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Abstract

Traditional methods of time-frequency and multiscale analysis, such as wavelets and Gabor frames,
have been successfully employed for representing most classes of pseudodifferential operators. However
these methods are not equally effective in dealing with Fourier Integral Operators in general. In this pa-
per, we show that the shearlets, recently introduced by the authors and their collaborators, provide very
efficient representations for a large class of Fourier Integral Operators. The shearlets are an affine-like
system of well-localized waveforms at various scales, locations and orientations, which are particularly ef-
ficient in representing anisotropic functions. Using this approach, we prove that the matrix representation
of a Fourier Integral Operator with respect to a Parseval frame of sherlets is sparse and well-organized.
This fact recovers a similar result recently obtained by Candès and Demanet using curvelets, which
illustrates the benefits of directional multiscale representations (such as curvelets and shearlets) in the
study of those functions and operators where traditional multiscale methods are unable to provide the
appropriate geometric analysis in the phase space.

1 Introduction

Fourier Integral Operators were originally introduced by Lax [17], with the construction of parametrics in
the Cauchy problem for strongly hyperbolic equations. Since then they have become an important tool in a
variety of problems arising in partial differential equations. For example, consider the hyperbolic equation

∂

∂t
u = i λ(t, x,Dx) u, (1.1)

where λ(t, x,Dx) is a smooth one-parameter family of pseudodifferential operators with symbol λ(t, x, ξ) ∼
λ1(t, x, ξ) + λ0(t, x, ξ), where λj(t, x, ξ) is homogeneous of degree j in ξ and λ1(t, x, ξ) is real valued (which
makes the equation hyperbolic). The solution operator S(t, s) to (1.1) taking u(s) to u(t) is essentially
(modulo a smoothing operator) given by an integral of the form

Tu(t) =
∫

e2πiΦ(t,x,ξ) σ(t, x, ξ) f̂(ξ) dξ,

where the phase Φ(t, x, ξ) and the amplitude σ(t, x, ξ) are C∞ functions. In particular, if Tu(t) = S(t, s)u(s)
is the solution to (1.1), then, for small t, Φ(t, x, ξ) is close to ξ x and Φ solves the eikonal equation

∂

∂t
Φ = λ1(t, x,∇xΦ), Φ(0, x, ξ) = ξ x.

It follows (see, for example, [23, Ch.8], [21]) that the canonical transformation

(∇ξΦ(t, x, ξ), ξ) → (x,∇xΦ(t, x, ξ))
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defines a bijective map C(t) for all t close to t = 0. Then one can show that C(t) corresponds to the
Hamiltonian flow (or bicharacteristic equation):

ξ̇(t) = ∇xλ1(t, x(t), ξ(t)), ξ(0) = ξ0,

ẋ(t) = −∇ξλ1(t, x(t), ξ(t)), x(0) = x0.

Traditional methods of time-frequency and multiscale analysis, such as wavelets and Gabor frames, have
proven to be very effective in providing efficient representations for a large class of operators, including
pseudodifferential operators and Calderón–Zygmund operators (see, for example, [18, 10]). Unfortunately,
they fail to provide equally efficient representations for most Fourier Integral Operators. This paper is
motivated by some remarkable recent results by H. Smith [19, 20] and E. Candès and L. Demanet [2] who
have shown how to obtain sparse representations of Fourier Integral Operators by combining the methods
of multiscale analysis with a notion of anisotropy and directionality. More specifically, in [2], a Fourier
Integral Operator T is represented using a Parseval frame of curvelets. This is a multiscale system of
functions {φµ : µ ∈ M}, at various scales, locations and directions, having anisotropic compact support in
the frequency domain [3]. Then, denoting by T (µ, µ′) the matrix elements of T with respect to the curvelets,
it is proven that, for each N > 0,

|T (µ, µ′)| ≤ CN ω(µ, h(µ′))−N , (1.2)

where ω is a certain distance and h is an index mapping. Let us recall that the ability to provide sparse
representations of an operator is very significant for the theoretical analysis of the operator as well as its
numerical implementation. In fact, sparse representations are useful to deduce sharp estimates [20] and can
be exploited to design low complexity algorithms [1].

In this paper, we show that the shearlets, introduced by the authors and their collaborators [13, 15, 11]
provide an alternative approach to the construction of sparse representations of Fourier Integral Operators.
Shearlets are Parseval frames of well localized functions at various scales, locations and directions. Similarly
to the curvelets, they provide optimally sparse representations for two-dimensional functions that are smooth
away from discontinuities along curves [12] and have the ability to exactly characterize the wavefront set of
distributions [16]. In addition, the shearlets have some distinctive features:

• They form an affine-like system. That is, they are generated from the action of translation and dilation
operators on a single function.

• They are defined on a Cartesian grid.

• Thanks to their affine-like structure, they exhibit a group structure.

These properties do not hold for curvelets, and provide a number of advantages for some theoretical as well
as numerical applications of such representations (see further discussions in [6, 7, 15]).

In this paper we, show that, by using the shearlets to represent a Fourier integral operator, one ob-
tains an estimate on the matrix representation of the same type as (1.2). Thus, shearlets provide sparse
representations of such operators. As we will describe later in the paper, the main outline of our proof
follows the one in [2]. However, to prove our sparsity result, we had to introduce new ideas to deal with
the distinctive mathematical structure of the shearlets. In particular, the notion of almost orthogonality
of shearlet molecules, in Sec. 4.2, has to be adapted to the Cartesian geometry, and to the combination of
both horizontal and vertical shearlets. For the analysis of the operator T2, in Sec. 4.3, since we do not have
radial symmetry, we cannot use the Smith approach involving Fourier multipliers. Our argument introduces
a new atomic decomposition. The methods developed in our proof are of independent interest, and show the
potential of representation methods based on shearlets in the study of operators and functions spaces.

Shearlets are a special case of composite wavelets, introduced by the authors and their collaborators
in [13, 14, 15]. This theory unifies and extends the theory of wavelet systems, and provides a general
framework for constructing multiscle directional systems using the affine framework. Some of the benefits of
this approach are the ability to extend this framework to any dimensions, the existence of a multiresolution
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analysis (MRA), and the ability to exploit a group structure. In particular, thanks to this group structure,
there are function spaces naturally associated to composite wavelets, which are useful in variational methods
for image processing. As an additional benefit, the shearlet decomposition of FIO indicates that the whole
machinery of composite wavelets can be brought into play. For example, higher dimensional extensions can
be easily obtained, and the MRA structure can be exploited.

The paper is organized as follows. In Section 2 we recall the construction of the shearlets. In Section 3
we defined the class of Fourier Integral Operators that will be discussed in this paper and present our main
theorem. The various steps needed to prove the main theorem are presented in Section 4.

1.1 Notation and definitions

We adopt the convention that x ∈ Rn is a column vector, i.e., x =




x1

...
xn


, and that ξ ∈ R̂n is a row vector,

i.e., ξ = (ξ1, . . . , ξn). A vector x multiplying a matrix M ∈ GLn(R) on the right is understood to be a
column vector, while a vector ξ multiplying M on the left is a row vector. Thus, Mx ∈ Rn and ξM ∈ R̂n.
The Fourier transform is defined as

f̂(ξ) =
∫

Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂n, and the inverse Fourier transform is

f̌(x) =
∫

R̂n

f(ξ) e2πiξx dξ.

For any E ⊂ R̂n, we denote by L2(E)∨ the space {f ∈ L2(Rn) : supp f̂ ⊂ E}.
Recall that a countable collection {ψi}i∈I in a Hilbert space H is a Parseval frame (sometimes called a

normalized tight frame) for H if
∑

i∈I

|〈f, ψi〉|2 = ‖f‖2, for all f ∈ H.

This is equivalent to the reproducing formula f =
∑

i〈f, ψi〉ψi, for all f ∈ H, where the series converges in
the norm of H. This shows that a Parseval frame provides a basis-like representation even though a Parseval
frame need not be a basis in general. We refer the reader to [4, 5] for more details about frames.

2 Shearlets

The shearlets are elements of an affine collection of functions in L2(R2) of the form

AAB(ψ) = {ψj,`,k(x) = | detA|j/2 ψ(B` Ajx− k) : (j, `, k) ∈M}, (2.3)

where M = {j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2}, ψ ∈ L2(R2) and A, B ∈ GLn(R). It will be more convenient
to define the function ψ and examine the shearlets in the frequency domain. After computing the Fourier
transform, the functons ψj,`,k, given by (2.3), have the form

ψ̂j,`,k(ξ) = | detA|−j/2 ψ̂(ξA−jB−`) e−2πiξA−jB−`k.

For any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, let ψ be given by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
,
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where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,− 1

16 ] ∪ [ 1
16 , 1

2 ] and supp ψ̂2 ⊂ [−1, 1]. We assume that

∑

j≥0

|ψ̂1(2−2jω)|2 = 1 for |ω| ≥ 1
8
, (2.4)

and
|ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1.

There are several examples of functions ψ1, ψ2 satisfying these properties (see [12, 15]). It follows from the
last equation that, for any j ≥ 0,

2j∑

`=−2j

|ψ̂2(2j ω + `)|2 = 1 for |ω| ≤ 1. (2.5)

It also follows from our assumptions that ψ̂ ∈ C∞0 (R̂2), with supp ψ̂ ⊂ [− 1
2 , 1

2 ]2.

(a)

ξ1

ξ2

(b)

-¾

∼ 22j

6

?

∼ 2j

Figure 1: (a) The tiling of the frequency plane R̂2 induced by the shearlets. (b) Frequency support of the
shearlet ψj,`,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is symmetrical.

Let A and B be the matrices given by

A =
(

4 0
0 2

)
, B =

(
1 1
0 1

)
.

Observe that (ξ1, ξ2) A−jB−` = (2−2jξ1,−`2−2jξ1 + 2−jξ2). Thus, using (2.4) and (2.5) we have that:

∑

j≥0

2j∑

`=−2j

|ψ̂(ξ A−jB−`)|2 =
∑

j≥0

2j∑

`=−2j

|ψ̂1(2−2j ξ1)|2 |ψ̂2(2j ξ2

ξ1
− `)|2

=
∑

j≥0

|ψ̂1(2−2j ξ1)|2
2j∑

`=−2j

|ψ̂2(2j ξ2

ξ1
+ `)|2 = 1,

for (ξ1, ξ2) ∈ DC , where DC = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1
8 , | ξ2

ξ1
| ≤ 1}. This equation describes the tiling of the

region DC in the frequency plane illustrated in Figure 1(a) (solid line). Since ψ̂ is supported inside [− 1
2 , 1

2 ]2,
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this implies that the collection of horizontal shearlets:

S(ψ) = {ψj,`,k(x) = 2
3j
2 ψ(B`Ajx− k) : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2}, (2.6)

is a Parseval frame for the subspace of L2 defined by

L2(DC)∨ = {f ∈ L2(R2) : supp f̂ ⊂ DC}.

In order to obtain a Parseval frame for the whole space L2(R2), we can construct another Parseval frame
of shearlets for the functions whose frequency support is contained vertical cone DC̃ = {(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥
1
8 , | ξ1

ξ2
| ≤ 1}. Namely, let

A(v) =
(

2 0
0 4

)
, B(v) =

(
1 0
1 1

)

and ψ(v) be given by

ψ̂(v)(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1

ξ2

)
.

Then a similar computation shows that the collection of vertical shearlets:

S(ψ(v)) = {ψ(v)
j,`,k(x) = 2

3j
2 ψ(v)(B`

(v)A
j
(v)x− k) : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2}, (2.7)

is a Parseval frame for the subspace of L2(R2) given by L2(C̃)∨. Finally, we can easily construct an or-
thonormal basis for L2([− 1

8 , 1
8 ]2)∨ (for example, by using Fourier series). As a result, any function in L2(R2)

can be expressed as the sum f = PCf + PC̃f + P0f , where each component corresponds to the orthogonal
projection of f into one of the 3 subspaces of L2(R2) described above. The tiling of the frequency plane R̂2

induced by this system is illustrated in Figure 1(a). Additional details about this construction can be found
in [12, 11].

The conditions on the support of ψ̂1 and ψ̂2 imply that, for each j, `, the functions ψ̂j,`,k have frequency
support contained in the sets:

Wj,` = {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2
ξ1
− ` 2−j | ≤ 2−j}.

As shown in Figure 1, for each j, `, the set Wj,` is a pair of trapezoids centered about ±ξj,`, where ξj,` =
2−2(22j , `2j). Each trapezoid is approximately contained in a box of size 22j × 2j in the frequency domain
(see Figure 1(b)). Thus the frequency support of the shearlets becomes increasingly thin as j increases. In
addition, since the function ψ is in C∞0 , then the shearlets are well localized. In the spatial domain, they
are centered at kj,` = A−jB−`k, and oriented along the line x1

x2
= −`2−j . Similar observations hold for the

vertical shearlets ψ̂
(v)
j,`,k. These properties are essential in the ability of shearlets to provide very efficient

representations for functions containing distributed discontinuities. In fact, shearlets provide optimally
sparse representations for a large class of functions with discontinuities along curves [12]. These properties
will also play a crucial role in the arguments used to prove the main results of this paper.

In the following, we will use the notation {ψµ : µ ∈ M} and {ψ(v)
µ : µ ∈ M} to denote the collection

of shearlets (2.6) and (2.7), respectively, where µ stands for the multi-index (j, `, k). Each shearlet ψµ has
frequency support in the set Wj,` and is associated to a location (kj,`,±ξj,`) in the phase space. A direct
calculation shows that the set Wj,` has area 63

128 23j . Similar observations hold for the vertical shearlets
{ψ̂(v)

µ : µ ∈M}.
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3 Shearlet Representation of Fourier Integral Operators

In this paper, we consider Fourier Integral Operators T of the form

Tf(x) =
∫

e2πiΦ(x,ξ) σ(x, ξ) f̂(ξ) dξ, (3.8)

where the phase function Φ(x, ξ) and the amplitude function σ(x, ξ) satisfy the following assumptions:

• Φ(x, ξ) is a real-valued function, C∞ in (x, ξ), for ξ 6= 0, on the support of σ, and homogeneous of
degree 1 in ξ; that is, Φ(x, λξ) = λ Φ(x, ξ), for all λ > 0. In addition, we assume that

|det Φxξ(x, ξ)| > c > 0, (3.9)

uniformly in x and ξ, where Φxξ = ∇x ∇ξΦ;

• σ is a standard symbol of order 0, that is, σ is in C∞ and

|∂α
ξ ∂β

x σ(x, ξ)| ≤ Cαβ (1 + |ξ|)−|α|; (3.10)

in addition, we assume that σ has compact support in the x variable.

Observe that, for each t fixed, the solution operator to the hyperbolic problem described in the Intro-
duction is of the form (3.8). The above assumptions about Φ and σ are consistent with the study of Fourier
Integral Operator associated with the solutions of hyperbolic problems (see [22, Ch.9]).

As described in the introduction, there is a notion of Hamiltonian flow associated with hyperbolic equa-
tions. The same notion also exists for Fourier Integral Operators and is encoded in the phase function Φ.
Indeed the canonical transformation associated with the phase Φ(x, ξ) is the mapping (x, ξ) → (y, η) of the
phase space:

y = ∇ξΦ(x, ξ), η = ∇xΦ(x, ξ).

As mentioned in the introduction, this formulation is equivalent to that involving trajectories along the
Hamiltonian flow. This canonical transformation induces a bijective mapping on the indices of the shearlet
denoted by h(µ), for µ ∈M.

This is the main theorem of this paper:

Theorem 3.1. Let T be an Fourier Integral Operator satisfying the assumptions given above, acting on
functions on R2. For µ, µ′ ∈ M, let T (µ, µ′) = 〈Tψµ, ψµ′〉, where ψµ and ψµ′ are elements of the Parseval
frame of shearlets {ψµ : µ ∈ M} ∪ {ψ(v)

µ : µ ∈ M}. Then, for each N > 0, there is a constant CN > 0 such
that

|T (µ, µ′)| ≤ CN ω(µ, hµ′(µ′))−N .

In the statement of the theorem, the function ω is the dyadic parabolic pseudo-distance associated with
the indices µ, µ′ ∈M, whose definition will be given in Section 4.2. As mentioned above, for each µ′ ∈M, the
function hµ′ is a bijective mapping on M, induced by the canonical transformation associated with the phase
Φ of T (see further discussion in Section 4.3). As we observed above, the Parseval frame of shearlets is made
up of two collections: vertical and horizontal shearlets, given by (2.6) and (2.7), respectively. Theorem 3.1
holds for any combination of vertical and horizontal shearlets. Since the structure of the two systems is
very similar, in the following we will analyze in detail the representation of the operator T with respect to
the Parseval frame of horizontal shearlets only. We will point out the differences of the representation with
respect to the vertical shearlets where this is needed (in particular, in Section 4.2).

As described in the Introduction, a result similar to Theorem 3.1 is obtained by Candès and Demanet
in [2]. As in [2], using Schur’s Lemma, it follows from Theorem 3.1 that, for every 0 < p ≤ ∞, T (µ, µ′) is
bounded from `p to `p.
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We shall now start to examine the matrix representation of a Fourier Integral Operator T with respect
to a Parseval frame of shearlets. For j ≥ 0 and |`| ≤ 2j , let

Bj,` =
(

1 −` 2−j

0 1,

)

and define the sets

Wj = Wj,0 = Wj,` Bj,` = {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2
ξ1
| ≤ 2−j}

and
E = Wj,` Bj,` A−j = Wj A−j = {(ξ1, ξ2) : ξ1 ∈ [−2−1,−2−4] ∪ [2−4, 2−1], | ξ2

ξ1
| ≤ 1}.

That is, the shear matrix Bj,` is mapping Wj,` into another pair of trapezoids oriented along the ξ1 axis,
and Bj,` A−j is mapping Wj,` into a pair of trapezoids inside the unit square [−1/2, 1, 2]2. Also observe that

Bj,` A−j = A−j B−`.

For µ a fixed index triple in M, let ψµ be a shearlet with location (xµ, ξµ) in the phase space. Then, using
the notation we have introduced and the change of variables ξ = η B−1

j,` and ω = ηA−j , we have

T ψµ(x) =
∫

e2πiΦ(x,ξ) σ(x, ξ) ψ̂µ(ξ) dξ

= 2−3j/2

∫

Wj,`

e2πi(Φ(x,ξ)−ξA−jB−`k) σ(x, ξ) ψ̂(ξA−jB−`) dξ

= 2−3j/2

∫

Wj

e2πi(Φ(x,η B−1
j,` )−η B−1

j,` A−jB−`k) σ(x, η B−1
j,` ) ψ̂(η B−1

j,` A−jB−`) dη

= 2−3j/2

∫

Wj

e2πi(Φ(x,η B−1
j,` )−η A−jk) σ(x, η B−1

j,` ) ψ̂(η A−j) dη

= 23j/2

∫

E

e2πi(Φ(x,ω B`Aj)−ωk) σ(x, ω B`Aj) ψ̂(ω) dω (3.11)

In order to proceed with the analysis of T , it will be convenient to locally linearize the phase Φ(x, ξ) to
separate the nonlinearities of ξ from those of x. This is a standard approach in the study of of Fourier
Integral Operators and can be found, for example, in [22, Ch.9].

We define

δj,`(x, η) =





Φ(x, η B−1
j,` )− η B−1

j,` · ∇ξΦ
(
x, (1, 0)B−1

j,`

)
, for η ∈ W+

j ;

Φ(x, η B−1
j,` )− η B−1

j,` · ∇ξΦ
(
x, (−1, 0) B−1

j,`

)
, for η ∈ W−

j ,
(3.12)

where
W+

j = Wj

⋂
{(ξ1, ξ2) : ξ ≥ 0} , W−

j = Wj

⋂
{(ξ1, ξ2) : ξ < 0} . (3.13)

For µ fixed, this allows us to decompose T as

T = T (2)
µ T (1)

µ ,

where

T (1)
µ f(x) =

∫

Wj

e2πiη B−1
j,` x βµ(x, η) f̂(η B−1

j,` ) dη,

T (2)
µ f(x) = f(φµ(x)),
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with βµ(x, η) = e2πiδj,`(φ
−1
µ (x),η) σ(φ−1

µ (x), η B−1
j,` ), and φµ(x) = ∇ξΦ

(
x, (1, 0) B−1

j,`

)
.

Observe that the operator T
(1)
µ obtained from this decomposition has linear phase but is not a ‘standard’

pseudodifferential operator. That is, βµ(x, η) is not a standard class symbol in general. To illustrate
this point, consider the following example. Let Φ(ξ) = |ξ|, for ξ = (ξ1, ξ2) 6= 0, and ξµ = 2j eµ, where
eµ = (cos θµ, sin θµ). Then

∇ξΦ(ξµ) =
ξµ

|ξµ| = eµ

and
δµ(ξ) = Φ(ξ)−∇ξΦ(ξµ) ξ = Φ(ξ)− eµ ξ.

For θµ = 0, then eµ = (1, 0) and

δµ(ξ) = |ξ| − ξ1 =
√

ξ2
1 + ξ2

2 − ξ1,

which is unbounded. Notice however that δµ(ξ) is a bounded function if we impose that the components
of ξ = (ξ1, ξ2) satisfy a parabolic scaling condition ξ1 = c ξ2

2 , for some c ∈ R. This is one reason why the
shearlets and the curvelets are effective in dealing with the operator T (see Lemma 4.3). Also notice that
the derivatives of δµ(ξ) are homogeneous of degree 0 in ξ. Hence they exhibit no decay in ξ and, as a result,
βµ(x, ξ) does not satisfy (3.10) unless δµ(x, ξ) = 0.

The detailed analysis of the operators T
(1)
µ and T

(1)
µ and the proof of Theorem 3.1 will be given in the

next section.

4 Proof of Main Theorem

In order to prove Theorem 3.1, we will now proceed with the analysis of the operator T
(1)
µ and T

(2)
µ .

4.1 Analysis of the operator T
(1)
µ

In this section, we show that the operator T
(1)
µ maps a shearlet ψµ into a shearlet-like function mµ which,

for analogy with similar notions in wavelet analysis, will be referred to as a shearlet molecule.

Definition 4.1. For µ = (j, `, k) ∈M, the function mµ(x) = 23j/2 aµ(B`Ajx− k) is an horizontal shearlet
molecule with regularity R if the αµ satisfies the following properties:

(i) for each γ = (γ1, γ2) ∈ N× N and each N ≥ 0 there is a constant CN > 0 such that

|∂γ
xaµ(x)| ≤ CN (1 + |x|)−N ; (4.14)

(ii) for each M ≤ R and each N ≥ 0 there is a constant CN,M > 0 such that

|âµ(ξ)| ≤ CN,M (1 + |ξ|)−N (2−2j + |ξ1|)M . (4.15)

For µ = (j, `, k) ∈ M, the function m
(v)
µ (x) = 23j/2 aµ(B`

(v)A
j
(v)x − k) is a vertical shearlet molecule with

regularity R if the α
(v)
µ satisfies (4.14) and for each M ≤ R and each N ≥ 0 there is a constant CN,M > 0

such that ∣∣∣â(v)
µ (ξ)

∣∣∣ ≤ CN,M (1 + |ξ|)−N (2−2j + |ξ2|)M .

The constants CN and CN,M are independent of µ.

8



The second factor in the inequality (4.15) is associated with the almost vanishing moments. By this
property, the frequency support of a shearlet molecule mµ is mostly concentrated around |ξ| ≈ 22j . Observe
that a shearlet ψµ is also a shearlet molecule, but a shearlet molecule has no compact support in the frequency
domain, in general. Coarse scale molecules are defined as elements of the form {aµ(x− k) : k ∈ Z2}, where
aµ satisfies (4.14).

Our definition of shearlet molecule is inspired by the curvelet molecules introduced by Candès and
Demanet [2]. Both definitions adapt the notion of vaguelettes of Coifman and Meyer [18].

Let us examine a few implications of Definition 4.1. If mµ(x) is an horizontal shearlet molecule with
regularity R, then it follows from (4.14) that

|(2πiξ)γ âµ(ξ)| ≤ ‖∂γaµ‖L1 ≤ Cγ ,

and, thus, for all N ≥ 0 there is a constant CN such that

|âµ(ξ)| ≤ CN (1 + |ξ|)−N .

It follows that for all N ≥ 0 there is a constant CN such that

|m̂µ(ξ)| ≤ CN 2−3j/2 (1 + |ξA−jB−`)−N . (4.16)

On the other hand, from (4.15) it follows that for each M ≤ R and each N ≥ 0 there is a constant CN,M > 0
such that

|m̂µ(ξ)| = |âµ(ξ A−j B−`)| ≤ CN,M 2−3j/2
{
2−2j (1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

(4.17)

Thus, combining (4.16) and (4.17), it follows that for each M ≤ R and each N ≥ 0 there is a constant
CN,M > 0 such that

|m̂µ(ξ)| ≤ CN,M 2−3j/2 min
{
1, 2−2j (1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

. (4.18)

Similarly if m
(v)
µ (x) is a vertical shearlet molecule with regularity R, then for all N ≥ 0 and all M ≤ R

there is a constant CN,M independent of µ such that:

|m̂(v)
µ (ξ)| ≤ CN,M 2−3j/2 min

{
1, 2−2j (1 + |ξ2|)

}M
(
1 + |ξ A−j

(v) B−`
(v)|

)−N

. (4.19)

Let mµ(x) = mj,`(x − A−jB−`k), where we use the notation mj,`(x) = mj,`,0(x). Then mj,`(x) =
23j/2 aµ(B`Ajx) and

m̂j,`(ξ) = 2−3j/2 âµ(ξA−jB−`).

Thus, by direct computation, observing that (ξ1, ξ2) A−j B−` = (2−2jξ1, 2−j(ξ2 − `2−jξ1)), we have that

∂ξ1m̂j,`(ξ) = 2−
3
2 j

(
2−2j P1(ξ)− `2−2j P2(ξ)

)

∂ξ2m̂j,`(ξ) = 2−
3
2 j 2−j P2(ξ),

where Pn(ξ) = ∂ηn â(η)|η=(ξ A−j B−`), for n = 1, 2. Similarly for higher order derivatives. Observe that, by
an argument similar to the one given above, it follows that also the functions Pn(ξ) satisfy (4.18). Thus, for
each α = (α1, α2) ∈ N× N, we have that for all N ≥ 0 there is a constant CN such that:

∣∣∂α
ξ m̂j,`(ξ)

∣∣ ≤ CN 2−
3
2 j 2−j(2α1+α2) (1 + |`|)α1 min

{
1, 2−2j (1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

. (4.20)

Next, using the partial derivatives we can compute the directional derivative Dθ mµ(ξ) in the direction θ as
follows

Dθ m̂j,`(ξ) = cos θ ∂ξ1m̂j,`(ξ) + sin θ ∂ξ2m̂j,`(ξ)

= 2−
3
2 j 2−2j P1(ξ) cos θ + (2−j sin θ − `2−2j cos θ)P2(ξ)

= 2−
3
2 j cos θ

(
2−2j P1(ξ) + 2−j (tan θ − `2−j)P2(ξ)

)
.
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Thus we have that for all N > 0 there is a constant CN such that:

|Dθ m̂j,`(ξ)| ≤ CN 2−
3
2 j 2−2j(1 + 2j | tan θ − `2−2j |) min

{
1, 2−2j (1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

. (4.21)

Similar estimates can be derived for the vertical molecules m
(v)
µ (x).

We have the following result.

Theorem 4.2. Let {ψµ : µ ∈M} be a Parseval frame of shearlets. For each µ ∈M the operator T
(1)
µ maps

ψµ into a shearlet molecule mµ = T
(1)
µ ψµ with arbitrary regularity R, uniformly in µ. That is, the constant

in Definition 4.1 is independent of µ.

The same result holds for the vertical shearlets {ψ(v)
µ : µ ∈ M}. Since the argument is essentially the

same, in the following we will only examine the case of horizontal shearlets.

To prove Theorem 4.2 we need the following lemmata. We will use the notation introduced in Section 3.
In particular, δj,` is given by (3.12) and W±

j is given by (3.13).

Lemma 4.3. For x ∈ supp σ, η ∈ Wj and α = (α1, α2), we have
∣∣∂β

x ∂α
η δj,`(x, η)

∣∣ ≤ Cα,β 2−(2α1+α2)j ,

where Cα,β is independent of x, η, j and `.

Proof. Without loss of generality, we will consider only the case η ∈ W+
j . The case η ∈ W−

j is similar.
Since Φ(x, η) is homogeneous of degree one in η, it follows that

Φ(x, η) = η · ∇ηΦ(x, η)

for all x and η. Also ∇α
η Φ(x, η) = O(|η|1−|α|) and η · ∇2

ηΦ(x, η) = 0 and . By the definition of δj,`(x, η), we
have that δj,`(x, η) is homogeneous of degree one in η, δj,`(x, η1, 0) = 0 and ∂η2δj,`(x, η1, 0) = 0 for all η ≥ 0.
These equations imply that, for each n, ∂n

η1
δj,`(x, η1, 0) = 0 and ∂η2∂

n
η1

δj,`(x, η1, 0) = 0. Thus, the Taylor
series expansion of δj,`(x, η) about η2 = 0 is

δj,`(x, η) = ∂2
η2

δj,`(x, η1, 0)
η2
2

2
+ h.o.t. (4.22)

Recall that on the set W+
j , we have that:

1
16

22j ≤ η1 ≤ 1
2

22j and η2 ≤ 1
2

2j .

Thus, using (4.22) and the homogeneity assumptions on Φ, we obtain that 1:

∂α1
η1

δj,`(x, η) = O(|η2|2 |η|−1−α1) = O(2−2α1j) on W+
j ;

∂η2∂
α1
η1

δj,`(x, η) = O(|η2| |η|−1−α1) = O(2−j−2α1j) on W+
j ;

∂α2
η2

∂α1
η1

δj,`(x, η) = O(|η|1−α1−α2) = O(2−2α1j−α2j) on W+
j , for α2 ≥ 2.

In the last estimate, we have used the observation that, for α2 ≥ 2,

|η|1−α1−α2 ≤ |η1|1−α1−α2 ≤ C 2−2α1j22(1−α2)j ≤ C 2−2α1j−α2j .

Therefore: ∣∣∣∂α
η e2πiδj,`(φµ(x)−1,η)

∣∣∣ ≤ Cα 2−2α1j−α2j , on W+
j . 2

1We only need these estimates for x ∈ supp σ(φ−1
µ (x), ξ). Since σ has compact support in x, the estimates are uniform in x.
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Lemma 4.4. For x ∈ supp σ and ω ∈ E we have
∣∣∣∂β

x ∂α
ω

(
βµ(x, ωAj) ψ̂(ω)

)∣∣∣ ≤ Cα,β ,

where Cα,β is independent of x and µ = (j, `, k).

Proof. It follows from Lemma 4.3 that

sup
ω∈E, x∈φ−1

µ (supp σ)

∣∣∂β
x ∂α

ω δj,`(φ−1
µ (x), ωAj)

∣∣ ≤ Cα,β , (4.23)

where Cα,β is independent of j and `. Notice that ω 6= 0 on the set E. Also recall that σ is a symbol of
order 0. Thus |∂β

x ∂α
ξ σ(φ−1

µ (x), ξ)| ≤ Cα (1 + |ξ|)−|α|. This implies that

sup
ω∈E, x∈φ−1

µ (supp σ)

|∂β
x ∂α

ωσ(φ−1
µ (x), ωAjB−1

j,` )| ≤ C ′α,β , (4.24)

where C ′α,β is independent of j and `. It follows from (4.23) and (4.24) that

sup
ω∈E, x∈φ−1

µ (supp σ)

∣∣∣∂β
x ∂α

ω

(
βµ(x, ωAj) ψ̂(ω)

)∣∣∣ ≤ Kα,β ,

where Kα,β is independent of j and `. 2

Lemma 4.5. Suppose that

f(x) =
∫

Rn

e2πiξ(Ax−k) F (x, ξ) dξ,

where A ∈ GLn(R), k ∈ Rn, F is C∞0 and, for all α = (α1, α2) satisfies
∣∣∣∂α

ξ F (x, ξ)
∣∣∣ ≤ Cα, where Cα is

independent of ξ and x. Then, for each N ∈ N, there is a constant CN such that, for any x ∈ Rn, we have

|f(x)| ≤ CN (1 + |Ax− k)|2)−N . (4.25)

If, in addition,
∣∣∂β

x F (x, ξ)
∣∣ ≤ Cβ, where Cβ is independent of ξ and x, then

|∂β
x f(x)| ≤ |β|CN sup

ξ∈supp F

∣∣∣(ξA)β1
1 (ξA)β2

2

∣∣∣ (1 + |Ax− k)|2)−N . (4.26)

In particular, CN = N m(R)
(‖ψ̂‖∞ + ‖4N

ξ ψ̂‖∞
)
, where R = supp ξF , 4ξ =

∑n
i=1

∂2

∂ξ2
i

is the frequency
domain Laplacian operator and m(R) is the Lebesgue measure of R.

Proof. First observe that
|f(x)| ≤ m(R) ‖F‖∞. (4.27)

An integration by parts shows that
∫

R

e2πiξ(Ax−k)4ξF (x, ξ) dξ = −(2π)2 |Ax− k|2 F (x)

and thus, for every x ∈ suppF ,

(2π |Ax− k|)2N |f(x)| ≤ m(R) ‖4N F̂‖∞. (4.28)

Using (4.27) and (4.28), we have
(
1 + (2π |Ax− k|)2N

) |f(x)| ≤ m(R)
(‖F‖∞ + ‖4NF‖∞

)
. (4.29)
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Observe that, for each N ∈ N,

(1 + |x|2)N ≤ (
1 + (2π)2 |x|2)N ≤ N

(
1 + (2π |x|)2N

)
.

Using this last inequality and (4.29), we have that for each x ∈ Rn

|f(x)| ≤ N m(R) (1 + |Ax− k|2)−N
(‖F‖∞ + ‖4NF‖∞

)
.

This proves inequality (4.25). In order to prove (4.26), observe that

∂β
x f(x) =

∑

α+γ=β

cα,γ

∫

Rn

(ξ A)α e2πiξ(Ax+k) ∂γ
xF (x, ξ) dξ.

Inequality (4.26) now follows using the same argument as above. 2

We can now prove Theorem 4.2.

Proof of Theorem 4.2.
From (3.11), using the change of variables ω = η A−j , we observe that:

mµ(x) = T (1)
µ ψµ(x) = 2−3j/2

∫

Wj

e2πi(η B−1
j,` x−η A−jk) βµ(x, η) ψ̂(η A−j) dη

= 23j/2

∫

E

e2πi(ωAj B−1
j,` x−ωk) βµ(x, ω Aj) ψ̂(ω) dω

= 23j/2

∫

E

e2πiω(B`Ajx−k) βµ(x, ω Aj) ψ̂(ω) dω. (4.30)

For µ ∈M, let aµ be defined by

mµ(x) = 23j/2 aµ(B`Ajx− k).

It follows from (4.30) that

aµ(y) = 2−3j/2 mµ(A−j B−`(y + k)) =
∫

E

e2πiωy βµ(A−j B−`(y + k), ω Aj) ψ̂(ω) dω. (4.31)

We need to show that aµ satisfies (4.14) and (4.15).
By Lemmata 4.4 and 4.5 applied to (4.31) it follows that, for all N > 0, there is a constant CN such that

|aµ(y)| ≤ CN (1 + |y|)−N . (4.32)

For any γ = (γ1, γ2) ∈ N× N, we have that

∂γ
y aµ(y) =

∫

E

∂γ
y

(
e2πiωy βµ(A−j B−`(y + k), ω Aj)

)
ψ̂(ω) dω.

By applying to this expression Lemmata 4.4 and 4.5 we obtain the same estimates as aµ(y), given by (4.32).
This gives (4.14).

To deduce the second estimate, let us compute the Fourier transform of aµ(y), given by (4.31). We have:

âµ(ξ) =
∫

R2

∫

E

e2πiωy e−2πiξy βµ

(
A−j B−` (y + k) , ω Aj

)
ψ̂(ω) dω dy. (4.33)

The integral (4.33) is well defined since βµ(y, ω) has compact support in y. Next set D1 = 1
2πi∂y1 and observe

that
D1 e2πiωy = ω1 e2πiωy.

12



Thus, using an integration by parts, we have that

âµ(ξ) =
∫

R2

∫

E

D−M
1

(
e2πiωy

)
DM

1

(
e−2πiξyβµ

(
A−j B−` (y + k) , ω Aj

))
ψ̂(ω) dω dy

=
∫

R2

∫

E

ω−N
1 e2πiωy DM

1

(
e−2πiξyβµ(A−j B−`(y + k), ω Aj)

)
ψ̂(ω) dω dy.

This expression can be written as a sum of the form

âµ(ξ) =
M∑

l=0

cl ξ
l
1 2−2j(M−l)

∫

R2
e−2πiyξFl(y) dy =

M∑

l=0

cl ξ
l
1 2−2j(M−l) F̂l(ξ), (4.34)

where
Fl(y) =

∫

E

e2πiωy 22j(M−l) ∂M−l
y1

(
βµ(A−j B−`(y + k), ω Aj)

)
ω−M

1 ψ̂(ω) dω.

Observe that, in the expression above, ω−1
1 ≤ 16 on E and |22j(M−l) ∂M−l

y1

(
βµ(A−j B−`(y + k), ω Aj)

) | ≤
CM uniformly. Thus, by applying Lemma 4.5, we have that for all M ≥ 0 there is a CM such that

|Fl(y)| ≤ CM

(
1 + |y|2)−M

,

and, similarly, that for all M ≥ 0 and all α

|∂α
y Fl(y)| ≤ Cα,M

(
1 + |y|2)−M

.

It follows that, for all ξ ∈ supp Fl,

|(2πξ)α Fl(ξ)| ≤ ‖∂αFl‖L1 ≤ Cα,

and, thus, for all M > 0 there is a constant CM such that

|F̂l(ξ)| ≤ CN (1 + |ξ|)−N . (4.35)

The estimate (4.15) now follows from (4.34), the binomial theorem, and (4.35). 2

The following observation shows that the molecules mµ, µ ∈M are well localized.

Proposition 4.6. Let mµ = T
(1)
µ ψµ. For all N ∈ N there is a constant CN , independent of j, `, k, x such

that
|mµ(x)| ≤ CN 23j/2 (1 + |B` Ajx− k)|2)−N . (4.36)

Further, for all β = (β1, β2) and all N ∈ N there is a constant KN , independent of j, `, k, x such that

|∂β
x mµ(x)| ≤ CN 23j/2 22j(β1+β2) (1 + |B` Ajx− k)|2)−N . (4.37)

Proof.
To prove inequality (4.36) we apply Lemma 4.5 to the function mµ(x), given by (4.30). Observe that the

assumptions of Lemma 4.5 are satisfied by Lemma 4.4. Next observe that

(ω1, ω2)B`Aj = (22jω1, 2j(`ω1 + ω2)).

Thus, inequality (4.37) also follows from Lemmata 4.4 and 4.5 by observing that, for ω ∈ E:
∣∣∣(ωB`Aj)β1

1 (ωB`Aj)β2
2

∣∣∣ ≤ C 22jβ1 2jβ2 |`|β2 ≤ C 22j(β1+β2). 2
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4.2 Almost orthogonality

While shearlets do not form an orthogonal family, they are associated to a notion of almost orthogonality.
In fact, the inner product of two shearlets ψµ and ψµ′ exhibits an almost exponential decay as a function of
an appropriate distance defined on the indices µ and µ′ in M.

Given a pair of indices µ = (j, `, k) and µ′ = (j′, `′, k′) in M, the dyadic parabolic pseudo-distance ω(µ, µ′)
is defined by:

ω(µ, µ′) = 2|j−j′|
(
1 + 2min(j,j′) d(µ, µ′)

)
,

where
d(µ, µ′) = |`2−j − `′2−j′ |2 + |kj,` − k′j′,`′ |2 + |〈eµ, kj,` − k′j′,`′〉|,

eµ = (cos θµ, sin θµ) and θµ = arctan(`2−j). Observe that the term |〈eµ, kj,`−k′j′,`′〉| induces a non-Euclidean
notion of distance. This definition is motivated by a similar pseudo-distance introduced by Smith [19] which
was later modified and used in the work of Candès and Demanet [2].

Proposition 4.7. For µ, µ′, µ′′, µ0 ∈ M, the dyadic parabolic pseudo-distance ω satisfies the following
properties.

(1) Symmetry. ω(µ, µ′) ∼ ω(µ′, µ).

(2) Triangle Inequality. There is a constant C > 0 such that d(µ, µ′) ≤ C d(µ, µ′′) + d(µ′′, µ′).

(3) Composition. For every N > 0, there is a constant CN > 0 such that
∑

µ′′
ω(µ, µ′′)−N ω(µ′′, µ′)−N ≤ CN ω(µ, µ′)−N+1.

(4) Invariance under Hamiltonian flows: ω(µ, µ′) ∼ ω(µ′(t), µ(t)), where µ(t) is the shearlet index µ evolved
along the Hamiltonian system.

Proof. The proof follows essentially from the arguments in [2, Prop.2.2]. For brevity, in the following,
we will only indicate how to adapt those arguments to our definition.

(1.) In our definition of d, the term |`2−j − `′2−j′ |2 + |kj,`−k′j′,`′ |2 is obviously symmetric. Thus we only
have to show that

|〈eµ, kj,` − k′j′,`′〉| ∼ |〈e′µ, kj,` − k′j′,`′〉|. (4.38)

Since this non-Euclidean term is defined formally as in [2], the proof of (4.38) follows verbatim as in the
proof of [2, Prop.2.2].

(2.) A direct calculation shows that:

|kj,` − k′j′,`′ |2 = |kj,` − k′′j′′,`′′ + k′′j′′,`′′ − k′j′,`′ |2
≤ 2

(|kj,` − k′′j′′,`′′ |2 + |k′′j′′,`′′ − k′j′,`′ |2
)
.

Thus, the triangle inequality certainly holds on the symmetric part of d. As above, for the non-Euclidean
term the proof follows verbatim as in [2, Prop.2.2].

(3.) The proof is again very similar to [2, Prop.2.2]. We will only indicate the minor adjustments that
are needed. In particular, using our definition of d, equation (7.4) in [2] becomes

2j−1∑

`=0

∑

k∈Z2

(1 + 2q d(µ, µ′))−N ≤ C

2j−1∑

`=0

∑

k∈Z2

(
1 + 2q (|2−j`|2 + |2−jk2|2 + |2−2jk1|)

)−N
.

Now, arguing as in [2, Prop.2.2], we have that

2j−1∑

`=0

∑

k∈Z2

(1 + 2q d(µ, µ′))−N ≤ C 22(2j−q)+ , (4.39)
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where the subscript + denotes the positive part. The remaining part of the argument follows as in [2,
Prop.2.2]. For example (we refer there for the definition of Iµ1), using (4.39), the estimate for the case
0 ≤ j2 ≤ j1 is

∑
µ1

Iµ1 ≤ C (1 + 2j0 d02)−N
∑

j1≥j2

2−(2j1−j0−j2)N 24j1−2j2

≤ C 2−(j2−j0)N (1 + 2j0 d02)−N = C ω(µ0, µ1)−N .

(4.) This property follows from [20, p.804]. Indeed, the symmetric part of d is clearly the invariance
along the Hamiltonian flow. We only have to consider the non-Euclidean part of d. However, this term is
defined as in the curvelet case and the proof for this part is given in [20, p.804]. 2

The following Propositions 4.8 and 4.9 show that the shearlet molecules, defined by Definition 4.1, form an
almost orthogonal family with respect to the dyadic parabolic pseudo-distance ω. The almost orthogonality
will play a major role in the proof of Theorem 3.1.

Proposition 4.8. Let mµ and mµ′ be two shearlet molecules with regularity R. Let j, j′ ≥ 0. For every
N ≤ f(R), there is a constant CN > 0 such that

|〈mµ,mµ′〉| ≤ CN ω(µ, µ′)−N .

The number f(R) increases with R and goes to infinity as R goes to infinity.

Proof. The following argument adapts some ideas from Lemma 2.3 in [2].
Consider the integral:

I(µ, µ′) =
∫ ∫

R2
p̂µ(ξ1, ξ2) p̂µ′(ξ1, ξ2) dξ1 dξ2,

where the functions pµ, p′µ satisfy the estimate (4.18).
For j′ ≥ j, we split the integral as

I(µ, µ′) = I1(µ, µ′) + I2(µ, µ′) + I3(µ, µ′) + I4(µ, µ′),

where I1 corresponds to the region of integration {(ξ1, ξ2) : |ξ1| ≥ 22j′}, I2 to the region of integration
{(ξ1, ξ2) : 22j ≤ |ξ1| < 22j′}, I3 to the region of integration {(ξ1, ξ2) : 1 ≤ |ξ1| < 22j} and I4 to the region of
integration {(ξ1, ξ2) : 0 ≤ |ξ1| < 1}.

We can assume ξ1 ≥ 0 (the case ξ1 < 0 is similar). Using the change of variables ξ2 = u ξ1, we have

I1(µ, µ′) ≤ CN

∫ ∞

22j′

∫ ∞

−∞

2−
3
2 (j+j′)

(1 + 2−2j ξ1 + 2−j |ξ2 − ` 2−j ξ1|)N (1 + 2−2j′ ξ1 + 2−j′ |ξ2 − `′ 2−j′ ξ1|)N
dξ2 dξ1

= CN

∫ ∞

22j′

∫ ∞

−∞

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1 + 2−j′ ξ1 |u− `′ 2−j′ |)N
du dξ1

= CN

∫ ∞

22j′

∫ ∞

−∞

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u|)N (1 + 2−2j′ ξ1 + 2−j′ ξ1 |u + ∆µ,µ′ |)N
du dξ1,

where ∆µ,µ′ = `′ 2−j′−` 2−j . By introducing the variables α = 2−jξ1
1+2−2jξ1

and α′ = 2−j′ξ1

1+2−2j′ξ1
, we can factorize

the fraction inside the integral sign to obtain

I1(µ, µ′) ≤ CN

∫ ∞

22j′

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1)N (1 + 2−2j′ ξ1)N

∫ ∞

−∞

1

(1 + α|u|)N (1 + α′ |u + ∆µ,µ′ |)N
du dξ1.

A classical estimate (see [9, Appendix K]) gives that, for α ≥ α′, and N > 1,
∫ ∞

−∞

1

(1 + α |u|)N (1 + α′ |u + ∆µ,µ′ |)N
du ≤ CN

1

α (1 + α′ |∆µ,µ′ |)N
. (4.40)
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From the definition α′, for ξ1 ≥ 22j′ , we have that 1
2 2j′ ≤ α′ ≤ 2j′ . Thus, for ξ1 ≥ 22j′ , provided N > 1,

from the last inequality we obtain
∫ ∞

−∞

1

(1 + α |u|)N (1 + α′ |u + ∆µ,µ′ |)N
du ≤ CN

(1 + 2−2j ξ1)
2−j ξ1

(
1 + 2j′ |∆µ,µ′ |

)−N

. (4.41)

If α′ ≥ α, arguing in a similar way, we obtain that, for N > 1 and ξ1 ≥ 22j′ :
∫ ∞

−∞

1

(1 + α |u|)N (1 + α′ |u + ∆µ,µ′ |)N
du ≤ CN

(1 + 2−2j′ ξ1)
2−j′ ξ1

(
1 + 2j |∆µ,µ′ |

)−N
.

Also observe that, for each N, N ′ ∈ N, we have that
∫ ∞

22j′

1

(1 + 2−2j′ ξ1)
N ′

(1 + 2−2j ξ1)
N

dξ1 ≤
(
1 + 22(j′−j)

)−N
∫ ∞

22j′

1

(1 + 2−2j′ ξ1)
N ′ dξ1

=
(
1 + 22(j′−j)

)−N

22j′
∫ ∞

1

1

(1 + ξ1)
N ′ dξ1.

For N ′ > 1, it follows that
∫ ∞

22j′

1

(1 + 2−2j′ ξ1)
N ′

(1 + 2−2j ξ1)
N

dξ1 ≤ CN ′ 22j′
(
1 + 22(j′−j)

)−N

. (4.42)

Thus, using (4.41) and (4.42), for α ≥ α′ > 1, we have that

I1(µ, µ′) ≤ CN

∫ ∞

22j′

2−
3
2 (j+j′)

(1 + 2−2j ξ1)N−1 (1 + 2−2j′ ξ1)N
2j

(
1 + 2j′ |∆µ,µ′ |

)−N

dξ1

≤ CN 2−
3
2 (j′+j) 2j+2j′

(
1 + 22(j′−j)

)−N (
1 + 2j′ |∆µ,µ′ |

)−N

≤ CN 2
1
2 (j′−j) 2−2N(j′−j)

(
1 + 2j′ |∆µ,µ′ |

)−N

≤ CN 2
1
2 (j′−j) 2−2N(j′−j)

(
1 + 2j |∆µ,µ′ |

)−N
. (4.43)

The same estimate holds for α′ ≥ α.

To estimate the integral I2 we will use the additional factor 2−2j′N (1 + |ξ1|)N from (4.18) (we choose
N = M). We still assume that j′ ≥ j > 1. Thus, for α ≥ α′ (the case α < α′ is handled in a similar way)
we have:

I2(µ, µ′) ≤ CN

∫ 22j′

22j

2−
3
2 (j+j′) ξ1 2−2j′N (1 + ξ1)N

(1 + 2−2j′ ξ1)
N ′

(1 + 2−2j ξ1)
N

∫ ∞

−∞

1

(1 + α|u|)N (1 + α′ |u + ∆µ,µ′ |)N
du dξ1.

Thus, using (4.40) we have

I2(µ, µ′) ≤ CN

∫ 22j′

22j

2−
3
2 (j+j′) ξ1 2−2j′N (1 + ξ1)N

(
1 + 2−2j ξ1

) (
1 + 2−2j′ ξ1

)N

(1 + 2−2j′ ξ1)
N (1 + 2−2j ξ1)

N 2−j ξ1 (1 + 2−2j′ ξ1 + 2−j′ ξ1 |∆µ,µ′ |)N
dξ1

= CN 2−
1
2 (j+3j′) 2−2j′N

∫ 22j′

22j

(1 + ξ1)N

(1 + 2−2j ξ1)
N−1 (1 + 2−2j′ ξ1 + 2−j′ ξ1 |∆µ,µ′ |)N

dξ1

≤ CN 2−
1
2 (j+3j′) 2−2j′N 1

(1 + 22j−j′ |∆µ,µ′ |)N

∫ 22j′

22j

ξN
1

(1 + 2−2j ξ1)
N

dξ1

= CN 2−
1
2 (j+3j′) 2−2j′N 22j 1

(1 + 22j−j′ |∆µ,µ′ |)N

∫ 22(j′−j)

1

22jN uN

(1 + u)N
dξ1.
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Thus, observing that ∫ 22(j′−j)

1

uN

(1 + u)N
dξ1 ≤ 22(j′−j),

we conclude that

I2(µ, µ′) ≤ CN 2
1
2 (j′−j) 2−2(j′−j)N

(
1 + 22j−j′ |∆µ,µ′ |

)−N

≤ CN 2
1
2 (j′−j) 2−(j′−j)N

(
1 + 2j |∆µ,µ′ |

)−N
. (4.44)

To estimate the integral I3 we will use the additional factor 2−2(j′+j)M (1+ |ξ1|)M (notice that we choose
M 6= N). We still assume that j′ ≥ j > 1. Thus, for α ≥ α′ (the case α < α′ is handled in a similar way)
we have:

I3(j, j′, `, `′) ≤ CN,M

∫ 22j

1

2−
3
2 (j+j′) ξ1 2−2(j+j′)M (1 + ξ1)2M

(1 + 2−2j′ ξ1)
N ′

(1 + 2−2j ξ1)
N

∫ ∞

−∞

1

(1 + α|u|)N (1 + α′ |u + ∆µ,µ′ |)N
du dξ1.

Using again (4.40) we have

I3(µ, µ′) ≤ CN,M

∫ 22j

1

2−
3
2 (j+j′) ξ1 2−2(j+j′)M (1 + ξ1)2M

(
1 + 2−2j ξ1

) (
1 + 2−2j′ ξ1

)N

(1 + 2−2j′ ξ1)
N (1 + 2−2j ξ1)

N 2−j ξ1 (1 + 2−2j′ ξ1 + 2−j′ ξ1 |∆µ,µ′ |)N
dξ1

= CN,M 2−
1
2 (j+3j′) 2−2(j+j′)M

∫ 22j

1

(1 + ξ1)2M

(1 + 2−2j ξ1)
N−1 (1 + 2−2j′ ξ1 + 2−j′ ξ1 |∆µ,µ′ |)N

dξ1

≤ CN,M 2−
1
2 (j+3j′) 2−2(j+j′)M

∫ 22j

1

ξ2M
1

(1 + 2−2j ξ1)
N (1 + 2−j′ ξ1 |∆µ,µ′ |)N

dξ1

≤ CN,M 2−
1
2 (j+3j′)

∫ 22j

1

2−2j′M ξM
1

(1 + 2−2j ξ1)
N (1 + 2−j′ ξ1 |∆µ,µ′ |)N

dξ1.

Let M = 2N . Then

I3(µ, µ′) ≤ CN2−
1
2 (j+3j′)

∫ 22j

1

2−2j′N ξN
1

(1 + 2−2j ξ1)
N 22j′N ξ−N

1 (1 + 2−j′ ξ1 |∆µ,µ′ |)N
dξ1

≤ CN2−
1
2 (j+3j′)

∫ 22j

1

2−2j′N ξN
1

(1 + 2−2j ξ1)
N (1 + 2j′ |∆µ,µ′ |)N

dξ1

≤ CN2−
1
2 (j+3j′)

∫ 22j

1

2−2j′N ξN
1

(1 + 2j |∆µ,µ′ |)N
dξ1

≤ CN2−
3
2 (j′−j) 2−2(j′−j)N

(
1 + 2j |∆µ,µ′ |

)−N
. (4.45)

To estimate the integral I4 we choose M = N . Then, still assuming that j′ ≥ j > 1, we have

I4(µ, µ′) ≤ CN

∫ 1

0

∫ ∞

−∞

2−
3
2 (j+j′) ξ1 2−2(j+j′)N (1 + ξ1)2N

(1 + 2−j ξ1 |u|)N
du dξ1

≤ CN 2−
3
2 (j+j′) 2−2(j+j′)N

∫ 1

0

∫ ∞

−∞
2j (1 + ξ1)2N

(1 + |v|)N
dv dξ1

≤ CN 2−
1
2 (j+3j′) 2−2(j+j′)N . (4.46)
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Combining the estimates for (4.43), (4.44), (4.45) and (4.46) we conclude that, if j′ ≥ j, for all N ∈ N
there is a constant CN such that:

I(µ, µ′) ≤ CN 2−(j′−j)N
(
1 + 2j |∆µ,µ′ |

)−N
. (4.47)

We will now deduce another estimate for the decay associated with the spatial location. We still assume
that j′ ≥ j. Recall that, for µ = (j, `, k), mµ(x) = mj,`(x− A−jB−`k) and m̂µ(ξ) = m̂j,`(ξ) e−2πiξA−jB−`k.
Let 4 = ∂2

ξ1
+ ∂2

ξ2
be the frequency Laplacian operator. By (4.20), we have that for all N, M > 0 there is a

constant CN,M such that:

∣∣∣4
(
m̂j,`(ξ) m̂j′,`′(ξ)

)∣∣∣ ≤ CN,M

2−2j 2−
3
2 (j+j′) min{1,2−2j(1+|ξ1|)}M

min
{

1,2−2j′ (1+|ξ1|)
}M

(1+2−2j |ξ1|+2−j |ξ2−` 2−j ξ1|)N(1+2−2j′ |ξ1|+2−j′ |ξ2−`′ 2−j′ ξ1|)N . (4.48)

Let Dµ be the directional derivative in the direction of µ, that is, tan θ = 2−j`. Then, using (4.21) we have
that ∣∣D2

µ m̂j,`(ξ)
∣∣ ≤ CN,M 2−

3
2 j 2−4j min

{
1, 2−2j(1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

and
∣∣D2

µ m̂j′,`′(ξ)
∣∣ ≤ CN,M 2−

3
2 j′ 2−4j′(1 + 22j′ |∆µ,µ′ |2) min

{
1, 2−2j′(1 + |ξ1|)

}M (
1 + |ξ A−j B−`|)−N

.

It follows that∣∣∣∣
24j

(1 + 22j |∆µ,µ′ |2)D2
θ

(
m̂j,`(ξ) m̂j′,`′(ξ)

)∣∣∣∣

≤ CN,M

2−
3
2 (j+j′) min

{
1, 2−2j(1 + |ξ1|)

}M min
{

1, 2−2j′(1 + |ξ1|)
}M

(1 + 2−2j |ξ1|+ 2−j |ξ2 − ` 2−j ξ1|)N (1 + 2−2j′ |ξ1|+ 2−j′ |ξ2 − `′ 2−j′ ξ1|)N
. (4.49)

Set

L = I − 22j 4
(2π)2

− 24j

(2π)2 (1 + 22j |∆µ,µ′ |2) D2
µ.

Then, using (4.48) and (4.49), we have that, for all N, M > 0 and for each n ≤ N there is a CN,M such that

∣∣∣Ln
(
m̂j,`(ξ) m̂j′,`′(ξ)

)∣∣∣ ≤ CN,M

2−
3
2 (j+j′) min{1,2−2j(1+|ξ1|)}M

min
{

1,2−2j′ (1+|ξ1|)
}M

(1+2−2j |ξ1|+2−j |ξ2−` 2−j ξ1|)N(1+2−2j′ |ξ1|+2−j′ |ξ2−`′ 2−j′ ξ1|)N . (4.50)

We also have that for each n ∈ N

L−n
(
e−2πiξ(kj,`−k′j,`)

)
=

(
1 + 22j |kj,` − k′j,`|2 +

24j

(1 + 22j |∆µ,µ′ |2) |〈eµ, kj,` − k′j,`〉|2
)−n

e−2πiξ(kj,`−k′j,`).

(4.51)
where kj,` = A−jB−`k, k′j,` = A−j′B−`′k′. Repeated integrations by parts give

〈mµ,mµ′〉 =
∫ ∞

−∞

∫ ∞

−∞
m̂j,`(ξ) m̂j′,`′(ξ) e−2πiξ(kj,`−k′j,`) dξ1 dξ2

=
∫ ∞

−∞

∫ ∞

−∞
Ln

(
m̂j,`(ξ) m̂j′,`′(ξ)

)
L−n

(
e−2πiξ(kj,`−k′j,`)

)
dξ1 dξ2.

Therefore, by (4.50) and (4.51) we have that for all N,M > 0 there is a constant CN,M such that:

|〈mµ,mµ′〉| ≤ CN,M

(
1 + 22j |kj,` − k′j,`|2 +

24j

(1 + 22j |∆µ,µ′ |2) |〈eµ, kj,` − k′j,`〉|2
)−N

×
∫ ∫

2−
3
2 (j+j′) min{1,2−2j(1+|ξ1|)}M

min
{

1,2−2j′ (1+|ξ1|)
}M

(1+2−2j |ξ1|+2−j |ξ2−` 2−j ξ1|)N(1+2−2j′ |ξ1|+2−j′ |ξ2−`′ 2−j′ ξ1|)N dξ1 dξ2,
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where the integral is of the same form as I(µ, µ′). Thus, from the last expression, using (4.47), we have that
for every N > 0 there is a constant CN such that:

|〈mµ,mµ′〉| ≤ CN 2−(j′−j)N
(
1 + 22j |∆µ,µ′ |2

)−N
(

1 + 22j |kj,` − k′j,`|2 +
24j

(1 + 22j |∆µ,µ′ |2) |〈eµ, kj,` − k′j,`〉|2
)−N

≤ CN 2−(j′−j)N

(
1 + 22j

(|∆µ,µ′ |2 + |kj,` − k′j,`|2
)

+
24j

(1 + 22j |∆µ,µ′ |2) |〈eµ, kj,` − k′j,`〉|2
)−N

≤ CN 2−(j′−j)N
(
1 + 22j

(|∆µ,µ′ |2 + |kj,` − k′j,`|2 + |〈eµ, kj,` − k′j,`〉|
))−N

.

In the last step we have used the observation that

22j |〈eµ, kj,` − k′j,`〉| =
√

1 + 22j |∆µ,µ′ |2
22j |〈eµ, kj,` − k′j,`〉|√

1 + 22j |∆µ,µ′ |2

≤ C

(
(1 + 22j |∆µ,µ′ |2) +

24j |〈eµ, kj,` − k′j,`〉|2
1 + 22j |∆µ,µ′ |2

)

The case j′ ≤ j is symmetric to j ≤ j′ and follows easily from the estimates above. 2

The almost orthogonality of shearlets molecules extends to the situation where there are both vertical and
horizontal molecules. The case where both shearlet molecules are of vertical type follows easily by adapting
Proposition 4.8. The case where one molecule is horizontal and the other one is vertical is proved by the
following proposition.

Proposition 4.9. Let mµ and m
(v)
µ′ be a horizontal and a shearlet molecules with regularity R, respectively.

Let j, j′ ≥ 0. For every N ≤ f(R), there is a constant CN > 0 such that

|〈mµ,m
(v)
µ′ 〉| ≤ CN ω(µ, µ′)−N .

The number f(R) increases with R and goes to infinity as R goes to infinity.

Proof. Consider the integral:

I(µ, µ′) =
∫ ∫

R2
p̂µ(ξ1, ξ2) p̂

(v)
µ′ (ξ1, ξ2) dξ1 dξ2,

where the functions p̂µ and p̂
(v)
µ′ satisfy the estimates (4.18) and (4.19), respectively. It will be sufficient to

estimate the integral in the region Γ = {|ξ2| ≤ |ξ1|}. The estimate in the complementary region follows by
interchanging the roles of ξ1 and ξ2.

As in the proof of Proposition 4.8, for j′ ≥ j, we split the integral as

I(µ, µ′) = I1(µ, µ′) + I2(µ, µ′) + I3(µ, µ′) + I4(µ, µ′).

Our estimates will make use of the following inequality, valid for |a|, |b| ≤ 1:

|1− a b| ≥ |a− b|. (4.52)

Observe that, unlike Proposition 4.8 the case j′ < j is not symmetric to the case j ≥ j′ and will be
discussed later.

For ξ1 ≥ 0 (the case ξ1 < 0 is similar), using the change of variables ξ2 = u ξ1 we have:

I1(µ, µ′) ≤ CN

∫ ∞

22j′

∫ ∞

−∞

2−
3
2 (j+j′)

(1 + 2−2j ξ1 + 2−j |ξ2 − ` 2−j ξ1|)N (1 + 2−2j′ |ξ2|+ 2−j′ |ξ1 − `′ 2−j′ ξ2|)N
dξ2 dξ1

= CN

∫ ∞

22j′

∫ ∞

−∞

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N
(
1 + 2−2j′ ξ1|u|+ 2−2j′`′ ξ1 |u− 2j′

`′ |
)N

du dξ1

≤ CN

∫ ∞

22j′

2−
3
2 (j+j′) ξ1

(1 + 2−2jξ1)N

∫ ∞

−∞

1

(1 + α|u− ` 2−j |)N (1 + α′|u− `′ 2−j′ |)N
du dξ1,
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where α = 2−jξ1
1+2−2jξ1

and α′ = 2−2j′ `′ ξ1.
If α ≥ α′, using (4.40) and (4.52) we have

I1(µ, µ′) ≤ CN

∫ ∞

22j′

2−
3
2 (j+j′) 2j

(1 + 2−2jξ1)
N−1

(
1 + 2−2j′ `′ ξ1| 2j′

`′ − ` 2−j |
)N

dξ1

= CN

∫ ∞

22j′

2−
1
2 (j+3j′)

(1 + 2−2jξ1)
N−1 (1 + 2−j′ ξ1|1− `′ 2−j′` 2−j |)N

dξ1

≤ CN

∫ ∞

22j′

2−
1
2 (j+3j′)

(1 + 2−2jξ1)
N−1 (1 + 2−j′ ξ1|`′ 2−j′ − ` 2−j |)N

dξ1

≤ CN (1 + 2j′ |`′ 2−j′ − ` 2−j |)−N

∫ ∞

22j′

2−
1
2 (j+3j′)

(1 + 2−2jξ1)
N−1

dξ1

≤ CN 2−
3
2 (j′−j) 2−2(j′−j)(N−2) (1 + 2j′ |`′ 2−j′ − ` 2−j |)−N .

If α < α′, using (4.40) and (4.52) we have

I1(µ, µ′) ≤ CN

∫ ∞

22j′

2−
3
2 (j+j′) ξ1

(1 + 2−2jξ1)
N

α′
(
1 + α | 2j′

`′ − ` 2−j |
)N

dξ1

≤ CN

∫ ∞

22j′

2−
3
2 (j+j′) ξ1

(1 + 2−2jξ1)
N

α (1 + α |`′ 2−j′ − ` 2−j |)N
dξ1

≤ CN

∫ ∞

22j′

2−
1
2 (j+3j′)

(1 + 2−2jξ1)
N−1 (1 + 2j |`′ 2−j′ − ` 2−j |)N

dξ1

≤ CN 2−
3
2 (j′−j) 2−2(j′−j)(N−2) (1 + 2j′ |`′ 2−j′ − ` 2−j |)−N .

For I2, when ξ1 ≥ 0, using the change of variables ξ2 = u ξ1 we have:

I2(µ, µ′) ≤ CN

∫ 22j′

22j

∫

|ξ2|≤ξ1

2−
3
2 (j+j′) 2−2j′N (1 + |ξ2|)N

(1 + 2−2j ξ1 + 2−j |ξ2 − ` 2−j ξ1|)N (1 + 2−2j′ |ξ2|+ 2−j′ |ξ1 − `′ 2−j′ ξ2|)N
dξ2 dξ1

≤ CN

∫ 22j′

22j

∫ 1

−1

2−
3
2 (j+j′) ξ1 2−2j′N (1 + ξ1|u|)N

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−j′ ξ1|1− `′ 2−j′ u|)N
du dξ1

≤ CN

∫ 22j′

22j

2−
3
2 (j+j′) ξ1 2−2j′N (1 + ξ1|u|)N

(1 + 2−2jξ1)N

∫ ∞

−∞

1

(1 + α|u− ` 2−j |)N (1 + α′|u− `′ 2−j′ |)N
du dξ1,

≤ CN

∫ 22j′

22j

2−
3
2 (j+j′) ξN+1

1 2−2j′N

(1 + 2−2jξ1)N

∫ ∞

−∞

1

(1 + α|u− ` 2−j |)N (1 + α′|u− `′ 2−j′ |)N
du dξ1.

Now we proceed as for I1. When α ≥ α′, using (4.40) and (4.52), and then proceeding as in Proposition 4.7
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we have:

I2(µ, µ′) ≤ CN

∫ 22j′

22j

2−
3
2 (j+j′) ξN

1 2−2j′N 2j

(1 + 2−2jξ1)
N−1

(
1 + 2−2j′ `′ ξ1| 2j′

`′ − ` 2−j |
)N

dξ1

≤ CN

∫ 22j′

22j

2−
1
2 (j+3j′) ξN

1 2−2j′N

(1 + 2−2jξ1)
N−1 (1 + 2−j′ ξ1|`′2−j′ − ` 2−j |)N

dξ1

≤ CN 2−
1
2 (j+3j′) (1 + 22j−j′ |`′ 2−j′ − ` 2−j |)−N

∫ 22j′

22j

ξN
1 2−2j′N

(1 + 2−2jξ1)
N−1

dξ1

≤ CN 2−
1
2 (j−j′) 2−(j′−j)N (1 + 2j |`′ 2−j′ − ` 2−j |)−N .

The case where α < α′ is similar.
The integrals I3 and I4 are treated as in Proposition 4.7.
We next consider the case j′ < j.
For ξ1 ≥ 0 (the case ξ1 < 0 is similar), using the change of variables ξ2 = u ξ1 and (4.52) we have:

I1(µ, µ′) ≤ CN

∫ ∞

22j

∫ ∞

−∞

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1|u|+ 2−j′ ξ1 |1− `′2−j′u|)N
du dξ1

≤ CN

∫ ∞

22j

∫

|u|≥1/2

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1 + 2−j′ ξ1 |u− `′2−j′ |)N
du dξ1

+ CN

∫ ∞

22j

∫

|u|<1/2

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1|u|+ 2−j′ ξ1 |1− `′2−j′u|)N
du dξ1

Observe that the first of the two integrals in the last sum can be estimated similarly to the integral I1 in
Proposition 4.7. Since |u| < 1/2 (and, thus, |1− `′2−j′u| > 1/2), the second integral is controlled by

CN

∫ ∞

22j

2−
3
2 (j+j′) ξ1

(1 + 2−2j ξ1)
N (1 + 2−j′ ξ1)

N
dξ1 ≤ CN 2

1
2 (5j−3j′) 2−(2j−j′)N

∫ ∞

22j

y

(1 + y)N
dy

≤ CN 2
1
2 (5j−3j′) 2−(j−j′)N 2−jN .

For I2, when ξ1 ≥ 0, using the change of variables ξ2 = u ξ1 we have:

I2(µ, µ′) ≤ CN

∫ 22j

22j′

∫ 1

−1

2−
3
2 (j+j′) ξ1 2−2jN (1 + ξ1|u|)N

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1|u|+ 2−j′ ξ1|1− `′ 2−j′ u|)N
du dξ1

≤ CN

∫ 22j

22j′

∫

1≥|u|≥1/2

2−
3
2 (j+j′) 2−2jN ξN+1

1

(1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1 + 2−j′ ξ1 |u− `′2−j′ |)N
du dξ1

+ CN

∫ 22j

22j′

∫

|u|<1/2

2−
3
2 (j+j′) 2−2jN ξN+1

1

(1 + 2−2j ξ1 + 2−j ξ1|u− ` 2−j |)N (1 + 2−2j′ ξ1|u|+ 2−j′ ξ1 |1− `′2−j′u|)N
du dξ1

Observe that the first of the two integrals in the last sum can now be estimated similarly to the integral I2,
case j′ ≥ j. Since |u| < 1/2 (and, thus, |1− `′2−j′u| > 1/2), the second integral is controlled by

CN

∫ 22j

22j′

2−
3
2 (j+j′) 2−2jN ξN+1

1

(1 + 2−j′ ξ1)
N

dξ1 = CN 2−
1
2 (3j−j′) 2−(2j−j′)N

∫ 22j

22j′

yN+1

(1 + y)N
dy

≤ CN 2
1
2 (3j+j′) 2−(j−j′)N 2−jN .

The integrals I3 and I4 are treated in a similar way.
The remaining part of the proof, involving the estimate for the spatial decay, is very similar to the one

in Proposition 4.8. 2
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4.3 Analysis of the operator T
(2)
µ

To analyze the operator T
(1)
µ in Section 4.1 we have taken advantage of the compact frequency support of

the shearlets {ψµ : µ ∈ M}. In contrast, to analyze the operator T
(2)
µ it will be convenient to introduce a

family of shearlet-like functions with compact support in the space domain. Using this analyzing family, it
will be possible to introduce an atomic decomposition

f(x) =
∑

µ

νµ ρµ(x),

for functions f ∈ L2(R2), where the shearlet atoms ρµ have compact support and satisfy certain regularity
and vanishing moments conditions. Their precise definition will be given after Proposition 4.18. Recall that
the notion of atomic decomposition is standard in harmonic analysis (see, for example, [8]).

We have the following result.

Theorem 4.10. Let {ρµ′ : µ′ ∈ M} be a family of shearlet atoms with regularity R. For each µ′ ∈ M, the
operator T

(2)
µ maps ρµ′ into a shearlet atom mhµ(µ′) with the same regularity R, uniformly over µ′ ∈M.

As in Theorem 3.1, for each µ ∈M, the function hµ is a bijective mapping on M. The precise definition
of h will be given later in this section.

We will construct a family of shearlet-like functions with compact support of the form

ψast(x) = | detAa|−1/2 ψ(A−1
a B−1

s (x− t),

where

Aa =
(

a 0
0

√
a

)
, Bs =

(
1 s
0 1

)
,

and a, s, t are continuous parameters satisfying: 0 < a ≤ 1, |s| ≤ 2, t ∈ R. Notice that, in the Fourier
domain, ψ̂ast(ξ) = a3/4 e−2πiξt ψ(ξBsAa). The following construction adapts several ideas from H. Smith
[19].

Definition 4.11. We say that a Schwartz function φ has k vanishing moments in the x1 direction if φ can
be expressed as

φ(x) = ∂k
x1

φ̃(x)

for some other Schwartz function φ̃.

Observe that if φ has a certain number of vanishing moments in the x1 direction, then φ̂(ξ) = (2πiξ1)k ̂̃
φ(ξ),

and, thus, φ̂(0, ξ2) = 0. This shows that φ̂(ξ) is concentrated along the ξ1 axis way from the origin. As a
consequence, φ̂(ξBsAa) is concentrated in elongated regions, symmetric with respect to the origin, along the
direction ξ2 = sξ1. These regions become increasingly elongated as a → 0.

Let µ(x) be a Schwartz function with k vanishing moments in the x1 direction. That is

µ(x) = ∂k
x1

φ(x),

where φ is another Schwartz function. We assume that φ̂(±1, 0) 6= 0.
We use the notation

µa(x) = a−3/2µ(A−1
a x) = a−3/2µ(a−1x1, a

−1/2x2)

and
µas(x) = a−3/2µ(A−1

a B−1
s x) = µa(x1 − sx2, x2) = a−3/2µ(a−1(x1 − sx2), a−1/2x2)

Since µ̂(ξ) = (2πiξ1)kφ̂(ξ), it follows that

µ̂a(ξ) = µ̂(ξAa) = µ̂(aξ1, a
1/2ξ2) = (2πiaξ1)k φ̂(aξ1, a

1/2ξ2),
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and
µ̂as(ξ) = µ̂(ξBsAa) = µ̂(aξ1, a

1/2(ξ2 − sξ1)) = (2πiaξ1)k φ̂(aξ1, a
1/2(ξ2 − sξ1)).

Let

pβ(ξ) =
∫ 2

−2

∫ 1

0

a−β |µ̂as(ξ)|2 da

a
ds,

and Γ be the region in the frequency plane:

Γ =
{

(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 1,

∣∣∣∣
ξ2

ξ1

∣∣∣∣ ≤ 1
}

.

Lemma 4.12. For each ξ ∈ Γ and k > β/2, we have that

∫

a≤1

a−β |µ̂a(ξ)|2 da

a
≤ C |ξ|β

(
1 +

|ξ2|2
|ξ|

)β−2k

Proof. Since φ is a Schwartz function, for any N > 0 we have:
∣∣∣φ̂(a ξ1,

√
a ξ2)

∣∣∣ ≤ CN

(
1 + a |ξ1|+

√
a |ξ2|

)−N
.

This implies that
|µ̂a(ξ)|2 ≤ CN |a ξ1|2k (1 + a |ξ|)−N (

1 + a |ξ2|2
)−N/2

.

Using the last inequality and the change of variables u = a |ξ|, it follows that

∫

a≤1

a−β |µ̂a(ξ)|2 da

a
≤ CN |ξ|β

∫

a≤1

(a ξ)2k−β (1 + a |ξ|)−N

(
1 + a |ξ| |ξ2|2

|ξ|
)−N/2

da

a

= CN |ξ|β
∫

u≤|ξ|
u2k−β (1 + u)−N

(
1 + u

|ξ2|2
|ξ|

)−N/2
du

u
. (4.53)

Using the change of variables v = u |ξ2|2
|ξ| , for ξ2 6= 0, we have

∫

a≤1

a−β |µ̂a(ξ)|2 da

a
≤ CN |ξ|β

∫

v≤|ξ2|2

(
v
|ξ|
|ξ2|2

)2k−β (
1 + v

|ξ|
|ξ2|2

)−N

(1 + v)−N/2 dv

v

≤ CN |ξ|β
( |ξ|
|ξ2|2

)2k−β ∫

v≤|ξ2|2
(v)2k−β−1 (1 + v)−N/2 dv

≤ C |ξ|β
( |ξ|
|ξ2|2

)2k−β

, (4.54)

where, in the last inequality, we have used k > β/2 and N large. We still have to consider the case ξ2 = 0.
However, it is easy to see from (4.53) that, for all ξ ∈ Γ,

∫

a≤1

a−β |µ̂a(ξ)|2 da

a
≤ C |ξ|β . (4.55)

Thus, the Lemma follows from (4.54) and (4.55). 2

Lemma 4.13. For each ξ ∈ Γ and k > 1
2 (β + 1/2), we have that

∫

|s|≤2

∫

a≤1

a−β |µ̂a(ξ)|2 da

a
ds ≤ C |ξ|β−1/2,

where C > 0 is independent of ξ.
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Proof. Using Lemma 4.12, we have that
∫

a≤1

a−β |µ̂as(ξ)|2 da

a
=

∫

a≤1

a−β |µ̂a(ξBs)|2 da

a

≤ C |ξBs|β
(

1 + |ξBs|
( |(ξBs)2|

|ξBs|
)2

)β−2k

(4.56)

Since |s| ≤ 2, then |ξB| ' |ξ|. Also, for ξ ∈ Γ and |s| ≤ 2, we have

( |(ξBs)2|
|ξBs|

)2

=
|ξ2 − sξ1|2

ξ2
1 + (ξ2 − sξ1)2

=
| ξ2
ξ1
− s|2

1 + ( ξ2
ξ1
− s)2

' ( ξ2
ξ1
− s)2.

Thus, from (4.56) we have that
∫

a≤1

a−β |µ̂as(ξ)|2 da

a
≤ C |ξ|β

(
1 + |ξ|

(
ξ2
ξ1
− s

)2
)β−2k

(4.57)

Using (4.57) and the change of variables t = |ξ|1/2 ( ξ2
ξ1
− s), it follows that for ξ ∈ Γ and k > 1

2 (β + 1/2):

∫

|s|≤2

∫

a≤1

a−β |µ̂as(ξ)|2 da

a
ds ≤ C |ξ|β

∫

|s|≤2

(
1 + |ξ|

(
ξ2
ξ1
− s

)2
)β−2k

ds

≤ C |ξ|β |ξ|−1/2

∫

R

(
1 + t2

)β−2k
ds

≤ C |ξ|β−1/2. 2

Lemma 4.14. Assume that φ̂(±1, 0) 6= 0. Then, for each ξ ∈ Γ

pβ(ξ) ≥ C |ξ|β−1/2,

where C > 0 is independent of ξ.

Proof. We will only consider the case ξ1 > 0, under the assumption that φ̂(1, 0) 6= 0. The situation
where ξ1 < 0 is treated in a similar way, using the assumption that φ̂(−1, 0) 6= 0.

Using the change of variables u = a ξ1, we have

pβ(ξ) =
∫

|s|≤2

∫

a≤1

a−β (a ξ1)2k |φ̂(a ξ1,
√

a (ξ2 − s ξ1))|2 da

a
ds

=
∫

|s|≤2

∫

u≤ξ1

ξβ
1 u2k−β |φ̂(u,

√
uξ1 ( ξ2

ξ1
− s))|2 du

u
ds.

Since φ̂(1, 0) 6= 0, we can find a δ > 0 such that φ̂(ω1, ω2) ≥ C > 0 for |ω1 − 1| < δ, |ω2| < δ. Since ξ ∈ Γ,
then ξ1 > 1 and therefore, by (4.57), we have

p(ξ) ≥ C(δ) ξβ
1

∫

Eδ

∫ 1

1−δ

u2k−β du

u
ds,

where Eδ = {s : |s| ≤ 2, |s − ξ2
ξ1
| ≤ C(δ) ξ

−1/2
1 } with m(Eδ) ≥ C(δ) ξ

−1/2
1 . Thus, it follows that p(ξ) ≥

C ξ
β−1/2
1 for ξ ∈ Γ. 2

We can show that there choices of φ such that, for ξ ∈ Γ and k > 1
2 (β + 1/2),

C1 |ξ|β−1/2 ≤ pβ(ξ) ≤ C2 |ξ|β−1/2,
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for C1, C2 > 0. In fact, let

ψ(t) =

{
1

1− 1
16 t2

, if |t| < 1/4

0, if |t| ≥ 1/4,

and define φ(x1, x2) = ψ(x1)ψ(x2). Then it is easy to verify that

(i) φ ∈ S(R2);

(ii) supp φ ⊂ [− 1
4 , 1

4 ]2;

(iii) φ̂(±1, 0) 6= 0.

To verify (iii) observe that

φ̂(1, 0) = ψ̂(1) ψ̂(0) =
∫ 1/4

−1/4

e−2πit ψ(t) dt

∫ 1/4

−1/4

ψ(t) dt

=
∫ 1/4

−1/4

cos(2πt) ψ(t) dt

∫ 1/4

−1/4

ψ(t) dt 6= 0.

Lemma 4.15. For each ξ ∈ Γ and k > 1
2 (β + 1/2), we have
∣∣∂α

ξ pβ(ξ)
∣∣ ≤ C |ξ|β− 1

2− |α|2 ,

where C > 0 is independent of ξ.

Proof. By direct calculation:

∂ξ2 pβ(ξ) =
∫

|s|≤2

∫

a≤1

a−β+1/2 (a ξ1)2k ∂η2

(
|φ̂(a ξ1,

√
a (ξ2 − s ξ1))|2

) da

a
ds.

This show that ∂ξ2 pβ(ξ) behaves essentially as pβ−1/2(ξ) and, by Lemma 4.13,

|∂ξ2 pβ(ξ)| ≤ C |ξ|β−1, for ξ ∈ Γ,

provided k > 1
2 (β + 1/2). By repeating the partial integration we have that

∣∣∂N
ξ2

pβ(ξ)
∣∣ ≤ C |ξ|β−(N+1)/2, for ξ ∈ Γ.

In order to estimate the partial derivative with respect to ξ1, it will be useful to write the function pβ(ξ) in
the following form. For ξ1 ≥ 0 (the case ξ1 < 0 is similar), using the change of variables aξ1 = u, we have

pβ(ξ) =
∫

|s|≤2

∫ 1

0

a−β (a ξ1)2k |φ̂(a ξ1,
√

a (ξ2 − s ξ1))|2 da

a
ds

= ξβ
1

∫

|s|≤2

∫ ξ1

0

(u)2k−β |φ̂(u, u
1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))|2 du

u
ds.

From the last expression a direct computation gives

∂ξ1 pβ(ξ) = I1(ξ) + I2(ξ) + I3(ξ),

where

I1(ξ) = β ξβ−1
1

∫

|s|≤2

∫ ξ1

0

(u)2k−β |φ̂(u, u
1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))|2 du

u
ds;

I2(ξ) = ξβ
1

∫

|s|≤2

(ξ1)2k−β |φ̂(ξ1, ξ1(
ξ2

ξ1
− s ξ1))|2 du

u
ds;

I3(ξ) = ξβ
1

∫

|s|≤2

∫ ξ1

0

(u)2k−β ∂η2

(
|φ̂(u, u

1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))|2

)
∂ξ1

(
u

1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))

)
du

u
ds.
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Since I1(ξ) = β ξ−1
1 pβ(ξ), then, by Lemma 4.13, |I1(ξ)| ≤ C |ξ|β− 1

2−1 for ξ ∈ Γ. Also, since φ̂ ∈ S(R2), we
certainly have that I2 satisfies the same type of decay. Thus, it only remains to control I3. After computing
the partial derivative with respect to ξ1 inside the integral in I3, we can write

I3(ξ) = I3,1(ξ) + I3,2(ξ),

where

I3,1(ξ) = ξβ
1

∫

|s|≤2

∫ ξ1

0

(u)2k−β ∂η2

(
|φ̂(u, u

1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))|2

)
1
2

u
1
2 ξ

− 1
2

1

(
ξ2

ξ1
− s ξ1

)
du

u
ds;

I3,2(ξ) = ξβ
1

∫

|s|≤2

∫ ξ1

0

(u)2k−β ∂η2

(
|φ̂(u, u

1
2 ξ

1
2
1 (

ξ2

ξ1
− s ξ1))|2

) (
−u

1
2 ξ

1
2
1 ξ2

ξ2
1

)

)
du

u
ds.

Using the change of variables u = aξ1, we have that

I3,1(ξ) =
1
2

ξ−1
1

∫

|s|≤2

∫ 1

0

a−β (a ξ1)2k ∂η2

(
|φ̂(a ξ1,

√
a (ξ2 − s ξ1))|2

) √
a (ξ2 − s ξ1))

da

a
ds,

which shows that I3,1(ξ) behaves like 1
2 ξ−1

1 pβ(ξ) and thus |I3,1(ξ)| ≤ C |ξ|β− 1
2−1 for ξ ∈ Γ. Similarly, using

the change of variables u = aξ1, we have that

I3,2(ξ) = − ξ2

ξ
3/2
1

∫

|s|≤2

∫ 1

0

a−β (a ξ1)2k+1/2 ∂η2

(
|φ̂(a ξ1,

√
a (ξ2 − s ξ1))|2

) da

a
ds,

which behaves like− ξ2

ξ
3/2
1

pβ(ξ) (with k replaced by k+1/4). Thus |I3,1(ξ)| ≤ C |ξ|β− 1
2− 1

2 for ξ ∈ Γ. Therefore,

by combining the estimated for I1(ξ), I2(ξ) and I3(ξ), we have that, for ξ ∈ Γ,

|∂ξ1 pβ(ξ)| ≤ C |ξ|β− 1
2− 1

2 .

The proof is completed by repeating the partial integration. 2

We can now prove the following result, which is similar to [19, Lemma 2.11].

Proposition 4.16. Let ψ be a Schwartz obeying ψ̂(±1, 0) 6= 0 and having at least one vanishing moment in
the x1 direction. Then there is a function q(ξ) such that the following formula holds

q(ξ)
∫

|s|≤2

∫

a≤1

a3/2
∣∣∣ψ̂(ξBsAa)

∣∣∣
2 da

a3
ds = 1, for ξ ∈ Γ.

q(ξ) is a smooth function satisfying |∂αq(ξ)| ≤ C |ξ|− |α|2 on Γ.

Proof. Observe that

I(ξ) =
∫

|s|≤2

∫

a≤1

a3/2
∣∣∣ψ̂(ξBsAa)

∣∣∣
2 da

a3
ds =

∫

|s|≤2

∫

a≤1

a−1/2
∣∣∣ψ̂(ξBsAa)

∣∣∣
2 da

a
ds = p1/2(ξ).

Thus, by Lemmata 4.13 and 4.14, there are constants C1, C2 > 0 such that

C1 ≤ I(ξ) ≤ C2, for ξ ∈ Γ,

provided k > 1/2. Thus, for ξ ∈ Γ, the function

q(ξ) =
1

I(ξ)
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is well defined and smooth. Observe that

∂ξi
q(ξ) = −Iξi

(ξ)
I(ξ)2

, ∂2
ξi

q(ξ) =
2I(ξ) I2

ξi
(ξ)− Iξiξi

(ξ) I2(ξ)
I(ξ)4

, i = 1, 2

and so on for higher order derivatives. The estimate on |∂αq(ξ)| then follows by applying Lemma 4.15 with
β = 1/2. 2

There many choices of ψ satisfying the assumptions of Proposition 4.16. In the following, we will choose
ψ of the form

ψ(x1, x2) = ψ1(x1)ψ2(x2),

where ψ1, and ψ2 are C∞ functions with compact support, satisfying suppψ1, supp ψ2 ⊂ [0, 1]. In addition,
we assume that ψ1 has vanishing moments up to order R, that is,

∫

R
ψ1(x) xk dx = 0, k = 0, 1, . . . , R.

We thus obtain the following reproducing formula.

Proposition 4.17. Suppose that f̂ vanishes outside Γ. Then we have the reproducing formula

f(x) =
∫

R2

∫

|s|≤2

∫

a≤1

〈q(D)f, ψast〉ψast(x)
da

a3
ds dt, (4.58)

where (q(D)f)∧ (ξ) = q(ξ) f̂(ξ) and ψast(x) = a−3/4 ψ(A−1
a B−1

s (x− t)).

Proof. Using Proposition 4.16 we have:
∫

R2

∫

|s|≤2

∫

a≤1

〈q(D)f, ψast〉ψast(x)
da

a3
ds dt =

=
∫

R2

∫

|s|≤2

∫

a≤1

(∫

R2
q(ξ) f̂(ξ) ψ̂(ξBaAa) e2πiξt dξ

)
ψ(A−1

a B−1
s (x− t))

da

a3
ds dt

=
∫

R2
f̂(ξ)

∫

|s|≤2

∫

a≤1

(∫

R2
e2πiξt ψ(A−1

a B−1
s (x− t)) dt

)
q(ξ) ψ̂(ξBaAa)

da

a3
ds dξ

=
∫

R2
f̂(ξ) e2πiξx

∫

|s|≤2

∫

a≤1

a3/2 q(ξ)
∣∣∣ψ̂(ξBsAa)

∣∣∣
2 da

a3
ds dξ

=
∫

R2
f̂(ξ) e2πiξx dξ = f(x). 2

The reproducing formula (4.58) can be written as an atomic decomposition where the integral is broken
into several components associated with distinct regions. For µ = (j, `, k), let

Qµ = {(a, s, t) : 2−2(j+1) ≤ a < 2−2j , `2−j ≤ s < (` + 1)2−j , A−jB−`t ∈ [k1, k1 + 1)× [k2, k2 + 1)}.

Observe that the sets Qµ are disjoint and
⋃

j≥0

⋃2j+1−1
`=−2j+1

⋃
(ka,k2)∈Z2 Qµ = {(a, s, t) : a ≤ 1, |s| ≤ 2, t ∈ R2}.

Then, by breaking the integral (4.58) into components arising from different cells Qµ we have:

f(x) =
∑

j≥0

2j+1−1∑

`=−2j+1

∑

(ka,k2)∈Z2

νµ ρµ(x), (4.59)

27



where

ρµ(x) =
1
νµ

∫ ∫ ∫

Qµ

〈q(D)f, ψast〉ψast(x)
da

a3
ds dt, νµ =

(∫ ∫ ∫

Qµ

|〈q(D)f, ψast〉|2 da

a3
ds dt

)1/2

.

Also observe that ∫ ∫ ∫

Qµ

da

a3
ds dt =

1
2

(24 − 1).

Define the functions αµ by:

αµ(x) = 2−
3
2 j ρµ(A−jB−`(x + k)) = 2−

3
2 j ρµ(Bj,`A

−j(x + k)).

They satisfy the following properties:

Proposition 4.18. For all µ, the function αµ satisfy the following properties:

(i) Compact support: supp αµ ⊂ C [−1, 1]2, where C is independent of µ and f .

(ii) Regularity: for each β = (β1, β2), there is a constant Cβ independent of µ and f such that
∣∣∂β

x αµ(x)
∣∣ ≤ Cβ .

(iii) Vanishing moments along the x1 direction: for all n = 0, 1, . . . , R,
∫

R
αµ(x1, x2)xn

1 dx1 = 0.

We will refer to the elements αµ satisfying (i)–(iii) as atoms with regularity R. The corresponding
functions ρµ, given by

ρµ(x) = 2
3
2 j αµ(B`Ajx− k)

will be referred to as shearlet atoms with regularity R. It is an easy exercise to verify that a shearlet atom
is also a shearlet molecule, according to Definition 4.1.

Proof of Proposition 4.18.
(i) By direct computation we have

αµ(x) =
1
νµ

∫ ∫ ∫

Qµ

〈q(D)f, ψast〉 2− 3
2 j a−

3
4 ψ(A−1

a B−1
s (Bj,`A

−j(x + k)− t))
da

a3
ds dt

=
1
νµ

∫ ∫ ∫

Qµ

〈q(D)f, ψast〉 | detM |−1/2 ψ(M−1(x− (τ − k))
da

a3
ds dt

where τ = Bj,`A
−jt = A−jB−`t and

M−1 = A−1
a B−1

s Bj,`A
−j = A−1

a B−1
(s+`2j)A

−j =




a−12−2j −a−12−j (s + `2−j)

0 a−1/22−j


 .

Observe that, for t ∈ Qµ, then τ ∈ [k1, k1 + 1) × [k2, k2 + 1) and, thus, supp ψ(M−1(x − (τ − k)) ⊂
supp ψ(M−1x) + [−1, 1]2. In addition, since ψ is compactly supported with support on the set [0, 1]2, over
the region Qµ we have that supp ψ(M−1x) ⊂ M [−1, 1]2 ⊂ [c1, c2)× [d1, d2), where c1, c2, d1, d2 are constants
independent of j and `. This shows that αmu(x) is compactly supported.
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(ii) By the Cauchy–Schwarz inequality

|αµ(x)| ≤ 1
νµ

∫ ∫ ∫

Qµ

|〈q(D)f, ψast〉| | detM |−1/2 ‖ψ‖∞ da

a3
ds dt

≤ ‖ψ‖∞ 1
νµ

(∫ ∫ ∫

Qµ

|〈q(D)f, ψast〉|2 da

a3
ds dt

)1/2 (∫ ∫ ∫

Qµ

| detM |−1 da

a3
ds dt

)1/2

≤ 1
2

(24 − 1) ‖ψ‖∞,

where we have used the fact that | detM |−1 ≤ 1 for (a, s, t) ∈ Qµ. Estimates for the derivatives of αµ are
obtained in a similar way.

(iii) By the assumptions on ψ, we have that
∫

R
ψ(x1, x2)xn

1 dx1 = 0, n = 0, 1, . . . , R,

and, more generally, by changing the variable x1 into y = c x1+d x2 and expanding the polynomial (y−d x2)k,
we have: ∫

R
ψ(c x1 + d x2, x2) xn

1 dx1 = 0, n = 0, 1, . . . , R.

In particular, since M is an upper triangular matrix, the last equality implies that
∫

R
ψ(M−1x) xn

1 dx1 = 0, n = 0, 1, . . . , R. (4.60)

Using the Cauchy–Schwarz inequality we have that:
∣∣∣∣
∫

R
αµ(x)xn

1 dx1

∣∣∣∣

≤ 1
νµ

∫ ∫ ∫

Qµ

|〈q(D)f, ψast〉| | detM |−1/2

∫

R
ψ(M−1(x− (τ − k)) xn

1 dx1
da

a3
ds dt

≤ 1
νµ

(∫ ∫ ∫

Qµ

|〈q(D)f, ψast〉|2 da

a3
ds dt

)1/2 (∫ ∫ ∫

Qµ

|det M |−1

∣∣∣∣
∫

R
ψ(M−1(x− (τ − k))xn

1 dx1

∣∣∣∣
2

da

a3
ds dt

)1/2

,

and this expression is equal to zero for n = 0, 1, . . . , R by (4.60). 2

Proof of Theorem 4.10

Using the notation introduced above, we have that

ρµ′(x) = 2
3
2 j′ αµ′(B`′Aj′(x− kµ′)),

where kµ′ = A−j′B−`′k′ and aµ′(x) satisfies Proposition 4.18. By expanding the function φµ about the point
yµ,µ′ = φ−1

µ (kµ′), we can write φµ(x) as

φµ(x) = kµ′ + Lµ,µ′ (x− yµ,µ′) + g(x− yµ,µ′),

where Lµ,µ′ = ∇φµ(yµ,µ′) and g is a C∞ function (with g(x) = x2g′(x), and g′ is a C∞ function). Thus,
with this notation:

T (2)
µ ρµ′(x) = ρµ′(φµ(x)) = 2

3
2 j′ αµ′

(
B`′Aj′ (Lµ,µ′ (x− yµ,µ′) + g(x− yµ,µ′))

)
,

which shows that the function T
(2)
µ ρµ′(x) is centered about the point yµ,µ′ .
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Without loss of generality we can assume that yµ,µ′ = 0. For simplicity let us assume for now that
Lµ,µ′ = I, so that

ρµ′(φ(x)) = 2
3
2 j′ αµ′

(
B`′Aj′ (x + g(x))

)
= 2

3
2 j′ βµ(B`′Aj′x),

where βµ(x) = αµ′(x + B`Aj′g(A−j′B−`′x)). The general case Lµ,µ′ 6= I will be examined later.
By Proposition 4.18, suppαµ′ ⊂ C [−1, 1]2, for some constant C > 0. Therefore, for each j′, `′, the

support of βµ′ is contained on a box of side length C. In particular, the support conditions imply that over
the support of ρµ′ ◦ φµ:

|x| ≤ C 2−j′ |g(x)| ≤ C 2−2j′ , |∂γg(x)| ≤ Cγ 2−j′ , for |γ| = 1, |∂γg(x)| ≤ Cγ , for |γ| > 1.

This implies that, over the support of ρµ′ ◦ φµ (in particular, for |x| ≤ C), for each γ:

‖B`′Aj′∂γg(A−j′B−`′x)‖ ≤ Cγ .

This observation together with part (ii) of Proposition 4.18 implies that

|∂γβµ′(x)| ≤ Cγ .

We will now examine the frequency decay of ρµ′ ◦ φµ. Using the change of variables x = φ−1
µ (y) (hence:

dx = dy

|J(φ−1
µ (y))| ), we have that

(ρµ′ ◦ φµ)∧(ξ) =
∫

e−2πixξρµ′(φµ(x)) dx

=
∫

e−2πiφ−1
µ (y)ξρµ′(y)

dy

|J(φ−1
µ (y))|

=
∫

Sξ(y) ρµ′(y) dy, (4.61)

where Sξ(y) = e
−2πiφ−1

µ (y)ξ

|J(φ−1
µ (y))| . Recall that the function ρµ′(y) is supported over a compact set, uniformly for

all j′, `′. Thus, by the assumptions on Φ, over the support of ρµ′(y) we have that

|Sξ(y)| ≤ C,

and, more generally, for all m ≥ 0,
|∂m

1 Sξ(y)| ≤ Cm (1 + |ξ|)m.

By expanding Sξ(y1, y2) as a Taylor series about the point y1 = 0, from the equation (4.61) we have

(ρµ′ ◦ φµ)∧(ξ) =
N−1∑

k=0

∫
∂k
1Sξ(0, y2)

k!

(∫
yk
1 ρµ′(y1, y2) dy1

)
dy2 +

∫ ∫
Eξ(y1, y2) ρµ′(y1, y2) dy1 dy2, (4.62)

where Eξ(y1, y2) = Sξ(y1, y2)−
∑

k<N
∂k
1 Sξ(0,y2)

k! yk
1 . By part (iii) of Proposition 4.18, we have that

∫
yk
1 ρµ′(y1, y2) dy1 = 0, k = 0, 1, . . . , R.

In fact ρµ′(y) = 2
3
2 j′ αµ(B`′Aj′(y−kµ′)) and the upper triangular matrix B`′Aj′ does not affect the vanishing

moments. Next observe that, on the support of ρµ′ (where |y1| ≤ 2−2j′):

|Eξ(y1, y2)| ≤ CN (1 + |ξ|)N 2−2j′N .
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Thus, using these observations, from (4.62) we have:

|(ρµ′ ◦ φµ)∧(ξ)| ≤ CN (1 + |ξ|)N 2−2j′N2
3
2 j′ 2−3j′ ≤ CN 2−

3
2 j′ 2−2j′N (1 + |ξ|)N . (4.63)

Thus, we have shown that, for Lµ,µ′ = I, the operator T
(2)
µ maps the atom ρµ′ into another atom of same

regularity having the same scale and orientation. Its original location kµ′ has been changed to yµ,µ′ .

Let us examine now what happens when Lµ,µ′ is included in the computation. In this case (still assuming
yµ,µ′ = 0) we have that

ρµ′(φµ(x)) = mµ′(Lµ,µ′x),

where
mµ′(x) = 2

3
2 j′ αµ′

(
B`′Aj′ (x + g̃(x))

)
, g̃(x) = g(L−1

µ,µ′x).

Observe that L−1
µ is uniformly bounded by (3.9). Therefore it follows from the estimates deduced above in

the case Lµ,µ′ = I that mµ′ is also a shearlet atom.
Thus, the operator T

(2)
µ maps the atom ρµ′ , centered at (kµ′ , ξµ′) in the phase space into another atom

of same regularity centered at (yµ,µ′ , ξµ Lµ,µ′). This induces the bijective index mapping hµ on M

T (2)
µ ρµ′(x) = ρµ′(φµ(x)) = ρhµ(µ′)(x). 2

Remark 4.1. Recall the canonical transformation associated with the phase Φ(x, ξ) of the Fourier Integral
Operator T :

y = ∇ξΦ(x, ξ), η = ∇xΦ(x, ξ).

Using the notation introduced above, let φµ(x) = ∇ξΦ(x, ξµ) and φµ(yµ,µ′) = kµ′ . Since Φ(x, ξ) is homoge-
neous of degree one in ξ, then

Φ(x, ξ) = ξ∇ξΦ(x, ξ)

and
∇xΦ(x, ξ) = ξ∇x∇ξΦ(x, ξ).

Using these observations and the definition of Lµ,µ′ we have that

∇ξΦ(kµ′ , ξµ) = φµ(yµ,µ′) = kµ′ ,

∇xΦ(kµ′ , ξµ) = ξµ∇x∇ξΦ(kµ′ , ξµ) = ξµ Lµ,µ′ .

This shows that the action of the operator T
(2)
µ on the phase space coordinates of the shearlet atom ρµ′

corresponds in fact to the canonical transformation:

(kµ′ , ξµ′) → (yµ,µ′ , ξµ Lµ,µ′).

That is, the index mapping hµ on M is a bijective mapping induced by the canonical transformation. As
shown by H. Smith in [19, Lemma 2.2], this map preserves the parabolic pseudo-distance.

Also observe that the dependence of φµ upon µ is not essential in the proof of Theorem 4.10. The only
property that was used is that the derivatives of φµ are bounded uniformly with respect to µ.

4.4 Proof of Main Theorem

We can now prove Theorem 3.1.
Let ψµ0 and ψµ1 be two fixed shearlets. Without loss of generality, let us assume that they are both

horizontal shearlets.
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By Theorem 4.2, mµ0 = T
(1)
µ0 ψµ0 is a shearlet molecule. Also observe that, using the atomic decomposi-

tion (4.59), we can expand ψµ1 as a superposition of (horizontal) shearlet atoms ρµ′ :

ψµ1 =
∑

µ′
cµ′,µ1 ρµ′ ,

where

cµ′,µ1 =

(∫ ∫ ∫

Qµ′
|〈q(D)ψµ1 , ψast〉|2 da

a3
ds dt

)1/2

. (4.64)

Therefore, using these observations and Theorem 4.10 we have that

〈ψµ1 , T ψµ0〉 = 〈ψµ1 , T
(2)
µ0

T (1)
µ0

ψµ0〉
= 〈(T (2)

µ0
)∗ ψµ1 , T

(1)
µ0

ψµ0〉
=

∑

µ′
cµ′,µ1 〈(T (2)

µ0
)∗ ρµ′ ,mµ0〉

=
∑

µ′
cµ′,µ1 〈mh̃µ0 (µ′),mµ0〉,

where mh̃(µ′) is a shearlet molecule and h̃ = h−1 is the inverse of the bijective index mapping h. Next observe
that for every N > 0, there is a constant CN such that:

|cµ′,µ1 | ≤ CN ω(µ′, µ1)−N .

This follows by discretizing the integral (4.64) and noticing that, since q(ξ) and all its derivatives are bounded
(see Proposition 4.16), the argument of Proposition 4.8 can be applied to this integral.

By Proposition 4.7, the distance ω is invariant under the bijective index mapping hµ0 induced by the
canonical transformation: ω(µ, µ′) ∼ ω(hµ0(µ), hµ0(µ

′)), uniformly over µ0 ∈ M. Therefore, using Proposi-
tions 4.7 and 4.8, we have that for every N > 0, there is a constant CN such that:

|〈ψµ1 , T ψµ0〉| ≤
∑

µ′
|cµ′,µ1 |

∣∣∣〈mh̃µ0 (µ′), mµ0〉
∣∣∣

≤ CN

∑

µ′
ω(µ′, µ1)−N ω(h̃µ0(µ

′), µ0)−N

≤ CN

∑

µ′
ω(h̃µ0(µ

′), h̃µ0(µ1))−N ω(h̃µ0(µ
′), µ0)−N

≤ CN

∑

µ′
ω(h̃µ0(µ1), h̃µ0(µ

′))−N ω(h̃µ0(µ
′), µ0)−N

≤ CN ω(h̃µ0(µ1), µ0)−N+1

∼ CN ω(µ1, hµ0(µ0))−N+1. 2
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