
Section 3.4. Second Order Non-

homogeneous Equations (Text, Sec-

tion 3.4)

y′′ + p(x)y′ + q(x)y = f(x) (N)

The corresponding homogeneous equa-

tion

y′′ + p(x)y′ + q(x)y = 0 (H)

is called the reduced equation of (N).

You will see that these two equations

are closely connected.
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Basic Results

THEOREM 1: If z = z1(x) and

z = z2(x) are solutions of equation (N),

then

y(x) = z1(x) − z2(x)

is a solution of equation (H).

Proof:
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THEOREM 2: Let {y1(x), y2(x)} be

a fundamental set of solutions of the

reduced equation (H), and let z = z(x)

be a particular solution of (N). Then

y(x) = C1y1(x) + C2y2(x) + z(x)

is the general solution of (N).

Proof:
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Conclusion: The general solution of

(N) consists of the general solution

of the reduced equation (H) plus a

particular solution z of (N):

y = C1y1(x) + C2y2(x)︸ ︷︷ ︸
+ z(x).

︸ ︷︷ ︸

gen soln (H) + part soln (N)
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Example 1. z1(x) = 3x2+x ln x, z2(x) =

x lnx − 2x2 are solutions of

y′′ + p(x)y′ + q(x)y = f(x)

y1(x) = x4 is a solution of the reduced

equation. What is the general solution

the equation?
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Example 2. z1(x) = 2x2+2cos 2x, z2(x) =

x2+2cos 2x, z3(x) = x3+2x2+2cos 2x

are solutions of

y′′ + p(x)y′ + q(x)y = f(x)

The general solution of the equation is:
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# To find the general solution of

(N):

y′′ + p(x)y′ + q(x)y = f(x)

you need to find:

1. a fundamental set of solutions y1, y2

of the reduced equation (H), and

2. a particular solution z of (N).
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THEOREM 3: (Superposition Prin-

ciple)

Given the nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) + g(x).

If z = zf(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f(x)

and z = zg(x) is a particular solution

of

y′′ + p(x)y′ + q(x)y = g(x),
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then

z(x) = zf(x) + zg(x)

is a particular solution of

y′′ + p(x)y′ + q(x)y = f(x) + g(x).

Proof:



I. Variation of Parameters

Recall from 3.2: Let y = y1(x) and

y = y2(x) be independent solutions of

the reduced equation (H) and let

W (x) =

∣
∣
∣
∣
∣
∣

y1 y2
y′1 y′2

∣
∣
∣
∣
∣
∣

= y1y′2 − y2y′1 6= 0

be their Wronskian.

Then

y = C1y1(x) + C2y2(x)

is the general solution of (H).
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Set

z(x) = u(x)y1(x) + v(x)y2(x)

where u and v are to be determined

so that z is a solution of (N).

z = uy1 + vy2

z′ = uy′1 + y1u′ + vy′2 + y2v′

Set y1u′ + y2v′ = 0. Then we have

z = uy1 + vy2

z′ = uy′1 + vy′2 and

z′′ = uy′′1 + y′1u′ + vy′′2 + y′2v′



Substitute z, z′, z′′ into the differen-

tial equation y′′ + py′ + qy = f .

(

uy′′1 + y′1u′ + vy′′2 + y′2v′
)

+p
(

uy′1 + vy′2
)

+ q (uy1 + vy2) = f

Rearrange the terms:

u
(

y′′1 + py′1 + qy1

)

+ v
(

y′′2 + py′2 + qy2

)

+ y′1u′ + y′2v′ = f

which reduces to y′1u′ + y′2v′ = f .

10



We now have two equations in the two

unknowns u′ and v′:

y1u′ + y2v′ = 0

y′1u′ + y′2v′ = f

Solve for u′:

(

y1y′2 − y2y′1
)

u′ = −y2f

or

Wu′ = −y2f

so

u′ =
−y2f

W
and u =

∫ −y2f

W
dx;
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Similarly, solve for v′:

y1u′ + y2v′ = 0

y′1u′ + y′2v′ = f

Solve for v′:

(

y1y′2 − y2y′1
)

v′ = y1f

or

Wv′ = y1f

so

v′ =
y1f

W
and v =

∫ y1f

W
dx;
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Therefore,

z(x) =

y1(x)
∫ −y2(x)f(x)

W (x)
dx+ y2(x)

∫ y1(x)f(x)

W (x)
dx

is a particular solution of the nonho-

mogeneous equation (N).

Note: We used two independent so-

lutions y1, y2 of the reduced equation

to ”construct” a solution of the non-

homogeneous equation.
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Conclusion: We can solve any second

order linear nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x)

provided we can find two linearly inde-

pendent solutions y1, y2 of its reduced

equation

y′′ + p(x)y′ + q(x)y = 0.
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Examples:

1.
{

y1(x) = x2, y2(x) = x4
}

is a fun-

damental set of solutions of

y′′ −
5

x
y′ +

8

x2
y = 0 (x 6= 0)

Find a particular solution z of the

nonhomogeneous equation.

y′′ −
5

x
y′ +

8

x2
y = 4x3
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y1 = x2, y2 = x4

W [y1, y2] =
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2. Find the general solution of

y′′ − 4y′ + 4y =
e2x

x
(x 6= 0)

y1 = e2x, y2 = xe2x

W [y1, y2] =
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3. Find the general solution of

y′′ + y′ − 6y = 3e2x

y1 = e−3x, y2 = e2x

W [y1, y2] =
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4. Find the general solution of

y′′ + 4y = 2tan2x

y1 = cos2x, y2 = sin2x

W [y1, y2] =
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II. Undetermined Coefficients aka

”Guessing” (Text, Section 3.5)

NOTE: THIS METHOD CAN BE

USED ONLY WHEN:

1. The de has constant coefficients

2. f is an “exponential” function

That is: y′′ + ay′ + by = f(x) where

a, b are constants, and f is an ”expo-

nential” function.
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Basic Exponential Functions:

eγx

cos δx, sin δx

eγx cos δx, eγx sin δx

There are three basic cases to consider:

1. y′′ + ay′ + by = α erx

2. y′′ + ay′ + by = α cos δx + β sin δx

3. y′′+ay′+by = α eγx cos δx+β eγx sin δx
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Recall Problem 4, EMCF 2:

Find A so that z = Ae−2x is a solution

of

y′′ − 5y′ + 6y = 5e−2x.
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Case 1: If y′′ + ay′ + by = αerx

Set z(x) = Aerx and find A.

Note: The coefficient A is called an

undetermined coefficient.

Example 1: Find a particular solution

z of

y′′ − 5y′ + 6y = 7e−4x.

Also, give the general solution of the

equation.
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Set z = Ae−4x where A is to be

determined;

z = Ae−4x

z′ = −4Ae−4x

z′′ = 16Ae−4x



Answer: z = 1
6 e−4x.

The general solution of the differential

equation is:

y = C1e2x + C2e3x +
1

6
e−4x.

Note: If L[y] = y′′ + ay′ + by, then

L[Aerx] = A
(

r2 + ar + b
)

erx = Kerx

That is, L[Aerx] is a constant multiple

of erx. In Example 1,

L
[

Ae−4x
]

= 42Ae−4x.
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Example 2: Find a particular solution

z of

y′′ + 2y′ − 3y = 9e−2x.

and give the general solution.

z = Ae−2x

z′ = −2Ae−2x

z′′ = 4Ae−2x
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Case 2: y′′ + ay′ + by = α cos δx,

or y′′ + ay′ + by = β sin δx,

or y′′+ay′+by = α cos δx+β sin δx,

Example: y′′ − 2y′ + y = 5cos 2x

Set z = A cos 2x ???

z = A cos 2x ???

z′ = −2A sin2x

z′′ = −4A cos 2x
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Note: If L[y] = y′′ + ay′ + by, then

L[A cosβx] = K cosβx + M sinβx

That is, L[A cosβx] involves BOTH co-

sine and sine. Similarly for L[B sinβx]

and L[A cosβx + B sinβx]

Therefore, if f(x) = c cosβx or

f(x) = d sinβx or

f(x) = c cosβx + d sinβx
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set z(x) = A cos βx + B sin βx

where A, B are to be determined

Note: A and B are undetermined co-

efficients.
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Example 3: Find a particular solution

z of

y′′ − 2y′ + y = 5cos 2x.

and give the general solution of the

equation.

Set z = A cos 2x + B sin 2x

z = A cos 2x + B sin2x

z′ = −2A sin2x + 2B cos 2x

z′′ = −4A cos 2x − 4B sin 2x
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Answer: z =
3

5
cos 2x −

4

5
sin 2x.

The general solution of the differential

equation is:

y = C1ex +C2xex+
3

5
cos 2x−

4

5
sin 2x.
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Example 4: Find a particular solution

z of

y′′−2y′+5y = 2cos 3x−4 sin 3x−3e2x

Set

z = A cos 3x + B sin 3x + Ce2x

where A, B, C are to be determined.

31



y′′−2y′+5y = 2cos 3x−4 sin 3x−3e2x

Set z = A cos 3x + B sin3x + Ce2x

z = A cos 3x + B sin 3x + Ce2x

z′ = −3A sin 3x + 3B cos 3x + 2Ce2x

z′′ = −9A cos 3x − 9B sin 3x + 4Ce2x
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Case 3: If f(x) = ceαx cos βx, deαx sin βx

or ceαx cos βx + deαx sin βx

set z(x) = Aeαx cos βx + Beαx sin βx

where A, B are to be determined.
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Example 5: Find a particular solution

z of

y′′ + 9y = 4ex sin 2x.

Set z = Aex cos 2x + Bex sin 2x

Answer: z = − 4
13 ex cos 2x+ 6

13 ex sin 2x.
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Example 6: Find a particular solution

z of

y′′ − 2y′ + y = 3e3x − 5 sin2x.

z = Ae3x + B cos 2x + C sin 2x

z′ = 3Ae3x − 2B sin2x + 2C cos 2x

z′′ = 9Ae3x − 4B cos 2x − 4C sin2x
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Example 7: Find a particular solution

z of

y′′ + y′ − 6y = 3e2x.

z = Ae2x

z′ = 2Ae2x

z′′ = 4Ae2x
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A BIG Difficulty: The

trial solution z is a solution of the

reduced equation.

In this case, y1 = e−3x and y2 = e2x

are solutions of the reduced equation

y′′ + y′ − 6y = 0

From Example 3, Section 3.4:

z =
3

5
x e2x
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Example 7 continued: Find a particu-

lar solution z of

y′′ + y′ − 6y = 3e2x.

Reduced equation: y′′ + y′ − 6y = 0.

Solutions: y1 = e2x, y2 = e−3x

Set z = Ae2x ? NO!! This satisfies

the reduced equation, so L[Ae2x] = 0.

Set z = Axe2x.
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y′′ + y′ − 6y = 3e2x.

z = Axe2x

z′ = Ae2x + 2Axe2x

z′′ = 4Ae2x + 4Axe2x
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Example 8: Find a particular solution

of

y′′ − 2y′ − 15y = 6e−3x

Reduced equation: y′′ − 2y′ − 15y = 0

Solutions: y1 = e5x, y2 = e−3x

z = Axe−3x

z′ = Ae−3x − 3Axe−3x

z′′ = −6Ae−3x + 9Axe−3x
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Example 9: Find a particular solution

z of

y′′ + 4y = 2cos 2x.

Reduced equation: y′′ + 4y = 0

Solutions: y1 = cos 2x, y2 = sin2x

Set z = A cos 2x + B sin2x ??

NO!! L[z] = 0
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y′′ + 4y = 2cos2x

z = Ax cos 2x + Bx sin2x

z′ = A cos2x − 2Ax sin 2x + B sin 2x + 2Bx cos 2x

z′′ = −4A sin2x − 4Axcos 2x + 4B cos 2x − 4Bx sin 2x
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Example 10: Find a particular solu-

tion z of

y′′ + 6y′ + 9y = 4e−3x.

Reduced equation: y′′ + 6y′ + 9y = 0

Solutions: y1 = e−3x, y2 = xe−3x

Set z = Ae−3x ?

Set z = Axe−3x ?

43



y′′ + 6y′ + 9y = 4e−3x

z = Ax2e−3x

z′ = 2Axe−3x − 3Ax2e−3x

z′′ = 2Ae−3x − 12Axe−3x + 9Ax2e−3x
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Example 11: Find a particular solu-

tion z of

y′′ − 2y′ − 8y = −3e−2x + 6

Reduced equation: y′′ − 2y′ − 8y = 0

Solutions: y1 = e−2x, y2 = e4x

Set z = Ae−2x + B ??
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y′′ − 2y′ − 8y = −3e−2x + 6

z = Axe−2x + B

z′ = Ae−2x − 2Axe−2x

z′′ = −4Ae−2x + 4Axe−2x
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Example 12: Find a particular solu-

tion z of

y′′ − 3y′ = 4e3x + 2

Reduced equation: y′′ − 3y′ = 0

Solutions: y1 = e3x, y2 = e0x = 1

Set z = Ae3x + B = Ae3x + Be0x ??
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y′′ − 3y′ = 4e3x + 2

z = Axe3x + Bx

z′ = Ae3x + 3Axe3x + B

z′′ = 6Ae3x + 9Axe3x
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Answers:

z8 = −
3

4
x e−3x

z9 =
1

2
x sin 2x

z10 = 2x2 e−3x

z11 =
1

2
xe−2x −

3

4

z12 =
4

3
x e3x −

2

3
x
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The Method of Undetermined Co-

efficients

A. Applies only to equations of the

form

y′′ + ay′ + by = f(x)

where a, b are constants and f is an

“exponential” function.

c.f. Variation of Parameters which can

be applied to any linear nonhomoge-

neous equation.
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I. Basic Case: If:

• f(x) = aerx set z = Ae
rx.

• f(x) = c cos βx, d sin βx, or

c cos βx + d sin βx,

set z = A cos βx + B sin βx.

• f(x) = ceαx cos βx, deαx sin βx or

ceαx cos βx + deαx sin βx,

set z = Aeαx cos βx + Beαx sin βx.
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BUT:

• If z satisfies the reduced

equation, use xz;

• if xz also satisfies the reduced

equation, then x2z will give a

particular solution.
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II. General Case:

• If

f(x) = p(x)erx

where p is a polynomial of degree n,

then

set z = P (x)erx

where P is a polynomial of degree n

with undetermined coefficients.
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Example 1: Find a particular solution

of y′′ − 2y′ − 8y = (4x + 5)e2x.

Set z = (Ax + B)e2x.
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Example 2: Find a particular solution

of y′′ − 3y′ + 2y = (2x2 − 1)e−x.

Set z = (Ax2 + Bx + C)e−x.

z =
(
1
3x2 + 5

9x + 5
27

)

e−x.
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• If

f(x) = p(x) cos βx + q(x) sin βx

where p, q are polynomials, then

set z = P (x) cos βx + Q(x) sin βx

where P, Q are polynomials of degree

n with undetermined coefficients, n =

max degree of p and q.
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Example 3:

y′′ − 2y′ − 3y = 3 cos x + (x − 2) sin x.

Set z = (Ax+B) cos x+(Cx+D) sin x.
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Example 3 continued

z =

(

1

10
x −

47

50

)

cos x−

(

1

5
x −

2

25

)

sin x.
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• If

f(x) = p(x)eαx cos βx + q(x)eαx sin βx

where p, q are polynomials of degree

n, then

set z = P (x)eαx cos βx+Q(x)eαx sin βx

where P, Q are polynomials of degree

n with undetermined coefficients.
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Example 4: y′′ + 4y = 2x ex cos x.

Set

z = (Ax+B)ex cos x+(Cx+D)ex sin x

z =
1

25
(10x−7)ex cos x+

1

25
(5x−1)ex sin x.
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Example 5: Find a particular solution

of y′′ − 2y′ − 8y = (4x + 5)e−2x.

Set z = (Ax + B)e−2x ????
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BUT: Warning!!!

• If any part of z satisfies the

reduced equation, try xz;

• if any part of xz also satisfies

the reduced equation, then x2z

will give a particular solution.
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Examples:

1. Give the form of a particular

solution of

y′′ − 4y′ − 5y = 2cos 3x − 5e5x + 4.

63



2. Give the form of a particular

solution of

y′′ + 8y′ + 16y = 2x − 1 + 7e−4x.
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3. Give the form of a particular

solution of

y′′ + y = 4sin x − cos 2x + 2e2x.
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4. Give the form of the general

solution of

y′′ + 9y = −4 cos 2x + 3sin 2x
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5. Give the form of a particular

solution of

y′′ + 9y = −4 cos 3x + 3sin 2x
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6. Give the form of the general

solution of

y′′ + 4y′ + 4y = 4xe−2x + 3
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7. Give the form of the general

solution of

y′′ + 4y′ + 4y = 4e−2x sin 2x + 3x
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8. Give the form of the general

solution of

y′′ + 4y′ = 5e−4x + 4sin 2x + 3
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9. Give the form of a particular

solution of

y′′ + 2y′ + 10y = 2e3x sin x + 4e3x
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10. Give the form of the general

solution of

y′′ + 2y′ + 10y = 2e−x sin 3x + 2e−x
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11. Give the form of a particular

solution of

y′′−2y′−8y = 2cos 3x−(3x+1)e−2x−4
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12. Give the form of a particular

solution of

y′′ − 2y′ − 8y = 2cos 3x − 3xe−2x − 3x
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13. Find the general solution of

y′′ − 4y′ + 4y = 4sin2x +
e2x

x
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Summary: Solve

y′′ + p(x)y′ + q(x)y = f(x)

1. Variation of parameters:

• Can be applied to any linear nonho-

mogeneous equations, but

• requires a fundamental set of solu-

tions of the reduced equation.
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2. Undetermined coefficients:

• Is limited to linear nonhomogeneous

equations with constant coefficients, and

• f must be an “exponential func-

tion,”

f(x) = aerx, f(x) = c cos βx + d sin βx,

f(x) = ceαx cos βx + deαx sin βx,

or p(x)f(x) p a polynomial.
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In cases where both methods are

applicable, the method of undeter-

mined coefficients is usually more

efficient and, hence, the preferable

method.
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Section 3.6. Vibrating Mechanical

Systems (Text, Section 3.6)

79



I. Free Vibrations (Simple Harmonic

Motion)

Hooke’s Law: The restoring force of

a spring is proportional to the displace-

ment:

F = −ky, k > 0.

Newton’s Second Law: Force equals

mass times acceleration:

F = ma = m
d2y

dt2
.
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Mathematical model:

m
d2y

dt2
= −ky

which can be written

d2y

dt2
+ ω2y = 0 (Recall Section 3.3)

where ω =
√

k/m.

The constant ω (omega) is called the

natural frequency of the system.

Recall: Period T =
2π

ω
.



The general solution of this equation

is:

y = C1 sin ωt + C2 cos ωt

which can be written

y = A sin (ωt + φ).

A is called the amplitude, φ is called

the phase shift.
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y = C1 sin ωt + C2 cos ωt
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y = A sin(ωt + φ)

t

-A

A

y
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Example. An object is in simple har-

monic motion. Find an equation for

the motion given that the period is 1
4π

and, at time t = 0, y = 1, y′ = 0.

What is the natural frequency? What

is the amplitude?
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II. Forced Free Vibrations

Apply an external force G to the freely

vibrating system

Force Equation:

F = −ky + G.

Mathematical Model:

my′′ = −ky+G or y′′+
k

m
y =

G

m
,

a nonhomogeneous equation.
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A periodic external force:

G = a cos γt, a, γ > 0 const.

Force Equation:

F = −ky + a cos γt

Mathematical Model:

y′′ +
k

m
y =

a

m
cos γt

y′′ + ω2y = α cos γt

where ω =
√

k/m, α =
a

m
.
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ω is called the natural frequency of

the system,

γ is called the applied frequency.
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Case 1: γ 6= ω.

y′′ + ω2y = α cos γt

General solution, reduced equation:

y = C1 cosωt+C2 sinωt = A sin (ωt+φ0).

Form of particular solution (undeter-

mined coefficients):

z = A cos γt + B sin γt.

A particular solution:

z =
α

ω2 − γ2
cos γt.
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General solution:

y = A sin (ωt + φ0) +
α

ω2 − γ2
cos γt.



ω/γ rational: periodic motion

t

y

ω/γ irrational: not periodic

t

y
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Case 2: γ = ω.

y′′ + ω2y = α cos ωt

General solution, reduced equation:

y = C1 cosωt + C2 sinωt

= A sin (ωt + φ0).

Form of particular solution (undeter-

mined coefficients):

z = A t cos ωt + B t sin ωt.
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A particular solution:

α

2ω
t sin ωt.

General solution:

y = A sin (ωt + φ0) +
α

2ω
t sin ωt.

Unbounded oscillation

This is known as resonance
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y = A sin (ωt + φ0) +
α

2ω
t sin ωt.

t

y
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Never march across a bridge. In April 1831,

a brigade of soldiers marched in step across

England’s Broughton Suspension Bridge. Ac-

cording to accounts of the time, the bridge

broke apart beneath the soldiers, throwing dozens

of men into the water. After this happened,

the British Army reportedly sent new orders:

Soldiers crossing a long bridge must ”break

stride,” or not march in unison, to stop such a

situation from occurring again. Structures like

bridges and buildings, although they appear to

be solid and immovable, have a natural fre-

quency of vibration within them. A force that’s

applied to an object at the same frequency as

the object’s natural frequency will amplify the

vibration of the object in an occurrence called

resonance. Sometimes your car shakes hard
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when you hit a certain speed, and a girl on a

swing can go higher with little effort just by

swinging her legs. The same principle of me-

chanical resonance that makes these incidents

happen also works when people walk in lock-

step across a bridge. If soldiers march in unison

across the structure, they apply a force at the

frequency of their step. If their frequency is

closely matched to the bridge’s frequency, the

soldiers’ rhythmic marching will amplify the vi-

brational frequency of the bridge. If the me-

chanical resonance is strong enough, the bridge

can vibrate until it collapses from the move-

ment. A potent reminder of this was seen in

June 2000, when London’s Millennium Bridge

opened to great fanfare. As crowds packed

the bridge, their footfalls made the bridge vi-



brate slightly. ”Many pedestrians fell sponta-

neously into step with the bridge’s vibrations,

inadvertently amplifying them,” according to a

2005 report in Nature. Though engineers in-

sist the Millennium Bridge was never in danger

of collapse, the bridge was closed for about a

year while construction crews installed energy-

dissipating dampers to minimize the vibration

caused by pedestrians

See, also Tacoma Narrows Bridge (Google)

https : //en.wikipedia/TacomaNarrowsBridge(1940)



III. Damped Free Vibrations: A re-

sistance force R, called ”damping,”

(e.g., friction) proportional to the ve-

locity v = y′ and acting in a direction

opposite to the motion:

R = −cy′ with c > 0.

Force Equation:

F = −ky(t)− cy′(t).

Newton’s Second Law:

F = ma = my′′
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Mathematical Model:

my′′(t) = −ky(t) − cy′(t)

or

y′′+
c

m
y′+

k

m
y = 0 (c, k, m constant)

or

y′′ + αy′ + βy = 0 α =
c

m
, β =

k

m

α, β positive constants.



Characteristic equation:

r2 + α r + β = 0.

Roots

r =
−α ±

√

α2 − 4β

2
.

There are three cases to consider:

α2 − 4β < 0,

α2 − 4β > 0,

α2 − 4β = 0.
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Case 1: α2 − 4β < 0. Complex roots:

(Underdamped)

r1 = −
α

2
+ iω, r2 = −

α

2
− iω

where ω =

√

4β − α2

2
.

General solution:

y = e(−α/2)t (C1 cos ωt + C2 sin ωt)
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or

y(t) = A e(−α/2)t sin (ωt + φ0)

where

A and φ0

are constants,

NOTE: The motion is oscillatory AND

y(t) → 0 as t → ∞.
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Underdamped Case:

t

y
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Case 2: α2 − 4β > 0. Two distinct

real roots:

(Overdamped)

r1 =
−α +

√

α2 − 4β

2
, r2 =

−α −
√

α2 − 4β

2
.

General solution:

y(t) = y = C1er1t + C2er2t.

The motion is nonoscillatory.
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NOTE: Since

√

α2 − 4β <
√

α2 = α,

r1 and r2 are both negative and

y(t) → 0 as t → ∞.

100



Case 3: α2 − 4β = 0. One real root:

(Critically Damped)

r1 = r2 =
−α

2
,

General solution:

y(t) = y = C1e−(α/2) t + C2 t e−(α/2) t.

The motion is nonoscillatory and

y(t) → 0 as t → ∞.
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Overdamped and Critically Damped

Cases:

t

y

t

y

t

y
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Summary of Case III:

All solutions of

y′′ + ay′ + by = 0

have limit 0 as t → ∞.

That is, in the presence of a resis-

tant force (e.g., friction), all solu-

tions ultimately return to the equi-

librium position.

103



IV. Forced Damped Vibrations

Apply an external force G to a damped,

freely vibrating system

Force Equation:

F = −ky − cy′ + G.

Mathematical Model:

my′′ = −ky − cy′ + G

or y′′ +
c

m
y′ +

k

m
y =

G

m
,
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which we write as

y′′ + αy′ + βy = g,

where α = c/m, β = k/m, g = G/m

A periodic external force:

g = a cos γt, a, γ > 0 const.

Mathematical Model:

y′′ + αy′ + βy = a cos γt
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General solution:

y(t) = C1 y1(t) + C2 y2(t) + Z(t)

= Yc(t) + Z(t),

Note: From Case III

lim
t→∞

Yc(t) = 0.

as t → ∞ so

lim
t→∞

y(t) = Z(t).
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Particular solution of

(N) y′′ + α y′ + β y = a cos γt

will have the form:

Z(t) = A cos γt + B sin γt.

General solution of (N):

y(t) = Yc(t) + Z(t)

Note: lim
t→∞

y(t) = Z(t)

107



Yc(t), the general solution of the re-

duced equation, is called the transient

solution.

Z(t) a particular solution of (N), is

called a steady state solution.
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Example 1: y′′ + 3
4 y′ + 1

8 y = cos t

General solution

y = C1e−t/4+C2e−t/2+
56

85
cos t−

48

85
sin t

Transient solution:

y(t) = 2e−t/4+e−t/2 (C1 = 2, C2 = 1)

Steady-state solution:

Z(t) =
56

85
cos t −

48

85
sin t
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Transient solution:

t

y

Steady-state solution:

t

-1

1

y
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y = 2e−t/4 + e−t/2 + 56
85 cos t − 48

85 sin t

t

-1

1

y
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Example 2: y′′ + 2y′ + 5y = cos t

General solution

y = C1e−t cos 2t + C2e−t sin 2t+

1

5
cos t +

1

10
sin t

A transient solution:

y(t) = 2e−t cos 2t (C1 = 2, C2 = 0)

Steady-State solution:

Z(t) =
1

5
cos t +

1

10
sin t
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Transient solution: Y (t) = 2e−t cos 2t

t

�

y

Steady-state solution: Z(t) = 1
5

cos t+ 1
10

sin t

t

�

y
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y = 2e−t cos 2t + 1
5 cos t + 1

10 sin t

t

y
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