4", "gold", "darkorange"),)

Principal Components Analysis
In the plot, cos2 values differ by gradient colors: variables with low
cos2 values are colored “darkorchid4”, medium cos2 values -
“gold”, high co2 values - “darkorange”.

Principal Components Analysis
X100m, Long.jump and Pole.vault have high cos2 implying a good
representation on the principal component. Variables are
positioned close to the circumference of the correlation circle.

Principal Components Analysis
Javeline has the lowest cos2 indicating that the variable is not well
represented by the PCs. The variable is close to the center of the
circle, so it is less important for the first components.

Principal Components Analysis
We now similarly assess PCA results with regard to individuals
using cos2.

> fviz cos2(res.pca, choice = "ind", axes = 1:2)

Principal Components Analysis

The plot shows the athletes on the left are well represented in
PC1, PC2.

Principal Components Analysis
We next assess PCA results for individuals using contrib.

> fviz contrib(res.pca, choice = "ind", axes = 1:2)

Principal Components Analysis

The plot shows the athletes contributing the most to PC1, PC2.

Principal Components Analysis

Here is another example of PCA.

The tidyverse package contains several useful functions for
visualizing and manipulating data

We consider the USArrests dataset built into R, which contains
the number of arrests per 100,000 residents in each U.S. state in
1973 for Murder, Assault, and Rape.

It also includes the percentage of the population in each state
living in urban areas, UrbanPop.

Principal Components Analysis

> install.packages("tidyverse")

> library(tidyverse)

> #load data

> data("USArrests")

> head(USArrests)

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

Principal Components Analysis
> res.pca <- prcomp(USArrests, scale = TRUE)

> print(res.pca)

Table shows that the first principal component (PC1) has high
values for Murder, Assault, and Rape which indicates that this
principal component describes the most variation in these
variables.

It also shows that the second principal component (PC2) has
a high value for UrbanPop, which indicates that this principle
component places most of its emphasis on urban population.

Principal Components Analysis

About 87% of information is accounted by PC1 and PC2

> summary(res.pca)

Principal Components Analysis
Here is the scree plot

> library("factoextra")

> eig.val<-get eigenvalue(res.pca)

> fviz eig(res.pca, col.var="blue")

Principal Components Analysis

The biplot visualizes similarities/dissimilarities between variables.

> fviz pca var(res.pca, col.var = "black")

Murder, Assault, and Rape point in similar directions.

Principal Components Analysis

Here is another version of the biplot showing both the variables
and the subjects (= states).

> biplot(res.pca, scale = 0)

Principal Components Analysis
States close to each other on the plot have similar data
patterns in regards to the variables in the original dataset.
Certain states are more highly associated with certain crimes
than others. For example, Georgia is the state closest to the
variable Murder in the plot.

Principal Components Analysis

The following example uses data from the paper

“Single-Cell RNA-Seq Reveals Lineage and X Chromosome
Dynamics in Human Preimplantation Embryos”

In the preimplantation embryos cells transform from being one type
to become three types at day 5.

The experiment examines around 100 specific gene for each cell
type

There are some genes are associated with a specific type of cell
and these genes could act as marker to identify these cell types.

PCA is used to aggregate cells with similar genes profiles

https://bioinfo4all.wordpress.com/2021/01/31/tutorial-6-how-to-do-principal-component-analysis-pca-in-r/

Linear Discrimination Analysis

Linear Discrimination Analysis (LDA)

Linear Discrimination Analysis (LDA), which is also called
Canonical Variates Analysis (CVA) is a technique to reduce
data dimensionality in the spirit of PCA

Similar to PCS, LDA is also used for analyzing group structure in
multivariate data.

The analogues of the Principal Components, here are the
Canonical Variate axes.

These axes are directions in multivariate space that maximally
separate (discriminate) the pre-defined groups of interest specified
in the data.

Unlike PCA, canonical variate axes are not, in general,
orthogonal in the space of the original variables.

https://bio723-class.github.io/Bio723-book/canonical-variates-analysis.html

Resampling Methods

Resampling Methods

Suppose we have a data set and believe it shows a non-random
pattern, so that we want to infer the mean or the variance and to
establish appropriate confidence intervals.

Recall: Central Limit Theorem (CLT)

In a nutshell, the CLT states that:

For a population with mean µ and standard deviation σ, we can
estimate the population mean using random sampling.

If the sample size N % 30, the sampling distribution of the mean
will be approximately normal with mean µ.
The standard error of the sample mean is σ©ÓN
Confidence Intervals: This method allows us to determine the
level of confidence that the true population mean lies within an
interval, using either the z-statistic or t-statistic.

Resampling Methods

Suppose that you only have a sample with no idea about the
underlying population.

How can we understand the structure of the data?

Resampling methods explore the data by sampling from the
sample itself (not from the population) and can be used to create
empirical sampling distributions to test statistical hypotheses,
estimate standard errors and construct confidence intervals.

Key idea: resamples from the sample itself, treating it as the
estimated population.

These methods are nonparametric, meaning they don’t make
distribution assumptions like normality.

Popular resampling methods include:
randomization, jackknife, and bootstrap.

Randomization Tests
Randomization tests, introduced by R. A. Fisher (1935), use
resampling techniques to construct a sampling distribution that
can be used to make inferences about the population. What makes
a randomization distribution different from other resampling
methods is that it is constructed under the assumption that the
null hypothesis is true.

Example. Suppose the height and weight are measured on a
sample of males and females, and we wish to test whether a
height-weight score S , say

S � Height©Weight
1©3

is different in males vs. females.

Further suppose that from a plot of S , we clearly see that the data
are highly non-normal and also find that no data transformations
appear to cleanly normalized the data.
Thus, t or z tests are inappropriate to assess significance.

Randomization Tests

We can apply a randomization test by computing S for each
individual and then shuffling the S values random over gender. We
use a randomization test to compare the observed difference in the
means to the distribution of differences that we would expect to
observe if the labels male and female were randomly applied to
samples of equal size from the data at hand.

Suppose that there are Nm males and Nf females.
Drawing (without replacement) NmS values from the original
sample and assigning them as males, and the remainder as
females, generates a randomized sample.

Randomization Tests

Suppose that, in the original sample, the mean value of S in males
was 10.2 units larger than the mean value for females.
In a resampling distribution with 2000 values, 12 show male minus
female differences of 10.2 or greater and 17 show male minus
females differences of -10.2 or less.

Thus under the one-sided tests that males are larger than females,
randomization estimates the probability under the null hypothesis
as 12/2000 = 0.006. Under a two-sided test, the probability is
0.006 + 17/2000 = 0.0145.

A critical question in this method is how many randomized samples
one should generate. The general consensus is around 1000
samples for tests at the 5% level and 5000 for tests at the 1% level

Bootstrap

Bootstrap approaches (originally introduced by Efron in 1979)
attempt to estimate the sampling distribution of a population by
generating new samples by drawing (with replacement) from the
original data.

Bootstrap Process in a Nutshell

1 Draw random samples from the sample itself (estimated
population).

2 Resampling is allowed, so an observation may appear multiple
times in the same sample.

3 Repeat the process thousands of times to build an actual
sampling distribution.

4 Calculate the mean and standard errors of the estimator.

5 Determine the confidence interval for the population mean
directly from the sampling distribution.

Jackknife

The jackknife method is another resampling technique that was
popular in the past when computers were less advanced.

Unlike bootstrap, which repeatedly draws samples of the same size
with replacement, jackknife samples are selected by taking the
original observed data sample and leaving out one observation at a
time without replacement.

For an estimated population of size M, jackknife usually requires
M repetitions, whereas bootstrap can have many more resamples
as repetition is allowed.

Like bootstrap, the statistic for each resample is calculated, and
the data forms the sampling distribution, which determines the
confidence intervals for the population statistic.

Resampling Methods

Jackknife vs. Bootstrap

Jackknife is less computationally intensive, making it popular
in the past when computers were less advanced.

Bootstrap allows for more resamples as repetition is allowed,
resulting in a more robust sampling distribution.

Jackknife produces the same results for every run, as the
resampling process is exhaustive.

Bootstrap usually gives different results, as resamples are
randomly drawn.

Randomized test vs. Bootstrap

Like bootstrapping procedures, randomization procedures use
resampling techniques to construct a sampling distribution
that can be used to make inferences about the population.
What makes a randomization distribution different is that it is
constructed given that the null hypothesis is true.

Resampling Methods using R

https://bio723-class.github.io/Bio723-book/randomization-jackknife-and-bootstrap.html

https://bookdown.org/jgscott/DSGI/the-bootstrap.html

	Covariance and correlation matrices
	Correlation
	Data matrix
	Correlation matrix

	Principal Components Analysis
	Linear Discrimination Analysis
	Resampling Methods

