DIFFERENTIAL EQUATIONS

Background material: Text, Section 1.1

1. BASIC TERMINOLOGY (Text, Section 1.2)

A differential equation is an equation that contains an unknown function together with one or more of its derivatives.

Examples: In $1-4$, find $y(x)$ such

that:

1. $y^{\prime}=2 x+\cos x$
2. $\frac{d y}{d x}=k y$ (exponential growth/decay)
3. $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=4 x^{3}$
4. $\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=0$

Find $u(x, y)$ such that
5. $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ (Laplace's eqn.)

TYPE:

If the unknown function depends on a single independent variable, then the equation is an
ordinary differential equation (ODE).

If the unknown function depends on
more than one independent variable,
then the equation is a
partial differential equation (PDE).

ORDER:

The order of a differential equation is
the order of the highest derivative of
the unknown function appearing in the equation.

Examples:

$$
\text { 1. } y^{\prime}=2 x+\cos x
$$

Type:
 Order:

2. $\frac{d y}{d x}=k y$ (exponential growth/decay)

Type:
Order:
3. $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=4 x^{3}$

Type:

Order:
4. $\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=0$

Type:

Order:
5. $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ (Laplace's eqn.)

Type:
Order:
6. $\frac{d^{2} y}{d x^{2}}+2 x \sin \left(\frac{d y}{d x}\right)+3 e^{x y}=\frac{d^{3}}{d x^{3}}\left(e^{2 x}\right)$

Order:

2. SOLUTIONS OF DIFFEREN-

TIAL EQUATIONS

A solution of a differential equation
is a function defined on some domain
D such that the equation reduces to
an identity when the function is substi-
tuted into the equation.

Examples:

1. $y^{\prime}=2 x+\cos x$

2. $y^{\prime}=k y$
$y=e^{k x}$

3. $y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x}$

Is $y=2 e^{4 x}-\frac{1}{2} e^{2 x}$ a solution?
$y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x}$

Is $y=e^{-2 x}+2 e^{3 x}$ a solution?

$$
\text { 4. } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=3 x^{4}
$$

Is $y=\frac{3}{2} x^{4}+2 x^{3}$ a solution?

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=3 x^{4}
$$

Is $y=2 x^{2}+x^{3}$ a solution?

$$
\begin{aligned}
& \text { 5. } \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \\
& u=\ln \sqrt{x^{2}+y^{2}} \quad \text { Solution? }
\end{aligned}
$$

$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
$u=\cos x \sinh y, \quad u=3 x-4 y$

Solutions??

Finding solutions - simple equations,

from calculus

> 1. Find the solutions of:
> $y^{\prime}=6 x^{2}+4 \cos 2 x$
2. Find the solutions of:
$y^{\prime \prime}=6 e^{3 x}+12 x$

Finding solutions - with hints

1. Find a value of r, if possible,
such that $y=e^{r x}$ is a solution of:
(a) $y^{\prime \prime}-3 y^{\prime}-10 y=0$
(b) $y^{\prime \prime}-6 y^{\prime}+13 y=0$
2. Find a value of r, if possible,
such that $y=x^{r}$ is a solution of

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
$$

3. Find a value of r, if possible,
such that $y=x^{r}$ is a solution of

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{3}{x^{2}} y=0 .
$$

3. n-PARAMETER FAMILY OF SOLUTIONS / GENERAL SOLUTION (Text, Section 1.3)

Example: Find solutions of the differential equation:

$$
y^{\prime \prime \prime}-12 x+6 e^{2 x}=0
$$

NOTE: To solve a differential equation having the special form

$$
y^{(n)}(x)=f(x)
$$

simply integrate $f n$ times,
and EACH integration step produces
an arbitrary constant;
there will be n independent arbitrary constants.

Intuitively, to find a set of solutions of an n-th order differential equation

$$
F\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right]=0
$$

we "integrate" n times, with each integration step producing an arbitrary
constant of integration (i.e., a param-
eter). Thus, " in theory," an n-th order
differential equation has an n-parameter
family of solutions.

SOLVING A DIFFERENTIAL EQUA-

TION:

To solve an n-th order differential equa-
tion

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0
$$

means to find an n-parameter family of
solutions. (Note: Same n.)

NOTE: An " n-parameter family of solutions" is more commonly called THE

GENERAL SOLUTION.

Examples: Find the general solution:

$$
\text { 1. } y^{\prime}=3 x^{2}+2 x-4
$$

$y=x^{3}+x^{2}-4 x+C$

2. $y^{\prime \prime}+2 \sin 2 x=0$
$y=\frac{1}{2} \sin 2 x+C_{1} x+C_{2}$

$$
\text { 3. } y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Answer: $y=C_{1} e^{x}+C_{2} x e^{x}+C_{3} x^{2} e^{x}$
4. $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=3 x^{4}$

Answer: $y=C_{1} x^{2}+C_{2} x^{3}+\frac{3}{2} x^{4}$

PARTICULAR SOLUTION:

If specific values are assigned to the arbitrary constants in the general solution of a differential equation, then the resulting solution is called a particular solution.

Examples:

$$
\text { 1. } y^{\prime \prime}=6 x+8 e^{2 x}
$$

General solution:

$$
y=x^{3}+2 e^{2 x}+C_{1} x+C_{2}
$$

Particular solutions:

$$
\text { 2. } x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=4 x^{3}
$$

General solution:

$$
y=C_{1} x+C_{2} x^{2}+2 x^{3}
$$

Particular solutions:

4. THE DIFFERENTIAL EQUATION OF AN n-PARAMETER FAM-

ILY:

Given an n-parameter family of curves.
The differential equation of the fam-
ily is an n-th order differential equation that has the given family as its general solution.

Examples:

1. $y^{2}=C x^{3}+4$ is the general solution of a DE.
a. What is the order of the DE?
b. Find the DE.
2. $y=C_{1} x+C_{2} x^{3}$ is the general solution of a DE.
a. What is the order of the DE?
b. Find the DE?

General strategy for finding the differential

 equation of an n-parameter familyStep 1. Differentiate the family n times. This produces a system of $n+1$ equations.

Step 2. Choose any n of the equations and solve for the parameters.

Step 3. Substitute the "values" for the parameters in the remaining equation.

Examples:

The given family of functions is the general solution of a differential equa-
tion.
(a) What is the order of the equation?
(b) Find the equation.

$$
\begin{aligned}
& \text { 1. } y=C x^{3}-2 x \\
& \text { (a) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { 2. } y=C_{1} e^{2 x}+C_{2} e^{3 x} \\
& \text { (a) }
\end{aligned}
$$

(b)
3. $y=C_{1} \cos 3 x+C_{2} \sin 3 x$
(a)
(b)
4. $y=C_{1} x^{4}+C_{2} x+C_{3}$
(a)
(b)

$$
\begin{aligned}
& \text { 5. } y=C_{1}+C_{2} x+C_{3} x^{2} \\
& \text { (a) }
\end{aligned}
$$

(b)

5. INITIAL-VALUE PROBLEMS:

(Text, Section 1.4)

1. Find a solution of
$y^{\prime}=3 x^{2}+2 x+1$
which passes through the point $(-2,4)$;
that is, satisfies $y(-2)=4$.
$y=x^{3}+x^{2}+x+C$ (the general solution)

$y=x^{3}+x^{2}+x+10$ (the particular solution that satisfies the equation)

2. $y=C_{1} \cos 3 x+C_{2} \sin 3 x$ is the general solution of:

$$
y^{\prime \prime}+9 y=0
$$

a. Find a solution that satisfies
$y(0)=3$
b. Find a solution which satisfies

$$
y(0)=3, y^{\prime}(0)=4
$$

$y=3 \cos 3 x+\frac{4}{3} \sin 3 x$ is the solution

 of$$
y^{\prime \prime}+9 y=0, \quad y(0)=3, \quad y^{\prime}(0)=4 .
$$

An n-th order initial-value problem consists of an n-th order differential equation

$$
F\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right]=0
$$

together with n (initial) conditions of
the form

$$
\begin{gathered}
y(c)=k_{0}, y^{\prime}(c)=k_{1}, y^{\prime \prime}(c)=k_{2}, \ldots, \\
y^{(n-1)}(c)=k_{n-1}
\end{gathered}
$$

where c and $k_{0}, k_{1}, \ldots, k_{n-1}$ are given numbers.

NOTES:

1. An n-th order differential equation can always be written in the form

$$
F\left[x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}\right]=0
$$

by bringing all the terms to the lefthand side of the equation.
2. The initial conditions determine a particular solution of the differential equation.

Strategy for Solving an Initial-Value Problem:

Step 1. Find the general solution of the differential equation.

Step 2. Use the initial conditions to
solve for the arbitrary constants in the
general solution.

Examples:

1. Find a solution of the initial-value
problem

$$
y^{\prime}=4 x+6 e^{2 x}, y(0)=5
$$

General solution: $y=2 x^{2}+3 e^{2 x}+C$

2. $y=C_{1} e^{-2 x}+C_{2} e^{4 x}$ is the general solution of

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

Find a solution that satisfies the initial conditions

$$
y(0)=3, y^{\prime}(0)=2
$$

3. $y=C_{1} x+C_{2} x^{3}$ is the general solution of

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{3}{x^{2}} y=0
$$

a. Find a solution which satisfies

$$
y(1)=2, \quad y^{\prime}(1)=-2 .
$$

Graph: $y=4 x-2 x^{3}$

b. Find a solution which satisfies

$$
y(0)=0, \quad y^{\prime}(0)=2
$$

Graphs: $\quad y=2 x+C_{2} x^{3}$

C. Find a solution which satisfies

$$
y(0)=2, \quad y^{\prime}(0)=-2
$$

EXISTENCE AND UNIQUENESS:

The fundamental questions in a course on differential equations are:

1. Does a given initial-value problem have a solution? That is, do solutions to the problem exist?
2. If a solution does exist, is it
unique? That is, is there exactly one
solution to the problem or is there more than one solution?

Chapter 1. Terms

Differential Equation, pg. 6
Type, pg. 6

Order, pg. 7
Solution, pg. 7
n-Parameter Family of Solns, pg. 14
General Solution, pg. 16
Singular Solution, pg. 16
Particular Solution, pg. 17

Differential Equation of an n-Parameter

Family, pg. 17

Initial Conditions, pg. 23
 $n^{\text {th }}$-Order Initial-Value Problem, pg. 24

Page numbers refer to the text

