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1 Introduction

The subject called “wavelets” is made up of several areas of pure and applied mathematics. It has contributed
to the understanding of many problems in various sciences, engineering and other disciplines, and it includes,
among its notable successes, the wavelet-based digital fingerprint image compression standard adopted by
the FBI in 1993 and JPEG2000, the current standard for image compression.

We will begin by describing what wavelets are in one dimension and, then, pass to more general settings,
trying to keep the presentation at a non-technical level as much as possible. We assume that the reader
knows a bit of harmonic analysis. In particular, we assume knowledge of the basic properties of Fourier series
and Fourier transforms. We start by establishing the basic definitions and notations which will be used in
the following.

The space L2(R) is the Hilbert space of all square (Lebesgue) integrable functions endowed with the
inner product ⟨f, g⟩ =

∫
R f g. The Fourier transform F is the unitary operator that maps f ∈ L2(R) into

the function Ff = f̂ defined by

(Ff)(ξ) = f̂(ξ) =

∫
R
f(x) e−2πiξx dx

when f ∈ L1(R)∩L2(R) and by the “appropriate” limit for the general f ∈ L2(R). We refer to the variable

x as the time variable and to ξ as the frequency variable. Notice that the function f̂ is also square integrable.
Indeed, F maps L2(R) one-to-one onto itself . The inverse F−1 of F is defined by

(F−1g)(x) = ǧ(x) =

∫
R̂
g(ξ) e2πixξ dξ.

The functions {ek(x) = e2πikx : k ∈ Z} are 1-periodic and form an orthonormal basis of L2(T), where T is
the 1-torus and can be identified with any of the sets (0, 1] or [−1

2 ,
1
2 ) or [−1,−1

2 ) ∪ [ 12 , 1), . . . , (all having
measure one). We denote the Fourier series of f , 1-periodic and in Lp(T), by:∑

k∈Z

⟨f, ek⟩T ek ∼ f,

where ⟨f, ek⟩T =
∫
T f ek, and k ∈ Z.

The paper is organized as follows. In Section 2, we introduce one dimensional wavelets; in Section 3, we
discuss wavelets in higher dimensional Euclidean spaces; Section 4 introduces continuous wavelets and some
applications; finally, Section 5 discusses other applications and makes some concluding remarks.

2 Wavelets in L2(R)
We consider two sets of unitary operators on L2(R): the translations Tk, k ∈ Z, defined by (Tkf)(x) = f(x−k)
and the (dyadic) dilations Dj , j ∈ Z, defined by (Djf)(x) = 2j/2f(2jx). A wavelet (more precisely, a dyadic
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wavelet) is a function ψ ∈ L2(R) having the property that the system Wψ = {ψj,k = (Dj Tk)ψ : j, k ∈ Z} is
an orthonormal (ON) basis of L2(R). Notice that the order of applying first translations and, then, dilations
is important: Dj Tk = T2−jkDj .

In this section, we will explain why there are many wavelets enjoying a large number of useful properties
which makes it plausible that various different types of functions (or signals) can be expressed efficiently by
appropriate wavelet bases.

It is often stated that Haar in 1910 [19] exhibited a wavelet ψ = ψH and it took about 70 years before
a large number of different wavelets appeared in the world of Mathematics. This is really not the case. The
Haar wavelet is defined by ψH = χ[0, 12 )

− χ[ 12 ,1)
and it is not difficult to show that it is a wavelet (as will

be shown below). Another simple example is the Shannon wavelet; it appeared in the 1940’s and we will
explain in what sense it appeared. It is defined as ψS = χ̌S , where S = [−1,− 1

2 ) ∪ [ 12 , 1). A straightforward
calculation shows that, if ψ ∈ L2(R), then, for j, k ∈ Z,

(ψ̂j,k)(ξ) = [2−j/2e−2πik2−jξ] ψ̂(2−jξ). (2.1)

Let us observe that the sets 2jS, j ∈ Z, form a mutually disjoint covering of R \ {0}. Moreover, since
the system {e−kχS : k ∈ Z} is an ON basis of L2(S), the functions within the square bracket in (2.1),
restricted to the set 2jS, form an ON basis of L2(2jS) for each j ∈ Z. It follows immediately that the set
{ψSj,k : j, k ∈ Z} is an ON basis of L2(R). This shows that ψS is a wavelet.

We mentioned that it is not difficult to show that the Haar function ψH is a wavelet. We will do this
together with the presentation of a general method for constructing wavelets: the Multiresolution Analysis
(MRA) method introduced by S. Mallat with the help of R. Coifman and Y. Meyer [23, 26].

An MRA is a sequence {Vj : j ∈ Z} of closed subspaces of L2(R) satisfying:

(i) Vj ⊂ Vj+1 for all j ∈ Z.

(ii) Vj+1 = D1Vj for all j ∈ Z; that is, f ∈ Vj iff f(2·) ∈ Vj+1.

(iii)
∩
j∈Z Vj = {0}.

(iv)
∪
j∈Z Vj = L2(R).

(v) There exists ϕ ∈ V0 such that {Tk ϕ : k ∈ Z} is an ON basis of V0.

The function ϕ described in (v) is called a scaling function of this MRA.
If {Vj : j ∈ Z} is an MRA, let Wj be the orthogonal complement of Vj within Vj+1. An immediate

consequence of the above properties is that the spaces Wj , j ∈ Z, are mutually orthogonal and their
orthogonal direct sum

⊕
j∈ZWj satisfies ⊕

j∈Z

Wj = L2(R). (2.2)

If there exists a function ψ ∈W0 such that {Tk ψ : k ∈ Z} is an ON basis of W0, using the observation that
DjW0 =Wj for each j ∈ Z (an easy consequence of the MRA properties), we see that {ψj,k = DjTk ψ : k ∈
Z} is an ON basis of Wj . It follows from (2.2) that {ψj,k = DjTk ψ : j, k ∈ Z} is an ON basis of L2(R).
Thus, ψ is a wavelet. In the case where ϕ = χ[0,1) and V0 is the span of the ON system {Tk ϕ : k ∈ Z}, it
is easy to check that {Vj = DjV0 : j ∈ Z} is an MRA. Moreover, it is easy to verify that {Tk ψH : k ∈ Z}
is an ON basis of the space W0 defined by W0 = V ⊥

0 ⊂ V1. It follows that {DjTk ψ
H : j, k ∈ Z} is an ON

basis of L2(R). This shows that the Haar function ψH is indeed a wavelet.
We leave it to the reader to verify that the Shannon wavelet ψS is an MRA wavelet as well. In fact, it

corresponds to the scaling function ϕ(x) = sinc(x) = sin xπ
xπ (note: sinc(0) = 1). This is a consequence of the

fact that (sinc)∧(ξ) = χ[− 1
2 ,

1
2 )
(ξ) = ϕ̂(ξ).

We point out that there is an important result involving the function sinc, namely the following elementary
theorem.
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Theorem 2.1 (Whittaker-Shannon-Kotelnikov Sampling Theorem). Let f ∈ L2(R) and supp f̂ ⊂ [− 1
2 ,

1
2 ].

Then
f(x) =

∑
k∈Z

f(k) sinc(x− k),

where the symmetric partial sums of this series converge in the L2-norm, as well as absolutely and uniformly.

We will explain how this result is related to wavelets even though, when it was obtained, the notion of
wavelets had not yet appeared. The word sampling reflects the fact that the functions involved are completely
determined if we know their values on the countable set Z. The name Shannon is singled out because he is
associated with many important aspects and applications of sampling.

Let ϕ ∈ L2(R), ϕ not the zero function, and Tϕ = {ϕk = Tk ϕ : k ∈ Z}. Then Tϕ generates the closed

space Vϕ := ⟨ϕ⟩ = span {ϕk : k ∈ Z}, that is, the closure of all finite linear combinations of the functions ϕk.
This space is shift-invariant and is called the Principal Shift-Invariant Space (PSIS) generated by ϕ. In case
ϕ = sinc, then Tϕ = ⟨sinc⟩ is an orthonormal system (recall that (sinc)∧(ξ) = χ[− 1

2 ,
1
2 )
(ξ)) and we have that∑

k∈Z |f(k)|2 <∞, where f is the function in Theorem 2.1. If V0 = ⟨sinc⟩, then the set {Vj = DjV0 : j ∈ Z}
is an MRA and ϕ = sinc is a scaling function for this MRA. For a general MRA with a scaling function
ϕ, there is a bounded 1-periodic function m0 known as a low-pass filter and an associated high-pass filter

m1(ξ) = e2πiξm0(ξ +
1
2 ) that produce the so-called two-scale equations:

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ), ψ̂(2ξ) = m1(ξ)ϕ̂(ξ). (2.3)

In fact, these equations produce the desired wavelet ψ generated by the scaling function ϕ. In the special case
we are considering, where ϕ = sinc, the low-pass filter, when restricted to the interval [−1

2 ,
1
2 ], is the function

χ[− 1
4 ,

1
4 ]
. One can verify indeed that, in this case, ψ̂(ξ) = e−iπξ ψ̂S(ξ) = e−iπξ χS(ξ). Thus, the wavelet we

obtain is essentially the Shannon wavelet, since the factor e−iπξ is irrelevant to the orthonormality of the
system.

Let us point out that the spaces V0 and W0, in general, are PSIS’s, but they have an important difference
with respect to the dilation operators we are considering: Vj = Dj V0 is an increasing sequence of closed
spaces as j → ∞, while the spaces Wj = DjW0 are disjoint and satisfy (2.2).

The properties of shift-invariant spaces have many consequences in the theory of wavelets. If ϕ is not
the zero function in L2(R), let pϕ(ξ) =

∑
j∈Z |ϕ̂(ξ + j)|2 and consider the space Mϕ = L2([0, 1], pϕ) of all

1-periodic functions m satisfying ∫ 1

0

|m(ξ)|2 pϕ(ξ) dξ := ∥m∥2Mϕ
<∞.

It is easy to check that the mapping Jϕ : Mϕ 7→ ⟨ϕ⟩ = Vϕ defined by Jϕm = (mϕ̂)∨ is an isometry onto
Vϕ ⊂ L2(R). That is, the two spaces Mϕ and Vϕ are “essentially equivalent” via the map Jϕ. It is natural,
therefore, to ask how the properties of the weight pϕ correspond to the properties of the generating system
Tϕ. For example, the functions e−k(ξ) = e−2πikξ, k ∈ Z, are mapped by the mapping Jϕ onto the functions
ϕ(· − k), k ∈ Z. Since the set {e−k(ξ) : k ∈ Z} is algebraically linearly independent, so is the system Tϕ. It
follows immediately that

(i) Tϕ is an ON system iff pϕ(ξ) = 1 a.e.

(ii) pϕ(ξ) > 0 a.e. iff there exists an ON basis of Vϕ of the form {Tkψ : k ∈ Z} for some ψ ∈ Vϕ.

In [20, 7], many properties of pϕ are shown to be equivalent to properties of Vϕ or Tϕ. For example one
can show the following.

(iii) The system Tϕ is a frame for Vϕ in the sense that we have constants 0 < A ≤ B <∞ for which

A
∑
k∈Z

|⟨f, Tkϕ⟩|2 ≤ ⟨f, f⟩ ≤ B
∑
k∈Z

|⟨f, Tkϕ⟩|2
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for each f ∈ Vϕ iff
AχΩϕ

(ξ) ≤ pϕ(ξ) ≤ B χΩϕ
(ξ), a.e.,

where Ωϕ = {ξ ∈ [0, 1] : pϕ(ξ) > 0}.

Note that, in general, when ϕ̃ = (
χΩϕ

pϕ
ϕ̂)∨, then ϕ̃ ∈ Vϕ = Vϕ̃ and pϕ̃ = χΩ a.e. Moreover, Tϕ̃ is a Parseval

frame (PF) for Vϕ; that is, it is a frame with A = B = 1. Slightly more general than ON MRA wavelets
are PF MRA wavelets ψ where Tψ is a PF for W0 and there is a scaling function ϕ generating a PF for V0.

Examples include the function ψ given by ψ̂ = χ
U\ 1

2U
, for U ⊂ [− 1

2 ,
1
2 ), where U has positive measure and

1
2U ⊂ U .

One of the most celebrated contributions to the construction of MRA wavelets was made by I. Daubechies
[1, 2], who used an ingenious construction to produce MRA wavelets which are compactly supported, and
can have high regularity and many vanishing moments, where the kth moment of ψ is defined as the integral∫
R x

k ψ(x) dx. These wavelets are very useful for applications in numerical analysis and engineering since
the wavelet expansions of a piecewise smooth function converge very rapidly to the function. Specifically,
suppose that f ∈ CR(R), the space of R times differentiable functions such that ∥f∥CR = max{∥f (s)∥∞ :
s = 0, . . . , R} < ∞, and ψ is a compactly supported wavelet having at least R vanishing moments. Choose
a bijection π : N 7→ Z×Z such that |⟨f, ψπ(k)⟩| ≥ |⟨f, ψπ(k+1)⟩| for all k ≥ 1; that is, the wavelet coefficients
of f are ordered in non-increasing order of magnitude. Then one can show [21, Thm. 7.16] that

|⟨f, ψπ(m)⟩| ≤ C ∥f∥CR m−(R+ 1
2 ), (2.4)

where C is a constant independent of f and m. The implication of this is that relatively few coefficients are
needed to get a good approximation of f . In fact, letting fN be the best N -term nonlinear approximation
of f , the nonlinear approximation error decays as

∥f − fN∥2L2 ≤ C
∑
m>N

|⟨f, ψπ(m)⟩|2 ≤ C ∥f∥CR N−2R. (2.5)

Remarkably, this result holds also if f is R times continuously differentiable up to finitely many jump
discontinuities. That is, the wavelet approximation behaves as if the functions had no discontinuities. This
behaviour is very different from Fourier approximations, in which case the error rate is of the order O(N−2).
These results have extensions to higher dimensions (see further discussion in Sec. 3).

Another important property of an MRA is that it enables an efficient algorithmic implementation of the
wavelet decomposition. To explain this, suppose that ψ is a compactly supported MRA wavelet associated
with a compactly supported scaling function ϕ. Because ϕ and ψ are in V1, it follows that D−1ϕ and D−1ψ
are in V0. Let us examine equations (2.3) which, in the time domain, can be written as

(D−1ϕ)(x) =
1√
2
ϕ(
x

2
) =

∑
k∈Z

ak ϕ(x− k), (D−1ψ)(x) =
1√
2
ψ(
x

2
) =

∑
k∈Z

bk ϕ(x− k), (2.6)

where only finitely many coefficients ak and bk are not zero. Since D−1 is unitary, from (2.6) we obtain

ak = ⟨D−1ϕ, Tkϕ⟩ = ⟨Dj−1ϕ,DjTkϕ⟩, bk = ⟨D−1ψ, Tkϕ⟩ = ⟨Dj−1ψ,DjTkϕ⟩. (2.7)

We see, therefore, that there are two ON bases for Vj =Wj−1⊕Vj−1; they are DjTϕ and Dj−1Tψ ∪Dj−1Tϕ.
From equalities (2.7), we can calculate the matrices of the change of bases derived from these two ON bases
(keeping in mind that the order of dilations and translations is important: TkD1 = D1T2k). For a given
compactly supported fj ∈ Vj , we apply the appropriate change of basis matrix to compute the orthogonal
projection fj−1 of f0 into Vj−1 and obtain the “correction term” ej−1 = fj − fj−1 ∈ Wj−1. Iterating this
procedure, we see that arithmetic manipulations with finite sets of coefficients are all that is involved to
compute f0 ∈ V0 and ei ∈ Wi, 0 ≤ i ≤ j − 1, so that fj = f0 + e1 + · · · + ej−1. Together with the
excellent approximation properties of wavelets, this remarkably simple technique is one of the main reasons
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why engineers adopted wavelets (specifically, the so-called compactly supported biorthogonal wavelets [8])
in the design of JPEG2000, the industrial standard for image compression replacing the older Fourier-based
JPEG standard.

Another property of MRA wavelets is that, considered as members of a subset of the unit sphere in L2(R),
they form an arcwise connected set. In particular, it is not hard to show that there are continuous paths
of wavelets. Suppose that ψ is an MRA wavelet and ψ̃ is a wavelet in the same MRA. Then one can easily
show that (ψ̃)∧ = s ψ̂, where s is a 1-periodic unimodular function. In particular, we can choose a 1-periodic

function θ for which (ψ̃)∧ = eiθ ψ̂ and set st = eitθ, for t ∈ [0, 1], to establish a continuous path t 7→ (stψ̂)∨

in L2(R) connecting ψ to ψ̃. A more complicated argument shows how ψ is continuously connected to the
Haar wavelet [13]. Other related questions arise naturally. For example: are all ON wavelets connected? are
any two frame wavelets connected? The answer to this last question is “yes”, whereas the previous question
is still an open problem.

Before moving to the topic of wavelets in higher dimensions, let us state that there are many other facts
about one-dimensional wavelets we have not discussed. In particular, there are wavelets not arising from an
MRA. Also, wavelets can be defined by replacing dyadic dilations with dilations by r > 1, where r need not
be an integer. In the situation of non-dyadic dilations, the construction of the orthonormal bases associated
with the wavelet may require more than one generator; namely, if r = p

q > 1, and p, q are relatively prime,
then p− q generators are needed.

3 Wavelets in higher dimensions

Many of the concepts in Section 2 extend naturally to n dimensions (n ∈ N, n > 1) with Z-translations
replaced by Zn-translations and the dilation set {2j : j ∈ Z} replaced by {uj : j ∈ Z}, where u is an n× n
real matrix each of whose eigenvalues has magnitude larger than one. Both for theoretical and practical
purposes, however, it is convenient to focus our attention on PF wavelets rather than ON wavelets. Thus,
given the matrix u, we seek functions ψ ∈ L2(Rn) for which the wavelet system

{ψj,k(x) = (Dj
u Tk ψ)(x) = | detu|j/2ψ(ujx− k), j ∈ Z, k ∈ Zn}, (3.8)

is a PF for L2(Rn). That is, ∑
j∈Z

∑
k∈Zn

|⟨f, (Dj
u Tk ψ⟩|2 = ∥f∥2L2(R2),

for all f ∈ L2(Rn). For example, let n = 2 and u =

(
2 0
0 2

)
. For U ⊂ [− 1

2 ,
1
2 )

2 where U has positive measure

and 1
2U ⊂ U , the function ψ defined by ψ̂ = χ

U\ 1
2U

is a PF MRA wavelet. On the other hand, to obtain an

ON MRA wavelet system, we need to use 3 wavelet generators.
As in the 1-dimensional case, we avoid multiple wavelet generators by restricting our attention to n× n

integer matrices u with | detu| = 2. For example, let u be chosen to be the quincunx matrix q =

(
1 −1
1 1

)
,

representing a counterclockwise rotation by π/4 multiplied by
√
2. We do encounter an “unexpected” fact

if we try to find a Haar-type wavelet. There exists a set D ⊂ R2 such that χD is a scaling function for an
MRA (defined as the obvious two-dimensional analogue of the of the one-dimensional MRA) that produces
a Haar-type wavelet as the difference of two disjoint sets. Yet, these sets are rather complicated fractal sets
known as the twin dragons (see Figure 1), as was observed in [14].

These observations indicate that the general construction of two-dimensional wavelets is significantly more
complicated than the one-dimensional case. In particular, it is not known whether there exist continuous
compactly supported ON wavelets analogues of the one-dimensional Daubechies wavelets associated with
the dilation matrix q. However, it turns out that a rather simple change in the definition of the dilations in
(3.8) produces much simpler constructions of Haar-type wavelets in dimension two.
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Figure 1: On the left is the fractal set known as the “Twin Dragon”, whose characteristic function is the
scaling function for the 2-dimensional Haar-type wavelet associated with the dilation matrix q. On the right
we see the support of the resulting wavelet ψ, whose values are 1 on the darker set, -1 on the lighter set and
0 elsewhere.

Essentially, the idea consists in adding an additional set of dilations to the ones produced by the integer
powers of the quincunx matrix. Specifically, let B be the group of the eight symmetries of the square, given

by B = {bj : j = 0, 1, . . . , 7}, where b0 =

(
1 0
0 1

)
, b1 =

(
0 1
1 0

)
, b2 =

(
0 −1
1 0

)
, b3 =

(
−1 0
0 1

)
, and

bj = −bj−4, for j = 4, . . . , 7. Let R0 be the triangle with vertices (0, 0), ( 12 , 0), (
1
2 ,

1
2 ) and Ri = biR0 for

i = 0, . . . , 7 (see Figure 2). Let ϕ = 23/4χR0 and V0 the closed linear span of {Db Tk ϕ : b ∈ B, k ∈ Z2}.
Note that | det b| = 1 for all b ∈ B and V0 is the subspace of L2(R2) of square integrable functions which
are constant on each Z2-translate of the triangles Ri, i = 0, . . . , 7. It is not difficult to show that there is a
structure very similar to the classical MRA consisting of the spaces Vj = Dj

q V0, j ∈ Z. In fact, let us define
the vector-valued function

Φ =

Db0ϕ
...

Db7ϕ

 =

ϕ
0

...
ϕ7

 .

Then {Vj : j ∈ Z} is an MRA with a vector-valued scaling function Φ. To derive a Haar-like wavelet, we
observe that R0 = q−1R1 ∪ q−1(R6 + ( 01 )) (see Figure 2). This equality implies that

ϕ(x) = ϕ0(x) = ϕ1(x) + ϕ6(qx− ( 01 )).

Applying Dbj , j = 1, . . . , 7 to the expression above, we obtain similar equalities for ϕj , j = 1, . . . , 7. Now,
let ψ(x) = ϕ1(qx)− ϕ6(qx− ( 01 )). This function is the difference of appropriately normalized characteristic
functions of disjoint triangles and leads indeed to the desired Haar-like wavelet. In fact, we can define the
vector-valued function

Ψ =

Db0ψ
...

Db7ψ

 =

ψ
0

...
ψ7

 ,

and observe that the system {Dj
q TkΨ : j ∈ Z, k ∈ Z2} is an ON basis of L2(R2).

The construction above is representative of a much more general situation. For example, let u =

1
2

(
1 −

√
3√

3 1

)
, the matrix of counterclockwise rotation by π/3, normalized to produce detu = 2. Also

in this case, there is a fractal Haar wavelet associated with this dilation matrix, but the introduction of

6



R0R3

R7R4

R1

R6

R2

R5

x1 x1

x2 x2

q−1R2

q−1R7

q−1R3

q−1R6

q−1R1

q−1R0

q−1R4

q−1R5

Figure 2: Example of construction of a wavelet system with composite dilations. On the left is illustrated
the triangle R0 and the triangles Ri, i = 1, . . . 7, obtained as biR0 (the matrices bi are described in the text).
On the right is illustrated the action of the inverse of the quincunx matrix q on the triangles Ri.

an appropriate additional finite group of dilations allows one to derive simpler Haar-like wavelets similar to
what we did above. See [18] for details.

In [18], we have shown that all this can be formalized by introducing the notion of wavelet systems with
composite dilations, which are the systems of the form

{DaDb Tk ψ : j ∈ Z, a ∈ A, b ∈ B, k ∈ Z2}, (3.9)

where B is a group of matrices with determinant of absolute value 1 (as in the examples above) and A is
a group of expanding matrices, in the sense that all eigenvalue have magnitude larger than one (as in the
example above where A is the group of the integer powers of the quincunx matrix). Many different groups
of B-dilations have been considered in the literature, such as the crystallographic and shear groups, which
are associated to very different properties. As we will see below, one special benefit of this framework is
the ability to produce wavelet-like systems with geometric properties going far beyond traditional wavelets.
For example, one can construct waveforms whose supports are highly anisotropic and that are ranging not
only over various scales and locations, but also over various orientations, making these functions particularly
useful in image processing applications.

As discussed in Sec. 2, one of the most important properties of wavelets in L2(R) is their ability to pro-
vide rapidly convergent approximations for piecewise smooth functions. This property implies that wavelet
expansion are useful to compress functions efficiently since - as described by the nonlinear approximation
error estimate (2.5) - most of the L2-norm of the function can be recovered from a relatively small number
of expansion coefficients and not much information is lost by discarding the remaining ones. This idea is the
basis for the construction of several wavelet-based data compression algorithm, such as JPEG2000 [27].

There is another important perhaps less obvious implication of the wavelet approximation properties and
which has to do with the classical problem of data denoising. Suppose that we want to recover a function f
which is corrupted by zero-mean white Gaussian noise with variance σ2. Let fn denote the noisy function.
In this case, Donoho and Johnstone [12] have shown that there is a very simple and very effective procedure
for estimating f . This consists, essentially, in (i) computing the wavelet expansion of fn, (ii) setting to
zero the wavelet coefficients of fn whose magnitudes are below a fixed value (which depends on σ), and (iii)
computing an estimator of f as a reconstruction from the wavelet coefficients of fn which have not been
set to zero. It turns out that the performance of this procedure depends directly on the decay rate of the
nonlinear approximation error estimate (2.5).

The above observations underline the fundamental importance of the approximation properties of one-
dimensional wavelets for applications. Unfortunately, as will be discussed in more details below, the situation
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is different in higher dimensions, where the standard multidimensional generalization of dyadic wavelets does
not lead to the same type of approximation properties as in the one-dimensional case.

Let us restrict our attention to dimension n = 2 (the cases n > 2 are similar). Recall that, in dimension
n = 1, to achieve the desired approximation properties of the wavelet expansions, we required wavelets
having compact support and sufficiently many vanishing moments. In dimension n = 2, we can easily
construct a two-dimensional dyadic ON wavelet system starting from a one-dimensional MRA with scaling
function ϕ1 and wavelet ψ1, as follows. We define three wavelets ψ(1)(x1, x2) = ϕ1(x1)ψ1(x2), ψ

(2)(x1, x2) =
ψ1(x1)ϕ1(x2), ψ

(3)(x1, x2) = ψ1(x1)ψ1(x2). Then the system

{ψ(ℓ)
j,k1,k2

(x1, x2) = 2jψ(ℓ)(2j(x1 − k1), 2
j(x2 − k2)) : j, k1, k2 ∈ Z, ℓ = 1, 2, 3}

is an ON basis for L2(R2). This is called a separable MRA wavelet basis. Clearly, we can choose ψ1 and
ϕ1 having compact support and R vanishing moments. In this case, similar to the one-dimensional result, if
f ∈ CR(R2) and ∥f∥CR <∞, then the m-th largest wavelet coefficient in magnitude satisfies the estimate:

|⟨f, ψπ(m)⟩| ≤ C ∥f∥CR m−(R+1)/2, (3.10)

where C is a constant independent of f and m. This implies that, letting fN be the best N -term nonlinear
approximation of f , the nonlinear approximation error decays as

∥f − fN∥2L2 ≤ C
∑
m>N

|⟨f, ψπ(m)⟩|2 ≤ C ∥f∥2CR N
−R.

However, while in the one-dimensional case the approximation properties of the wavelet expansion are not
affected if one allows the function f to have a finite number of isolated singularities, the situation now is
very different. Let us examine, for example, the wavelet approximation of the function f = χD, where
D ⊂ R2 is a compact set whose boundary has finite length L. Let us consider in particular the wavelet
coefficients associated with the boundary of the region D. Since f is bounded, these wavelet coefficients

have size |⟨f, ψ(ℓ)
j,k1,k2

⟩| ∼ 2−j . In addition, since the boundary of D has finite length and the wavelets have

compact support, at each scale j, there are about L 2j wavelets with support overlapping the boundary of
D. It follows from these observations that the N -th largest wavelet coefficient in this class is bounded by
C(L)N−1 and this implies that the nonlinear approximation error rate is only of the order O(N−1). Hence,
there is a large number of significant wavelet coefficients associated with the edge discontinuity of f and this
is limiting the wavelet approximation rate.

The reason for this limitation of two-dimensional separable MRA wavelet bases is the fact that their
supports are isotropic (they are supported on a box of size ∼ 2−j × 2−j) so that there are ‘many’ wavelets
overlapping the edge singularity and producing significant expansion coefficients. To address this issue and
produce better approximations of piecewise smooth multidimensional functions, one has to consider alter-
native multiscale systems which are more flexible at representing anisotropic features. Several constructions
have been introduced starting with the wedgelets [3] and ridgelets [5]. Among the most successful con-
structions proposed in the literature, the curvelets [6] and shearlets [15] achieve this additional flexibility by
defining a collection of analyzing functions ranging not only over various scales and locations, like traditional
wavelets, but also over various orientations and with highly anisotropic supports. As a result, these systems
are able to produce (nonlinear) approximations of two-dimensional piecewise C2 functions for which the
nonlinear approximation error decays essentially like N−2, that is, as if the functions had no discontinuities.
To give a better insight into this approach and show how the wavelet machinery can be modified to obtain
these types of systems, we will briefly describe the shearlet construction in dimension n = 2, which is closely
related to the framework of wavelets with composite dilations, which we mentioned above. To keep the
presentation self-contained, we will only sketch the main ideas and refer the reader to [15, 17] for more
details.

For an appropriate function ψ ∈ L2(R2), a system of shearlets is a collection of functions of the form
(3.9), where

a =

(
4 0
0 2

)
, b =

(
1 1
0 1

)
. (3.11)
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Note that a is a dilation matrix whose integer powers produce anisotropic dilations and, more precisely,
parabolic scaling dilations since the dilation factors grow quadratically in one coordinate with respect to
the other one; the shear matrix b is non-expanding and, as we will see below, its integer powers control the
orientations of the elements of the shearlet system. The generator ψ of the system is defined in the frequency
domain as

ψ̂(ξ) = ψ̂(ξ1, ξ2) = w(ξ1) v(
ξ2
ξ1

),

where w, v ∈ C∞(R), suppw ⊂ [− 1
2 ,

1
2 ] \ [− 1

16 ,
1
16 ] and supp v ⊂ [−1, 1]. Furthermore, it is possible to

choose the functions w, v so that the corresponding system (3.9) is a PF (Parseval frame) for L2(R2). The
geometrical properties of the shearlet system are more evident in the Fourier domain. In fact, a direct
calculation gives that

ψ̂j,ℓ,k(ξ) := (Dj
aD

ℓ
b Tk ψ)

∧(ξ) = 2−3j/2 w(2−2jξ1) v(2
j ξ2
ξ1

− ℓ) e2πiξa
−jb−ℓk, (3.12)

implying that the functions ψ̂j,ℓ,k are supported in the trapezoidal regions

{(ξ1, ξ2) ∈ R2 : ξ1 ∈ [−22j−1, 22j−1] \ [−22j−4, 22j−4], |ξ2
ξ1

− ℓ2−j | ≤ 2−j}.

The last expression shows that the frequency supports of the elements of the shearlet system are increasingly
more elongated at fine scales (as j → ∞) and orientable, with orientation controlled by the index ℓ (this is
illustrated in Fig. 3). These properties show that shearlets are much more flexible than “isotropic” wavelets
and explain why shearlets can achieve better approximation properties for functions which are piecewise
smooth. Similar properties hold for the curvelets and can be extended to higher dimensions.

x2 

x1 

Figure 3: The frequency supports of the elements of the shearlet system are pairs of trapezoidal regions
defined at various scales and orientations, dependent on j and ℓ respectively. The figure shows the frequency
supports of 2 representative shearlet elements: the darker region corresponds to j = 0, ℓ = 0 and the lighter
region to j = 1, ℓ = 1.

As indicated above, shearlets and curvelets are only some of the methods introduce during the last decade
to extend or generalize the wavelet approach. We also recall the construction of bandelets [25]; these systems
achieve improved approximations for functions which are piecewise Cα (α may be larger than 2) by using
an adaptive construction. We refer to the volume [24] for the description of several such systems.
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4 Continuous wavelets

In this section, we examine continuous wavelets on Rn. The general linear group GL(n,R) of n×n invertible
real matrices acts on R by linear transformations. The semi-direct product G of GL(n,R) and Rn is called
the general affine group on Rn since each invertible affine map on Rn has the form (a, t)·x = a(x+t) = ax+at
for a unique (a, t) ∈ G. Thus, the group law (a, t) ·(b, s) = (ab, b−1t+s) for G corresponds to the composition
of the associated affine maps and (a, t)−1 = (a−1,−a−1t). We have a unitary representation τ of G acting
on L2(Rn) defined by

(τ(a,t)ψ)(x) = |det a|− 1
2ψ((a, t)−1 · x) = |det a|− 1

2ψ(a−1x− t) := ψa,t(x).

We then have that
(τ(a,t)ψ)

∧(ξ) = | det a|1/2ψ̂(a∗ξ) e−2πiξ·at.

For ψ ∈ L2(Rn), the continuous wavelet transform Wψ associated with ψ and G is defined by

(Wψf)(a, t) = ⟨f, ψ(a,t)⟩ = |det a|−
1
2

∫
Rn

f(x)ψ(a−1x− t) dx, (4.13)

and it maps f ∈ L2(Rn) into a space of functions on G. For D a closed subgroup of GL(n,R), H = {(a, t) :
a ∈ D, t ∈ Rn} is a closed subgroup of G and the left Haar measures on H are the product measures
dλ(a, t) = dµ(a) dt, where µ is a left Haar measure on D. In the special case where D is a discrete subgroup
of GL(n,R) such as {uj : j ∈ Z}, for some u ∈ GL(n,R), then we can take µ to be the counting measure on
D.

We then seek conditions on D and µ for which restricting Wψf to H gives an isometry from L2(Rn) into
L2(H, dλ) or, equivalently, we have a continuous reproducing formula

f =

∫
H

⟨f, τ(a,t)ψ⟩ τ(a,t)ψ dλ(a, t),

for each f ∈ L2(Rn). As shown in [4], this holds if and only if∫
D

|ψ̂(a∗ξ)|2 dµ(a) = 1, for a.e. ξ ∈ Rn, (4.14)

in which case ψ is a continuous wavelet (with respect to D). In the special case D = {aIn : a > 0}, where
In is the n × n identity matrix, and dµ(aIn) =

da
a , the expression (4.14) reduces to the classical Calderón

condition: ∫ ∞

0

|ψ̂(aξ)|2 da
a

= 1, for a.e. ξ ∈ Rn. (4.15)

Clearly, the set
{f ∈ L2(Rn) : c f satisfies (4.15) for some c > 0}

is dense in L2(Rn). When D = {uj : j ∈ Z}, for u > 1, one can show that if {ψ(uj ,k) : j ∈ Z, k ∈ Z} is a
Parseval frame, then ψ ia also a continuous wavelet with respect to D. Conversely, (4.15) is only necessary
but not sufficient for {ψ(uj ,k) : j ∈ Z, k ∈ Z} to be a Parseval frame.

For ψ ∈ L2(Rn), the modified continuous wavelet transform W̃ψ associated with ψ and G is defined by

(W̃ψf)(a, t) = (Wψf)(a, a
−1t) = | det a|−

1
2

∫
Rn

f(x)ψ(a−1(x− t)) dx, (4.16)

and it also maps f ∈ L2(Rn) into functions on G = D×Rn. The modification arises from using the analyzing

function | det a|−
1
2ψ(a−1(x− t)) rather than | det a|−

1
2ψ(a−1x− t) and it simplifies the problem of estimating

the asymptotic decay properties of the continuous wavelet transform.
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Indeed for G = D × Rn, where D = {aIn : a > 0}, let us consider the modified continuous wavelet
transform

(W̃ψf)(a, t) := (W̃ψf)(aIn, t) = a−n/2
∫
Rn

f(x)ψ(a−1(x− t)) dy. (4.17)

A fundamental property of this transform is its ability to characterize the local regularity of functions. For
example, let f be a bounded function on R which is Hölder continuous at x0, with exponent α ∈ (0, 1], that
is, there is C > 0 for which

|f(x0 + h)− f(x0)| ≤ C|h|α.

Suppose that
∫
R(1+|x|)|ψ(x)| dx <∞ and that ψ̂(0) = 0. Since the last condition implies that

∫
R ψ(x) dx = 0,

then

(W̃ψf)(a, t) = a−1/2

∫
R
(f(x)− f(x0))ψ(a−1(x− t)) dx.

Thus, using the Hölder continuity and a change of variables, we have:

|(W̃ψf)(a, t)| ≤ a−1/2

∫
R
|f(x)− f(x0)| |ψ(a−1(x− t))| dx (4.18)

≤ C aα+1/2

∫
R
|y + a−1(t− x0)|α |ψ(y)| dy. (4.19)

This shows that, at t = x0, the continuous wavelet transform of f decays (at least) like aα+1/2, as a →
0. Under slightly stronger condition on ψ, one can show that the converse also holds, hence providing
a characterization result. It is also possible to extend this analysis to discontinuous functions and even
distributions. For example, if f has a jump discontinuity at x0, then one can show that the continuous
wavelet transform of f decays like a1/2, as a→ 0, and similar properties hold in higher dimensions (cf. [22]).

While the continuous wavelet transform (4.17) is able to describe the local regularity of functions and
distribution and detect the location of singularity points through its decay at fine scales, it does not provide
additional information about the geometry of the set of singularities. In order to achieve this additional
capability, one has to consider wavelet transforms associated with more general dilation groups.

For example, in dimension n = 2, let M be the subgroup of GL(2,R) of the matricesma,s =

a −a1/2 s

0 a1/2

 : a > 0, s ∈ R

 ,

and let us consider the corresponding generalized continuous wavelet transform

(W̃ψf)(a, s, t) := (W̃ψf)(ma,s, t) = a−3/4

∫
R2

f(x)ψ(m−1
a,s(x− t)) dx, (4.20)

where a > 0, s ∈ R and t ∈ R2. It is easy to verify that we have the factorization ma,s =
(

1 −s

0 1

) (
a 0

0 a1/2

)
,

that is, ma,s is the product of an anisotropic dilation matrix and a shear matrix. As a result, the analyzing
function ψa,s,t = a−3/4ψ(m−1

a,s(x− t)) associated with this transform range over various scales, orientations
and locations, controlled by the variables a, s, t, respectively. This is similar to the discrete shearlets in
Section 3. The transform (W̃ψf)(a, s, t) is called the continuous shearlet transform of f .

Thanks to the properties associated with dilation group M , the continuous shearlet transform is able
to detect not only the location of singularity points through its decay at fine scales, but also the geometric
information of the singularity set. In particular, there is a general characterization of step discontinuities
along 2D piecewise smooth curves, which can summarized as follows [16]. Let B = χS , where S ⊂ R2 and
its boundary ∂S is a piecewise smooth curve.

• If t /∈ ∂S, then W̃ψB(a, s, t) has rapid asymptotic decay, as a→ 0, for each s ∈ R. That is,

lim
a→0

a−NW̃ψB(a, s, t) = 0, for all N > 0.
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• If t ∈ ∂S and ∂S is smooth near t, then W̃ψB(a, s, t) has rapid asymptotic decay, as a → 0, for each
s ∈ R unless s = tan θ0 and (cos θ0, sin θ0) is the normal orientation to ∂S at t. In this last case,

W̃ψB(a, s0, t) ∼ a
3
4 , as a→ 0. That is,

lim
a→0

a−
3
4 W̃ψB(a, s, t) = C ̸= 0.

• If t is a corner point of ∂S and s = tan θ0 where (cos θ0, sin θ0) is one of the normal orientations to ∂S at

t, then W̃ψB(a, s0, t) ∼ a
3
4 , as a→ 0. For all other orientations, the asymptotic decay of W̃ψB(a, s, t)

is faster and depends in a complicated way on the curvature of the boundary ∂S near t [16].

Similar results hold in higher dimensions and for other types of singularity sets.
Note that, in the definition of W̃ψB(a, s, t), we are taking the inner product of f with the continuous

shearlets TtD
−1
mas

. On the other hand, the discrete shearlets in Section 3 involve the reverse order of operators.
Despite this fact, the decay properties of the continuous shearlet transform are related to the approximation
properties of discrete shearlets.

5 Various other “wavelet topics”, applications and conclusions

The number of researchers who have worked and are working on wavelets is very large. This field and its
applications are enormous. We could not cover all the topics that are most important and interesting in
such a short article. We make no claim that we have chosen to cover all “the most important” topics on
wavelets. In this article, we have defined wavelets to be elements of the Hilbert space L2(Rn). In fact, we
can apply the wavelet techniques we described to the Banach spaces Lp(Rn), p ≥ 1. As usual, the flavor
for 1 ≤ p < 2 is very different from p > 1. The roles played by R and the 1-torus T were shown to extend
to higher dimensions. It is well known that the harmonic analysis involving (Z,T) extends to the setting

(G, Ĝ) where G is a locally compact Abelian group and Ĝ its dual. Wavelet theory extends to (G, Ĝ) and
other abstract settings.

Wavelets continue to stimulate and inspire active research going beyond the area of harmonic analysis
where they were originally introduced. While during the 1980s and 1990s most of wavelet theory was
devoted to the construction of “nice” wavelet bases and their applications to denoising and compression,
during the last decade wavelet research was focused more on the subject of approximations and the so-
called sparse approximations. As we mentioned above, several generalizations and extensions of wavelets
were introduced with the goal to provide improved approximations properties for special classes of functions
where the more traditional wavelet approach is not as effective. This research has stimulated the investigation
of redundant function systems (that is, frames which are not necessarily tight) and their applications using
techniques coming not only from harmonic analysis but also from approximation theory and probability. The
emerging area of compressed sensing, for example, can be seen as a method for achieving the same nonlinear
approximation properties of wavelets and their generalization by using linear measurements defined according
to a certain clever strategy.

Some fundamental ideas from wavelet theory, most notably the multiresolution analysis, have appeared in
other forms in very different contexts. For example, the theory of diffusion wavelets [11] provide a method for
the multiscale analysis of manifolds, graphs and point clouds in Euclidean space. Rather than using dilations
as in the classical wavelet theory, this approach uses “diffusion operators” acting on functions on the space.
For example, let T be a diffusion operator (e.g. the heat operator) acting on a graph (the graph can be a
discretization of a manifold). The study of the eigenfunctions and eigenvalues of T is known as Spectral
Graph Theory and can be viewed a generalization of the theory of Fourier series on the torus. The main
idea of diffusion wavelets is to compute dyadic powers of the operator T to establish a scale for performing
multiresolution analysis on the graph. This approach has many useful applications, since it allows one to
apply the advantages of multiresolution analysis to objects that can be modeled as graphs, such as chemical
structures, social networks, etc.
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In order to describe the more recent applications inspired by wavelets, we quote Coifman from [9, p. 159]
“Over the last twenty years we have seen the introduction of adaptive computational analytic tools that enable
flexible transcriptions of the physical world. These tools enable orchestration of signals into constituents
(mathematical musical scores) and opened doors to a variety of digital implementations/applications in
engineering and science. Of course I am referring to wavelet and various versions of computational Harmonic
Analysis. The main concepts underlying these ideas involved the adaptation of Fourier analysis to changing
geometries as well as multiscale structures of natural data. As such, these methodologies seem to be limited
to analyze and process physical data alone. Remarkably, the last few years have seen an explosion of activity
in machine learning, data analysis and search, implying that similar ideas and concepts, inspired by signal
processing might carry as much power in the context of the orchestration of massive high dimensional data
sets. This digital data, e.g., text documents, medical records, music, sensor data, financial data etc., can
be structured into geometries that result in new organizations of language and knowledge building. In
these structures, the conventional hierarchical ontology building paradigm, merges with a blend of Harmonic
Analysis and combinatorial geometry. Conceptually these tools enable the integration of local association
models into global structures in much the same way that calculus enables the recovery of a global function
from a local linear model for its variation. As it turns out, such extensions of differential calculus into the
digital data fields are now possible and open the door to the usage of mathematics similar in scope to the
Newtonian revolution in the physical sciences. Specifically we see these tools as engendering the field of
mathematical learning in which raw data viewed as clouds of points in high dimensional parameter space
is organized geometrically much the same way as in our memory, simultaneously organizing and linking
associated events, as well as building a descriptive language.”

Let us illustrate three examples that will give the reader a more concrete idea of what Coifman asserts
(see also [10]).

(a) In the oil exploration and mining industry, one needs to decide where to drill or mine to greatest
advantage for finding oil, gas, copper or other minerals. This involves an analysis of the composition
and structure of the soil in a certain region. From such analysis one would find properties that optimize
where these resources are most likely to be found.

(b) Suppose that we would like to decompose a large collection of books into subclasses of “similar”
books, e.g., novels, histories, physics books, mathematical books, etc. Possibly we also want to assign
“distances” between these subclasses. It is not unreasonable that the distributions of many particular
words contained in each book can identify various kind of books so that they can be assigned in a
specific subclass.

(c) In medical diagnostics, important information can be gleaned from the analysis of data obtained
from radiological, histological, chemical tests and this is important for arriving at an early detection
of potentially dangerous tumors and other pathologies.

What is surprising is that the analysis of these very different types of data can be performed very efficiently
using the type of “mathematics” based on the ideas presented in this paper. For example, several hospitals
have adopted medical diagnostics methods that were developed by Coifman and his group using these ideas.

In conclusion, we want to stress that “wavelets” is a huge field. Many have helped to create it. We want
to state, however, that Yves Meyer has contributed and introduced many ideas that were most important
in its creation. The material in the first chapter of [21] describes many constructions which are due to him
and the ideas that paved the way for many of the topics (e.g., the MRA) we presented in this paper.

References

[1] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41(7)
(1988), 909–996.

[2] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

13



[3] D. L. Donoho, Wedgelets: Nearly-minimax estimation of edges, Ann. Statist. 27 (1999), 859–897.

[4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964),
113–190.

[5] E. J. Candès and D. L. Donoho, Ridgelets: the key to high dimensional intermittency?, Philos. Trans.
R. Soc. Lond. Ser. A 357 (1999), 2495–2509.

[6] E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects
with C2 singularities, Comm. Pure Appl. Math. 57 (2004), 219–266.

[7] P. G. Casazza, O. Christensen and N. J. Kalton, Frames of translates, Collect. Math. 52 (2001), 35–54.

[8] A. Cohen, I. Daubechies and J.C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm.
Pure Appl. Math. 45 (5) (1992), 485–560.

[9] J. Cohen and A. I. Zayed, (Editors), Wavelets and Multiscale Analysis: Theory and Applications,
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