TEST \#1

No books or notes allowed. Please, write clearly and justify all your steps, to get proper credit for your work.
(1)[3 Pts] (i) State the definition of orthogonal complement of an inner product space V.
(ii) Let $V=\mathbb{R}^{3}$ and consider the subspace of V given by

$$
V_{0}=\operatorname{span}\{(1,0,2),(-1,-1,1)\} .
$$

Find the orthogonal complement of V_{0} in V.
(2)[3 Pts] Consider the inner product space $V=L^{2}([0,1])$. Compute the orthogonal projection of the function $f(x)=x^{2}$, for $x \in[0,1]$, onto the subspace $V_{0}=\operatorname{span}\{\phi, \psi\}$, where

$$
\begin{aligned}
& \phi(x)= \begin{cases}1 & 0 \leq x<1 \\
0 & \text { otherwise } .\end{cases} \\
& \psi(x)= \begin{cases}1 & 0 \leq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leq x<1 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

(3)[3 Pts] Consider the sequence of functions $\left(f_{n}\right)$ defined by

$$
f_{n}(x)= \begin{cases}n x & 0 \leq x<\frac{1}{n} \\ 1 & \frac{1}{n} \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Draw the graph of $f_{n}(x)$ for two values of n (e.g., $n=2,4$). Show that $\left(f_{n}\right)$ converges to the function $f(x)=1, x \in[0,1]$, in the L^{2} norm.

TEST \#2

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [5 Pts] Let $f(x)=\cos ^{2}(x)$.
(a) Sketch a graph of f over the interval $[-\pi, \pi]$.
(b) Expand the function $f(x)=\cos ^{2}(x)$ in a Fourier series valid on the interval $-\pi \leq x \leq \pi$.
(b) Does the Fourier series of f converge uniformly to f ? Justify your answer.
(2) [6 Pts] Consider the function

$$
f(x)= \begin{cases}-x^{2} & -1 \leq x<0 \\ x^{2} & 0 \leq x \leq 1\end{cases}
$$

(a) Sketch a graph of f over the interval $[-1,1]$.
(b) Expand the function f in a Fourier series valid on the interval $-1 \leq$ $x \leq 1$.
[HINT: You can take advantage of the symmetry of f]
(3)[4 Pts] (a) Show that if f is continuous on the interval $0 \leq x \leq a$, then its even periodic extension is continuous everywhere. Justify your answer.
(b) What about the odd periodic extension? What conditions are necessary to ensure that the odd periodic of f is continuous everywhere? Justify your answer.
[HINT: In both cases, it suffices to check the behavior near $x=0$]

TEST \#3

Please, write clearly and justify all your steps, to get proper credit for your work. Open book test
(1) $[5 \mathrm{Pts}]$ Let

$$
f(t)=\left\{\begin{array}{lc}
t & -\frac{1}{2} \leq t<\frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Compute \hat{f}, the Fourier transform of f.
(b) Express the real and imaginary part of \hat{f}.
[HINT: You can take advantage of the symmetry of f]
(2) $[5 \mathrm{Pts}]$ Let

$$
\phi(t)=\left\{\begin{array}{l}
1 \quad 0 \leq t<1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

and

$$
g(t)=\left\{\begin{array}{lc}
t & 0 \leq t<1 \\
0 & \text { otherwise } .
\end{array}\right.
$$

(a) Compute $h(x)=(\phi * g)(x)$.
(b) Sketch the graphs of ϕ, f and h over the interval $[-1,3]$.
(3) $[3 \mathrm{Pts}]$ Consider the filter

$$
f \rightarrow f * h_{d}
$$

where

$$
h_{d}(t)= \begin{cases}1 / d & 0 \leq t<d \\ 0 & \text { otherwise } .\end{cases}
$$

Let

$$
f(t)=e^{-t}(\cos 2 t+\sin 3 t+\cos 18 t+\sin 90 t), \quad t \in[0,2 \pi] .
$$

Which value(s) of the parameter d for the filter h_{d} will ensure that the components of the signal f with frequencies above 50 are removed and the frequencies in the range 0 to 18 are retained? Justify your answer.

TEST\#1.
solution
(1) (i) The ORTHOGOAAL COMPIEMENT of V_{0} in V is the set of all vectors in V wlich ore or Uug...l to V_{0} :

$$
\begin{equation*}
V_{0}{ }^{\alpha}=\left\{v \in V:\langle v, w\rangle=0 \quad \forall w \in V_{0}\right\} \tag{Pr}
\end{equation*}
$$

($i i$) Since \mathbb{R}^{3} is 3-dinusinal al V_{0} is 2-dimeind, V_{0}^{2} is the seon of He vectors whict ore or llogul to $(1,0,2)$ al $(-1,-1,1)$.

$$
(1,0,2) \times(-1,-1,1)=\left|\begin{array}{rcc}
i & j & k \\
1 & 0 & 2 \\
-1 & -1 & 1
\end{array}\right|=(2,-3,-1)
$$

Here $\quad V_{0}^{\perp}=\{v \in V: \quad v=\alpha(2,-3,-1), \quad \alpha \in \mathbb{R}\}$
(2) φ od ψ ore an ONB of V_{0}. Hene, fo, the orkayand exojection of f onto V is gim by

$$
\xrightarrow[i]{\substack{1 \\ \sim}} \stackrel{f_{0}}{\substack{f_{0}(x)}} \quad f_{0}(x)=\frac{1}{3} \varphi(x)-\frac{1}{4} \psi(x)
$$

(3)

Nee.l to show Hot $\quad f_{n}(x) \rightarrow f(x)$ in L^{2} untw $\pi . t$ is $\quad\left\|f_{n}-f\right\|^{2} \rightarrow 0$

Thit is

$$
\begin{aligned}
& \text { 1s } \int_{0}^{1}\left(n_{n}(x)-1\right)^{2} d x=\int_{0}^{\frac{1}{n}}(n x-1)^{2} d x= \\
& =\int_{0}^{\frac{1}{n}}\left(1-2 n x+n^{2} x^{2}\right) d x=x-n x^{2}+\left.n^{2} \frac{x^{3}}{3}\right|_{0} ^{\frac{1}{n}}=\frac{1}{3 n} \rightarrow 0 \text { os } n
\end{aligned}
$$

This slows tht $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=\lim _{n \rightarrow \infty} \frac{1}{3 n}=0$

$$
\begin{aligned}
& f_{0}(x)=\langle f, \varphi\rangle \varphi(x)+\langle G, \psi\rangle \psi(x) \\
& \langle 6, \varphi\rangle=\int_{0}^{x^{2} \varphi(x) d x=1 / 3} \\
& \langle f, \psi\rangle=\int_{0}^{1} x^{2} \psi(x) d x=\int_{0}^{1 / 2} x^{2} d x-\int_{\frac{1}{2}}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1 / 2}-\left.\frac{x^{3}}{3}\right|_{\frac{1}{2}} ^{1}=\frac{(1 / 2)^{3}}{3}-\frac{1}{3}+\frac{(1 / 2)^{3}}{3}
\end{aligned}
$$

$$
f(x)=\cos ^{2} x
$$

(a)

[IPr] pa groph

Notice unt $\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x \quad\left(\cos ^{2} x\right.$ is π-petiodic)
(b) By the iniqueness of the Fourier seris, it follews Kot He Fourrier series of F, oner the interiod $[-\pi, \pi]$ is

$$
F(x)=\frac{1}{2}+\frac{1}{2} \cos 2 x
$$

(c) Since f is continusos ont precewice snooth, Hen $F(x)$ caverges] unifs and to f m $[-\pi, \pi]$
(a)

Notie Hit f is on

$$
[v p r] d g
$$ odd function

(b) Since f is on oull function, its Fouker series only contain the sin-texms. Hence it en be computides

$$
\begin{aligned}
& F(x)=\sum_{k=1}^{\infty} b_{k} \sin (k \pi x) \quad \text { where } b_{k}=2 \int_{0}^{1} f(x) \sin (16 \pi x) d \\
& b_{k}=2 \int_{0}^{1} x^{2} \sin x d x=2\left[-\left.\frac{1}{k \pi} x^{2} \cos k \pi\right|_{0} ^{1}+\frac{2}{k \pi} \int_{0}^{1} x \cos k \pi d x\right] \\
& =2\left[-\left.\frac{x^{2}}{k \pi} \cos k_{\pi} x\right|_{0} ^{1}+\left.\frac{2}{k^{2} \pi^{2}} x \sin k_{\pi x}\right|_{0} ^{1}-\frac{2}{k^{2} \pi^{2}} \int_{0}^{1} \sin k_{\pi} x d x\right] \\
& =2\left[-\left.\frac{x^{2}}{k \pi} \cos k\right|_{0} ^{1}+\frac{2}{k^{2}} \times\left.\sin k\right|_{0} ^{1}+\left.\frac{2}{k^{3} \pi^{3}} \cos k \pi x\right|_{0} ^{1}\right] \\
& =2\left[-\frac{1}{k_{\pi}} \cos k_{\pi}+\frac{2}{k^{2}} \sin k_{\pi}+\frac{2}{k^{3} \pi^{3}} \cos k_{\pi}-\frac{2}{k_{\pi}^{3} 3}\right] \\
& =2\left(-\frac{(-1)^{k}}{k \pi}+\frac{2}{(k \pi)^{3}}\left((-1)^{k}-1\right)\right)
\end{aligned}
$$

(3) (a) If f is continuous on $[0, a]$, then its rpeeriodic extinsion sotisfies $f(x)=f(x+n a) \quad \forall n \in \mathbb{Z} \quad$ ol $\quad f(x)=f(-x)$

$$
\text { pts] In particulex, } f(0+)=\lim _{h \rightarrow 0^{+}} f(h)=\lim _{h \rightarrow 0^{+}} f(-h)=f\left(0^{-}\right)
$$

Thit is the peridic axtinsin is cutinver of $x=0$
(b) The olld extinsine setistion $f(x)=-f(-x)$

Henlee,

$$
\text { ente, } \lim _{h \rightarrow 0^{+}} f(h) \neq \lim _{h \rightarrow 0^{+}} f(-h)=\lim _{h \rightarrow 0^{+}}-f(h)
$$

eprs]
Thu two sith ore the some iff

$$
\lim _{h \rightarrow 0^{+}} f(h)=-\lim _{h \rightarrow 0} f(h)=0
$$

Thet is, the odd exturse of 0 is cutinuous iff $f(0)=0$

TEST \#3
SOCUTIONS
(1) (a)

$$
\begin{aligned}
\hat{f}(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(t) e^{-i \omega t} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\frac{1}{2}}^{\frac{1}{2}} t e^{-i \omega t} d t
\end{aligned}
$$

NOTICE:

$$
t e^{-i \omega t}=t \cos \omega t-i t \sin \omega t
$$

[4prs]

$$
=\frac{2 i}{\sqrt{2 \pi}} \int_{0}^{\frac{t}{2}} t(-\sin \omega t) d t
$$

Since t cont is OOD, gives no contribution to $\hat{f}(u)$

$$
=\frac{2 i}{\sqrt{2 \pi}}\left[\left.\frac{t}{\omega} \cos \omega t\right|_{0} ^{\frac{1}{2}}-\frac{1}{\omega} \int_{0}^{\frac{1}{2}} \cos \omega t\right]=
$$

$$
=\frac{2 i}{\sqrt{2 \pi}}\left[\frac{1}{2 \omega} \cos \left(\omega \frac{1}{2}\right)-\frac{1}{\omega^{2}} \sin \frac{w}{2}\right]
$$

(b) $\hat{f}(w)$ is PORELY intgintry $\hat{f}(\omega)=i I_{m}[\hat{f}(w)]$
[19t]

$$
\mathbb{R e}_{e} \hat{f}(w)=0
$$

(3) The convolution acts as local overaying operolut on wndows of size d

To remove freersucur abse so, need

$$
d \geq \frac{2 \pi}{50} \simeq 0.12
$$

[3Pts] To preseme Crepeencies below 18, weel

$$
d \ll \frac{2 \pi}{18} \simeq 0.33
$$

Fir exaple, we can choose $d \simeq 0.15$
(a)

$$
h(x)=(\varphi * g)(x)=\int_{\mathbb{R}} \varphi(t) g(x-t) d t
$$

$$
=\int_{0}^{1} g(x-t) d t
$$

It is clan from the graph of $y(x-t)$ that $h(x)=0$ if $x<0$

$$
h(x)=0 \text { if } \quad x-1>1 \Leftrightarrow x>2
$$

Hence, we only weed to examine $0 \leq x \leq 2$
If $0 \leq x \leq 1$, Hen

If $1<x<2$, h_{n}

$$
\begin{aligned}
h(x)=\int_{0}^{x}(x-t) d t=\left.\left(x t-\frac{t^{2}}{2}\right)\right|_{0} ^{x} & =x^{2}-\frac{x^{2}}{2}=\frac{x^{2}}{2} \\
h(x)=\int_{x-1}^{1}(x-t) d t=\left.\left(x t-\frac{t^{2}}{2}\right)\right|_{x-1} ^{1} & =x-\frac{1}{2}-(x-1) x+\frac{(x-1)^{2}}{2} \\
& =x\left(1-\frac{x}{2}\right)
\end{aligned}
$$

Conclusion

$$
h(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<0 \\
0 & \text { if } & x>2 \\
\frac{x^{2}}{2} & \text { if } & 0 \leq x \leq 1 \\
x\left(1-\frac{x}{2}\right) & \text { if } & 1<x \leq 2
\end{array}\right.
$$

(b)

