Chapter 2, Part 1

FIRST ORDER EQUATIONS

$$
F\left(x, y, y^{\prime}\right)=0
$$

Background Material: (Text, Section 2.1)

Techniques of integration:

- Substitution (the most common technique)
- Integration-by-parts
- Integrals involving trig functions
- Partial fraction decomposition

Given a first order DE

$$
F\left(x, y, y^{\prime}\right)=0
$$

Basic assumption: The equation can be solved for y^{\prime}; that is, the equation can be written in the form

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

2.2. FIRST ORDER LINEAR EQUATIONS (Text: Section 2.2)

$$
y^{\prime}=f(x, y)
$$

is a linear equation if f has the
form

$$
f(x, y)=P(x) y+q(x)
$$

where P and q are continuous
functions on some interval I. Thus

$$
y^{\prime}=P(x) y+q(x)
$$

Standard form:

The standard form for a first order linear equation is:

$$
y^{\prime}+p(x) y=q(x)
$$

where p and q are continuous
functions on the interval I
(Note: A differential equation which
is not linear is called nonlinear.)

Examples:

1. Find the general solution:

$y^{\prime}=k y, k$ constant (See Examples in Chapter 1)

2. Find the general solution:

$$
y^{\prime}+2 x y=4 x
$$

Solution Method:

Step 1. Identify: Determine that the equation IS linear and write it in standard form

$$
y^{\prime}+p(x) y=q(x)
$$

$$
y^{\prime}+p(x) y=q(x) .
$$

Step 2. Multiply by $e^{\int p(x) d x}$:

$$
\left[e^{\int p(x) d x} y\right]^{\prime}=q(x) e^{\int p(x) d x}
$$

Step 3. Integrate:

$$
e^{\int p(x) d x} y=\int q(x) e^{\int p(x) d x} d x+C
$$

Step 4. Solve for y :

$$
y=e^{-\int p(x) d x} \int q(t) e^{\int p(t) d t} d x+C e^{-\int p(x) d x}
$$

$y=e^{-\int p(x) d x} \int q(x) e^{\int p(x) d x} d x+C e^{-\int p(x) d x}$
is the general solution of the equa-
tion.

Note: $e^{\int p(x) d x}$ is called an inte-
grating factor

3. Find the general solution:

$$
x y^{\prime}=\frac{\cos 2 x}{x^{2}}-3 y
$$

4. Find the general solution:

$$
x y^{\prime}=\frac{2}{\sqrt{x^{2}-1}}-2 y+2
$$

5. Solve the initial-value problem:
 $$
y^{\prime}+(\cot x) y=2 \cos x, \quad y(\pi / 2)=3
$$

6. Find the general solution:

$$
y^{\prime}+2 x y=2 \tan x
$$

Answers:

1. $y=C e^{k x}$
2. $y=2+C e^{-x^{2}}$
3. $y=\frac{\sin 2 x}{2 x^{3}}+\frac{C}{x^{3}}$
4. $y=\frac{2 \sqrt{x^{2}-1}}{x^{2}}+1+\frac{C}{x^{2}}$
5. $y=\frac{5-\cos 2 x}{2 \sin x}$
6. $y=e^{-x^{2}} \int 2 e^{x^{2}} \tan x d x+C e^{-x^{2}}$

Linear Operations and the term

"linear"

Differentiation:

As you know: For differentiable func-
tions f and g

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d f}{d x}+\frac{d g}{d x}
$$

and for any constant c

$$
\frac{d}{d x}[c f(x)]=c \frac{d f}{d x}
$$

Integration:

For integrable functions f and g :
$\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
and, for any constant c

$$
\int c f(x) d x=c \int f(x) d x
$$

Any "operation" L which satisfies
$L[f(x)+g(x)]=L[f(x)]+L[g(x)]$
and $L[c f(x)]=c L[f(x)]$
is a "linear" operation.

1. Differentiation is a linear oper-
ation.
2. Integration is a linear operation.

Set $L[y]=y^{\prime}+p(x) y$

$$
\begin{aligned}
& L\left[y_{1}+y_{2}\right]=\left(y_{1}+y_{2}\right)^{\prime}+p\left(y_{1}+y_{2}\right) \\
& =y_{1}^{\prime}+y_{2}^{\prime}+p y_{1}+p y_{2} \\
& =y_{1}^{\prime}+p y_{1}+y_{2}^{\prime}+p y_{2}=L\left[y_{1}\right]+L\left[y_{2}\right]
\end{aligned}
$$

$L[c y]=(c y)^{\prime}+p(c y)=c y^{\prime}+c p y$
$=c\left(y^{\prime}+p y\right)=c L[y]$

Thus, if $L[y]=y^{\prime}+p(x) y$, then

$$
\begin{aligned}
L\left[y_{1}+y_{2}\right] & =L\left[y_{1}\right]+L\left[y_{2}\right] \\
L[c y] & =c L[y]
\end{aligned}
$$

$L[y]=y^{\prime}+p(x) y: \quad$ the left-hand side of a linear differential equation in standard form; L is a linear operator. Hence the term linear differential equation.

Example. Let $L[y]=y^{\prime}+\frac{2}{x} y$.
(a) Find $L\left[2 x^{2}-3 x\right]$
(b) Find y such that $L[y]=\frac{e^{4 x}}{x^{2}}$
2.3. SEPARABLE EQUATIONS
(Text, Section 2.3)

$$
y^{\prime}=f(x, y)
$$

is a separable equation if f can be factored into

$$
f(x, y)=p(x) h(y)
$$

where p and h are continuous
functions.

$$
y^{\prime}=p(x) h(y)
$$

is called the "standard form."

Example 1: Show that

$$
y^{\prime}=x y^{2}-x-y^{2}+1
$$

is separable

Solution Method:

Step 1. Identify: Establish that the equation IS separable.

Step 2. Divide both sides by $h(y)$
to "separate" the variables.
$\frac{1}{h(y)} y^{\prime}=p(x) \quad$ or $\quad q(y) y^{\prime}=p(x)$
which, can be written as
$q(y) \frac{d y}{d x}=p(x) \quad$ and $\quad q(y) d y=p(x) d x$
the variables are "separated."

Step 3. Integrate

$$
\begin{gathered}
q(y) d y=p(x) d x \\
\int q(y) d y=\int p(x) d x+C \\
Q(y)=P(x)+C
\end{gathered}
$$

$$
\text { where } Q^{\prime}(y)=q(y), P^{\prime}(x)=p(x)
$$

Note:

$Q(y)=P(x)+C$ is the general so-
Iution. Typically, this is an implicit relation between x and y; you may or may not be able to solve it for y, but you should simplify as much as possible!

Examples:

2. Find the general solution:

$$
y^{\prime}=\frac{x y^{2}+4 x}{2 y}
$$

Graphs: $y^{2}=C e^{x^{2} / 2}-4$

Note: If you solve for y

$$
y=\sqrt{C e^{x^{2} / 2}-4}
$$

Graphs:

3. Find the general solution:

$$
\frac{d y}{d x}=\frac{e^{x-y}}{1+e^{x}}
$$

4. Find the general solution:

$$
\frac{d y}{d x}=4 x \sqrt{y-2}
$$

Singular solutions:

$$
\sqrt{y-2}=x^{2}+C
$$

$$
y=\left(x^{2}+C\right)^{2}+2
$$

5. Find the general solution:

$$
\frac{d y}{d x}-x y^{2}=-x
$$

6. The equation
$y^{\prime}=x(y+2) \quad$ or $\quad y^{\prime}-x y=2 x$
is both linear and separable. Find the general solution both ways.

Answers

1. $y^{\prime}=(x-1)\left(y^{2}-1\right)$
2. $y^{2}=C e^{x^{2} / 2}-4$
3. $y=\ln \left[\ln \left(1+e^{x}\right)+C\right]$
4. $\sqrt{y-2}=x^{2}+C$
5. $y=\frac{1+C e^{x^{2}}}{1-C e^{x^{2}}}$
6. $y=C e^{x^{2} / 2}-2$
2.4. TRANSFORMATIONS \& RELATED EQUATIONS (Text, Section 2.4)
A. Bernoulli equations

An equation that can be written in the form

$$
y^{\prime}+p(x) y=q(x) y^{k}, \quad k \neq 0,1
$$

is called a Bernoulli equation.

Note: (1) If $k=0$ or 1 , then the equation is linear.
(2) The left-hand side of a Bernoulli equation is the same as the lefthand side of a linear equation in standard form. A Bernoulli equation is "close" to being a linear equation.

Examples: $y^{\prime}+p(x) y=q(x) y^{k}$

1. Find the general solution of:

$$
y^{\prime}-4 y=2 e^{x} \sqrt{y}
$$

Solution Method: The change of

variable

$$
v=y^{1-k}, \quad v^{\prime}=(1-k) y^{-k} y^{\prime}
$$

transforms the Bernoulli equation

$$
y^{\prime}+p(x) y=q(x) y^{k}
$$

into

$$
v^{\prime}+(1-k) p(x) v=(1-k) q(x)
$$

which is:

$$
v^{\prime}+P(x) v=Q(x)
$$

a linear equation in x and v
2. Find the general solution of:

$$
x y^{\prime}+y=2 x^{4} y^{3}
$$

3. Find the general solution of:

$$
x y^{\prime}=\frac{4 e^{2 x}}{x^{3} y}-2 y
$$

4. Find the general solution of:

$$
x y y^{\prime}=x^{2}+2 y^{2}
$$

Answers

$$
\begin{aligned}
& \text { 1. } y^{1 / 2}=C e^{2 x}-e^{x} \\
& \text { 2. } y^{2}=\frac{1}{C x^{2}-2 x^{4}} \\
& \text { 3. } y=\frac{2 e^{2 x}+C}{x^{4}} \\
& \text { 4. } y^{2}=C x^{4}-x^{2}
\end{aligned}
$$

B. Homogeneous equations

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

is a homogeneous equation if

$$
f(t x, t y)=f(x, y)
$$

Solution Method: The change of dependent variable

$$
y=v x, \quad y^{\prime}=v+x v^{\prime}
$$

transforms a homogeneous equation
into a separable equation:
$y^{\prime}=f(x, y) \rightarrow v+x v^{\prime}=f(x, v x)=f(1, v)$
which can be written

$$
\frac{1}{f(1, v)-v} d v=\frac{1}{x} d x
$$

the variables are separated.

Examples:

1. Find the general solution:

$$
y^{\prime}=\frac{x^{2}+y^{2}}{2 x y}
$$

2. Find the general solution:

$$
\frac{d y}{d x}=\frac{x^{2} e^{y / x}+y^{2}}{x y}
$$

3. Find the general solution of:

$$
x y^{\prime}=y+\sqrt{x^{2}-y^{2}}
$$

4. Find the general solution of:
 $x y y^{\prime}=x^{2}+2 y^{2}($ same as Bernoulli Pb 4)

Answers

$$
\text { 1. } y^{2}=x^{2}-C x
$$

$$
\text { 2. } y+x=e^{y / x}[C x-x \ln x]
$$

$$
\text { 3. } y=x \sin (\ln x+C)
$$

$$
\text { 4. } y^{2}=C x^{4}-x^{2}
$$

Signals: homogeneous equations:

- If the equation contains a term
such as $e^{y / x}, \sin (y / x), \cos (y / x)$, etc., then the equation is likely to be homogeneous;
- If f is an algebraic expression

$$
f(x, y)=\frac{P(x, y)}{Q(x, y)}
$$

and all the terms have the same degree, then the equation is homogeneous.

