
© 1999 Macmillan Magazines Ltd

understory canopy varied from 85% in C. flexuosus communities, to 70% in A. setacea
communities, and 60% in mixture communities.

Experimental design
The experimental design was a 2 3 3 factorial experiment with two burning treatments
(burned and unburned) and three grazing treatments (natural levels of grazing, ungrazed
and experimentally clipped). All experimental plots were 4 m 3 4 m, located within an
area of ,1 km2, subject to similar climate conditions and potentially shared a common
species pool. Overall, there were nine replicates for each unburned treatment and 18 for
treatment combinations involving burning (three and six in each of three community
types, respectively). Plots not experimentally manipulated (unburned, naturally grazed
treatments) were excluded from the analysis. At each sampling session, species richness
and cover was enumerated in eight and four 1-m2 sub-plots, respectively, using a stratified
sampling scheme. Species cover in sub-plots was estimated using a 1 m 3 1 m grid frame
subdivided into 100 units of 0.01 m2 each. Data reported here are for one year following
experimental manipulations, and are therefore devoid of any seasonal biases. Where
necessary, they were transformed to fit the assumptions of normality.

Indices
Rc ¼ S minimum ð pii ; pof Þ, where pii and pif represent the relative cover of the ith species
in pre-disturbance and 1 year post-disturbance plots, respectively22. Rst ¼ N com=N tot ,
where Ntot represents the total number of distinct species recorded in pre-disturbance and
1 year post-disturbance plots, and Ncom represents the number of species common to pre-
disturbance and 1 year post-disturbance plots. Diversity was calculated using the
Shannon–Weiner index29 as H9 ¼ S pi lnðpiÞ, where pi represents the proportional con-
tribution of the ith species to the canopy. Proneness of communities to different
disturbance combinations was calculated as Pbg ¼ Pb þ Pg, where the subscripts b and g
represent the specific burning and grazing treatments. Proneness to burning was
determined on the basis of the cover of C. flexuosus present initially in the plot (Pc). Burned
treatments were assigned the value Pc whereas unburned treatments were assigned a value
of (1 2 Pc) for this index. We believe that this is a valid index because C. flexuosus
individuals are characteristic of the fire-prone environments, and also promote fires
because of the extent of litter and standing dead biomass they produce. For the grazing
treatments, grazed and clipped plots were assigned the value Pg and ungrazed plots
(1 2 Pg), where Pg represents the fraction of species initially grazed in plots.
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Animal locomotion is controlled, in part, by a central pattern
generator (CPG), which is an intraspinal network of neurons
capable of generating a rhythmic output1–4. The spatio-temporal
symmetries of the quadrupedal gaits walk, trot and pace5–8 lead
to plausible assumptions about the symmetries of locomotor
CPGs9–11. These assumptions imply that the CPG of a quadruped
should consist of eight nominally identical subcircuits, arranged
in an essentially unique matter. Here we apply analogous argu-
ments to myriapod CPGs. Analyses based on symmetry applied
to these networks lead to testable predictions, including a dis-
tinction between primary and secondary gaits, the existence of a
new primary gait called ‘jump’, and the occurrence of half-integer
wave numbers in myriapod gaits. For bipeds, our analysis also
predicts two gaits with the out-of-phase symmetry of the walk and
two gaits with the in-phase symmetry of the hop. We present data
that support each of these predictions. This work suggests that
symmetry can be used to infer a plausible class of CPG network
architectures from observed patterns of animal gaits.

The architecture of CPGs is seldom observable in vivo. Aspects of
CPG structure are therefore usually inferred from observable gait
features such as the phase of the gait cycle at which a given limb hits
the ground, and the ‘duty factor’—the proportion of the gait cycle
that a limb is in contact with the ground. It is usual to model CPGs
as networks of nominally identical systems of differential equations,
variously described9–17 as ‘units’, ‘oscillators’ or ‘cells’. We use the
term ‘cell’.

Here we discuss a schematic CPG network10 (Fig. 1) that has twice
as many cells as the animal has legs. For expository purpose we
assume that cells 1, …, 2n determine the timing of leg movements,
and refer to the remaining cells as ‘hidden’.

The structure of the CPG network for a quadruped shown in
Fig. 1b can be deduced from six assumptions: (1) the abstract CPG
network is composed of identical cells, and the signal from each
cell goes to one leg; (2) different gaits are generated by the same
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network, and switching between gaits arises from changes in
parameters (such as coupling strengths); (3) the locomotor CPG
has the same architecture for all quadrupeds; (4) the network can
generate the rhythms of walk, trot and pace; (5) trot and pace are
dynamically independent, existing in different regions of parameter
space; (6) the network generates only simple rhythmic patterns
observed in quadrupedal locomotion.

The first assumption introduces symmetry into model CPGs9–11,15

and accounts for the observed symmetries of many gaits5–8. Differ-
ent CPGs could control the rhythms of each gait; but there would
then have to be a controller that activates each CPG at the correct
times, and there is no evidence for such controllers. It seems more
likely that the second assumption is valid. Similarly, there is an
evolutionary advantage in having a single architecture valid for all
quadruped locomotor CPGs, thus justifying the third assumption.

As virtually all quadrupeds walk and either trot or pace, the
network must produce these gaits, and so the fourth assumption
seems appropriate. As camels pace but do not trot, and squirrels trot
but do not pace, the fifth assumption must be valid. Finally, the sixth
assumption is required in order to create the simplest CPG model.

We prove18 that any CPG satisfying all six assumed conditions
must consist of eight identical cells, whose interconnections have
the same symmetry as Fig. 1b. There are two types of symmetry in
the network: contralateral symmetry, that interchanges cells on the
left with cells on the right; and ipsilateral symmetry, that cyclically
and simultaneously permutes cells on both left and right.

There are two types of symmetries of a periodic solution: spatial
symmetries, which fix the solution at each point in time; and spatio-
temporal symmetries, which fix the solution only after a phase shift.
For example, in a pace, interchanging fore and hind legs is a spatial
symmetry, whereas interchanging right and left legs coupled with a
half-period phase shift is a spatio-temporal symmetry.

Symmetries of differential equations force well-defined spatio-
temporal relations (like half-period phase shifts) on periodic
solutions19. A symmetry type of periodic solutions is called robust
if small symmetric perturbations of the equations do not change the
symmetries of the periodic solution. If no symmetries are present,
then small perturbations of the equations are extremely likely to
change the phase relations.

For coupled cell systems, we prove the following18. Let H be the
subgroup of spatio-temporal symmetries and let K , H be the
subgroup of spatial symmetries; then the only robust types of
periodic solutions of coupled cell systems are those for which the

quotient group H/K is cyclic. The most symmetric solutions are the
ones for which the group H is the symmetry group of the network.

Table 1 lists the most symmetric rhythms; these correspond to
standard quadrupedal gaits with the exception of the ‘jump’. For
concrete networks, the values of the coupling terms in the network
dynamics determine which rhythms occur (refs 18, 20; P.-L. Buono,
manuscript in preparation).

The eight-cell network in Fig. 1b is the only one that satisfies all
six assumptions10,18. We sketch the argument. Walk implies that the
network must have a four-cycle symmetry, and either trot or pace
implies that the network must have a two-cycle symmetry. These
statements follow from the first and fourth assumptions. The
second assumption implies that the network must possess both of
these symmetries.

The four-cycle symmetry implies that the number of cells is a
multiple of four. If the network has four cells, then the two-cycle and
four-cycle symmetries cannot commute and this forces trot and
pace to be conjugate solutions, contradicting the fifth assumption. If
the network has more than eight cells, then unnatural phase-shift
symmetries would be allowed, negating the sixth assumption. Thus
there are eight cells. In an eight-cell network, the fifth assumption
implies that the four-cycle and two-cycle symmetries commute,
and this leads to the network whose symmetry type is indicated in
Fig. 1b. By analogy, the gaits of 2n-legged animals require a network
with the same symmetries as Fig. 1c.

Even though our model prescribes only the symmetries of the
CPG, and not the differential equations, it still leads to several
predictions:

Prediction 1. In our model, a gait is primary if the signal from each
cell is identical up to phase shift. Secondary gaits are those where the
signals to different legs are different waveforms. Our network
produces six primary gaits10 (see Table 1) and solutions that
resemble gallops and canters (refs 10, 20; P.-L. Buono, manuscript

Figure 1 Schematic central pattern generator (CPG) networks. a, Four-cell network
for bipedal locomotor CPG; b, eight-cell network for quadrupeds; c, 4n-cell network for
2n-legged animals. Double lines indicate contralateral coupling; single lines indicate
ipsilateral coupling. Direction of ipsilateral coupling is indicated by arrows; contralateral
coupling is bidirectional.

1/2
wave

1
wave

1
wave

Figure 2 Half-integer wave numbers in myriapod gaits. Figure of Manton25 from
Alexander5. Thick lines indicate centipede legs in contact with the ground. Left centipede
shows 3 waves. Right centipede shows 3/2 waves.

Table 1 Phase shifts for primary gaits in the eight-cell network

Walk Jump Trot Pace Bound Pronk

LF RF 6 3
4 6 1

4
1
2

1
2

1
2 0 0 1

2
1
2

1
2 0 0

LH RH 1
2 0 6 3

4 6 3
4 0 1

2 0 1
2 0 0 0 0

LF RF 6 1
4 6 3

4 0 0 1
2 0 0 1

2
1
2

1
2 0 0

LH RH 0 1
2 6 1

4 6 1
4 0 1

2 0 1
2 0 0 0 0

.............................................................................................................................................................................
LF, left fore leg; RF, right fore leg; LH, left hind leg; RH, right hind leg.
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in preparation), which are secondary gaits. Experimentally observed
variability from exact quarter-period and half-period phase shifts21,22

can, in principle, be accounted for by analysing symmetry-broken
secondary gaits. As the signals sent to fore legs in primary gaits are
identical and in secondary gaits are unequal, the duty factors of the
fore legs should be equal in primary gaits and unequal in secondary
gaits. Indeed, the duty factors of fore legs of a walking horse are
equal8 and those of a galloping horse are different23,24.

Prediction 2. Table 1 includes a non-standard primary gait, the
jump, which can be described as ‘fore feet hit ground, then hind feet
hit ground, then three beats later fore feet hit ground’. We observed a
gait with that pattern in a bucking bronco. (A figure showing four
equal-time-interval frames, taken from a video provided by The
Houston Livestock Show and Rodeo of the bareback bronco event
on 24 February 1999, is available electronically at ftp://ftp.math.
uh.edu/pub/laode/rodeo.) The timing of the footfalls is close to 0
and 1/4 of the period of this rhythmic motion. The primitive
ricocheting jump of a Norway rat and an Asia Minor gerbil also
has this cadence6.

Prediction 3. We next predict the occurrence of half-integer wave
numbers in myriapod gaits. Because the network has twice as many
cells as the animal has legs, the number of waves of leg movement
that fit into the observable half of the network is either an integer or
half an odd integer. Manton25 provides drawings of several cen-
tipede gaits; the number of waves is close either to an integer (4, 3, 2)
or half an odd integer (3/2); see Fig. 2. The tripod gait of hexapods26

is a 3/2 wave.
Prediction 4. Finally, we specialize the network to bipeds where

hidden cells seem unnecessary9. For evolutionary reasons, we expect
bipeds not to break the pattern hypothesized for many-legged
animals, thus resulting in four primary bipedal gaits (Table 2). If
hidden cells do occur in bipedal CPGs, they should play an active
role, perhaps controlling the timing of different muscle groups.
Thus, muscle groups may reveal the presence of two distinct gaits in
which the legs move half a period out of phase. More precisely, lower
leg muscles should be activated synchronously in one gait and
asynchronously in the other—because of the phases of the hidden
cells. The human gaits walk and run support this prediction27,28.
During walking, the gastrocnemius (an ankle plantarflexor) and the
tibialis anterior (an ankle dorsiflexor) are activated out of phase,
whereas during running, they are co-activated during significant
portions of the gait cycle.

Unlike bipeds, the hidden phases of quadrupedal primary gaits
can be deduced from the observable half network. Thus, each
primary gait corresponds either to synchronous muscle activation
(as in the run) asynchronous activation (as in the walk). This
prediction should be testable. M
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Table 2 Bipedal gaits for a four-cell CPG network

Slow hop Fast hop Walk Run

0 0 1
2

1
2

1
2 0 0 1

2
0 0 0 0 0 1

2 0 1
2.............................................................................................................................................................................
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Our two eyes obtain slightly different views of the world. The
resulting differences in the two retinal images, called binocular
disparities, provide us with a stereoscopic sense of depth1. The
primary visual cortex (V1) contains neurons that are selective for
the disparity2–4 of individual elements in an image, but this
information must be further analysed to complete the stereo-
scopic process5,6. Here we apply the psychophysical technique of
reverse correlation7 to investigate disparity processing in human
vision. Observers viewed binocular random-dot patterns, with
‘signal’ dots in a specific depth plane plus ‘noise’ dots with
randomly assigned disparities. By examining the correlation
between the observers’ ability to detect the plane and the par-
ticular sample of ‘noise’ disparities presented on each trial, we
revealed detection ‘filters’, whose disparity selectivity was remark-
ably similar to that of individual neurons in monkey V1. More-
over, if the noise dots were of opposite contrast in the two eyes, the


