Name:

HW #2

(1) (a) Given $f \in \mathcal{D}'(\mathbb{R})$ and $\phi \in C_c^{\infty}(\mathbb{R})$, prove that convolution commutes with differentiation, that is

$$\phi * f' = \phi' * f = (\phi * f)'$$

(b) Given $f \in \mathcal{D}'(\mathbb{R})$ and $\phi \in C^{\infty}(\mathbb{R})$, prove the product rule

$$(\phi f)' = \phi' f + \phi f$$

(c) Formulate the analogous result for \mathcal{S}' .

- (d) Verify that $\phi' * h = \phi * h' = \phi * \delta = \phi$, where h is the Heaviside function.
- (2) Show that $x\delta'(x) = -\delta(x)$

(3) Suppose f is a piecewise C^1 function on \mathbb{R} that is differentiable everywhere except at t_0 and has a jump discontinuity at t_0 . Show that $f' = f^{(1)} + (f(t_0^+) - f(t_0^-)) \delta$, where f' denotes the distributional derivative and $f^{(1)}$ denotes the pointwise derivative (valid for all $t \neq t_0$).

(4) Let $f \in \mathcal{S}'$ and $\phi \in \mathcal{S}$. Show that , for some $N \ge 0$, $|\partial^{\alpha}(f * \phi)(x)| \le C_{\alpha} (1 + |x|)^N$ for all α . To prove this statement, proceed as follows:

- (a) For any $x, y \in \mathbb{R}^n$ and any $k \ge 0$, show that $|y|^k \le (1+|x-y|)^k(1+|x|)^k$.
- (b) $\sup_{u} |y^{\beta} \partial^{\alpha} \phi(x-y)| \leq C_{\alpha\beta} (1+|x|)^{\beta}.$
- (c) $|(f * \phi)(x)| \le C (1 + |x|)^N$ for some $N \ge 0$.
- (d) Repeat the argument with ϕ replaced by $\partial^{\alpha} \phi$ to obtain the desired estimate.

(5) Given $s \in \mathbb{R}$, the Sobolev space $H^s(\mathbb{R})$ is

$$H^{s}(\mathbb{R}) = \{ f \in \mathcal{S}'(\mathbb{R}) : (1 + |\xi|)^{s} \hat{f}(\xi) \in L^{2}(\mathbb{R}) \}.$$

(a) Show that $H^{s}(\mathbb{R} \text{ is a Hilbert space with inner product})$

$$\langle f,g\rangle_{H^s} = \int_{\mathbb{R}} \hat{f}(\xi) \,\overline{\hat{g}(\xi)} \,(1+|\xi|)^{2s} \,d\xi$$

- (b) The Fourier transform is a unitary map of $H^s(\mathbb{R})$ onto $L^2_s(\mathbb{R}) = \{f \in \mathcal{S}' : ||f||_{2,s} = (\int |f(x)|^2 (1+|x|)^{2s} dx)^{1/2} < \infty\}.$
- (c) $\mathcal{S}(\mathbb{R})$ is dense in $H^s(\mathbb{R})$.