Math 6397 - Fall 2017

Name:

HW #3

- (1) Let \mathbb{H} be Hilbert space and $\{e_j : j = 1, 2, \dots\} \subset \mathbb{H}$.
- (a) Prove that

$$||f||^2 = \sum_j |\langle f, e_j \rangle|^2$$
, for all $f \in \mathbb{H}$

if and only if

$$f = \sum_{j} \langle f, e_j \rangle e_j \quad \text{for all } f \in \mathbb{H}$$

where the last sum converges in \mathbb{H} .

(b) Suppose that $||f||^2 = \sum_j |\langle f, e_j \rangle|^2$ holds for all f belonging to a dense subspace of \mathbb{H} . Prove that the same equality holds for all $f \in \mathbb{H}$.

(2) Let \mathbb{H} be Hilbert space and $\{e_j : j = 1, 2, \dots\} \subset \mathbb{H}$ be a Parseval frame, that is

$$||f||^2 = \sum_j |\langle f, e_j \rangle|^2$$
, for all $f \in \mathbb{H}$.

Show that if $||e_j|| = 1$ for all j, then $\{e_j : j = 1, 2, ...\}$ is an orthonormal basis of \mathbb{H} .

(3) Suppose that $\{\psi_{j,k} = 2^{j/2}\psi(2^jx - k) : j,k \in \mathbb{Z}\}$ is an ON wavelet system where $\psi \in L^2(\mathbb{R})$ and $\hat{\psi}$ is continuous at zero. Prove that it must be $\hat{\psi}(0) = 0$. (Hint: use the fact that $\sum_{j \in \mathbb{Z}} |\hat{\psi}(2^j \xi)|^2 = 1$ for a.e. $\xi \in \mathbb{R}$).

- (4) Suppose $\psi \in L^2(\mathbb{R})$ is such that $\hat{\psi}(\xi) = \chi_{[-1,1] \setminus [-1/2,1/2]}(\xi)$. (a) Prove that $\{\psi_{j,k} = 2^{j/2}\psi(2^jx k) : j, k \in \mathbb{Z}\}$ is an ON wavelet system.
- (b) Extend the construction to dimension d = 2.