Chapter 5. Linear Algebra

Sections 5.1-5.4

A linear (algebraic) equation in
n unknowns, $x_{1}, x_{2}, \ldots, x_{n}$, is
an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are
real numbers.

Linear equations in one unknown

 $x:$$a x=b$.

Exactly one of following holds:

(1) there is precisely one solution (a
unique solution)

$$
x=a^{-1} b=\frac{b}{a}, \quad a \neq 0
$$

(2) there are no solutions

$$
0 x=b, \quad b \neq 0
$$

(3) there are infinitely many solu-
tions

$$
0 x=0
$$

Linear equations in two unknowns

x, y and geometry

$$
a x+b y=\alpha
$$

A solution of the equation is an ordered pair of numbers $\left(x_{0}, y_{0}\right)$.

Assuming a, b, not both 0 , then the set of all ordered pairs that satisfy the equation is a straight line (in the x, y-plane). The equation has infinitely many solutions - the set

of points that lie on the line.

Example:

$$
-3 x+2 y=6
$$

A system of two linear equations in two unknowns:

$$
\begin{aligned}
& a x+b y=\alpha \\
& c x+d y=\beta
\end{aligned}
$$

Find ordered pairs (x, y) that satisfy both equations simultaneously.

Two lines in the plane either

(a) have a unique point of intersec-
tion (the lines have different slopes),
and the system has a unique solu-
tion

(b) are parallel (the lines have the same slope but, for example, different y-intercepts)

The system has NO solutions, there is no point that lies on both lines

(c) coincide (same slope, same y intercept), and the system has infinitely many solutions.

Example:

$$
\begin{array}{r}
x+2 y=2 \\
2 x+4 y=4
\end{array}
$$

Two equations in two unknowns: There
is either
(a) a unique solution,
(b) no solution,
or
(c) infinitely many solutions.

A system of three linear equations in two unknowns:

$$
\begin{aligned}
& a x+b y=\alpha \\
& c x+d y=\beta \\
& e x+f y=\gamma
\end{aligned}
$$

Find ordered pairs (x, y) that satisfy the three equations simultaneously.

There is either a
(a) unique solution,

(b) no solution, (this is usually what happens)

or
(c) infinitely many solutions.

Example:

$$
\begin{aligned}
x+y & =2 \\
-2 x+y & =2 \\
4 x+y & =11
\end{aligned}
$$

Linear equations in three unknowns

x, y, z and geometry

$$
a x+b y+c z=\alpha
$$

A solution of the equation is an ordered triple of numbers $\left(x_{0}, y_{0}, z_{0}\right)$.

Assuming a, b, c, not all 0 , then the set of all ordered triples that satisfy the equation is a plane (in 3-space).

A system of two linear equations in three unknowns

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2}
\end{aligned}
$$

- Either the two planes are parallel
(the system has no solutions),

- they coincide (infinitely many solutions, a whole plane of solutions),
- they intersect in a straight line (again, infinitely many solutions.)

A system of three linear equations in three unknowns.

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{aligned}
$$

The system represents three planes
in 3-space.

(a) The system has a unique solu-

 tion; the three planes have a unique point of intersection;
(b) The system has infinitely many solutions; the three planes intersect in a line, or the three planes intersect in a plane.
(c) The system has no solution; there is no point the lies on all three planes.

Solution methods for systems of

 Linear Algebraic EquationsExample 1: Solve the system

$$
\begin{gathered}
x+3 y=-5 \\
2 x-y=4
\end{gathered}
$$

Equivalent system

$$
\begin{aligned}
x+3 y & =-5 \\
y & =-2
\end{aligned}
$$

Solution set:

$$
x=1, \quad y=-2
$$

Definition: Two systems of linear equations S_{1} and S_{2} are equivalent
if they have exactly the same solu-
tion set.

Example 2: Solve the system

$$
\begin{array}{r}
x-2 y+4 z=12 \\
2 x-y+5 z=18 \\
-x+3 y-3 z=-8
\end{array}
$$

Example 2 con't

Equivalent system

$$
\begin{aligned}
x-2 y+4 z & =12 \\
y-z & =-2 \\
z & =3
\end{aligned}
$$

Solution set:

$$
x=2, \quad y=1, \quad z=3
$$

The Elementary Operations

The operations that produce equivalent systems are called elementary operations.

1. Multiply/divide an equation by a nonzero number.
2. Interchange two equations.
3. Multiply an equation by a number and add it to another equation.

Example 3: Solve the system

$$
\begin{aligned}
& 3 x-4 y-z=3 \\
& 2 x-3 y+z=1 \\
& x-2 y+3 z=2
\end{aligned}
$$

Example 3 continued

Equivalent system

$$
\begin{aligned}
x-2 y+3 z & =2 \\
y-5 z & =-3 \\
0 z & =1
\end{aligned}
$$

The system has no solution.

Example 4: Solve the system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =-2 \\
-2 x_{1}+5 x_{2}-x_{3}+4 x_{4} & =1 \\
3 x_{1}-7 x_{2}+2 x_{3}+x_{4} & =9
\end{aligned}
$$

Example 4 continued

Equivalent system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =-2 \\
x_{2}+x_{3}+2 x_{4} & =-3 \\
x_{4} & =2
\end{aligned}
$$

Solution set:

$$
\begin{aligned}
& x_{1}=-14-3 a \\
& x_{2}=-7-a \\
& x_{3}=a \\
& x_{4}=2, \quad a \quad \text { any real number. }
\end{aligned}
$$

Solve the system (same as Ex. 2)

$$
\begin{gathered}
x-2 y+4 z=12 \\
2 x-y+5 z=18 \\
-x+3 y-3 z=-8 \\
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
2 & -1 & 5 & 18 \\
-1 & 3 & -3 & -8
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
2 & -1 & 5 & 18 \\
-1 & 3 & -3 & -8
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 3 & -3 & -6 \\
0 & 1 & 1 & 4
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 1 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 6
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

$$
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Corresponding (equivalent) system

 of equations:$$
\begin{aligned}
x-2 y+4 z & =12 \\
y-z & =-2 \\
z & =3
\end{aligned}
$$

Solution set:

$$
x=2, y=1, z=3
$$

Matrix, Augmented Matrix, Matrix of Coefficients

A matrix is a rectangular array of
numbers. A matrix with m rows and
n columns is an $m \times n$ matrix.

Matrix representation of a sys-
tem of linear equations
$a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
: \quad :
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}$

Augmented matrix and matrix of

coefficients:

Augmented matrix:

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

Matrix of coefficients:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{32} & \cdots & a_{m n}
\end{array}\right)
$$

Elementary row operations:

1. Interchange row i and row j

$$
R_{i} \leftrightarrow R_{j} .
$$

2. Multiply row i by a nonzero
number k

$$
k R_{i} \rightarrow R_{i}
$$

3. Multiply row i by a number k
and add the result to row j

$$
k R_{i}+R_{j} \rightarrow R_{j} .
$$

Examples

5. Solve the system (same as Ex.
3)

$$
\begin{aligned}
& 3 x-4 y-z=3 \\
& 2 x-3 y+z=1 \\
& x-2 y+3 z=2
\end{aligned}
$$

Augmented matrix:

$$
\left(\begin{array}{ccc|c}
3 & -4 & -1 & 3 \\
2 & -3 & 1 & 1 \\
1 & -2 & 3 & 2
\end{array}\right)
$$

Row reduce

$$
\left(\begin{array}{ccc|c}
3 & -4 & -1 & 3 \\
2 & -3 & 1 & 1 \\
1 & -2 & 3 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
2 & -3 & 1 & 1 \\
3 & -4 & -1 & 3
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 2 & -10 & -3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Corresponding system of equations:

$$
\begin{gathered}
x-2 y+3 z=2 \\
0 x+y-5 z=-3 \\
0 x+0 y+0 z=1
\end{gathered}
$$

That is

$$
\begin{aligned}
x-2 y+3 z & =2 \\
y-5 z & =-3 \\
0 z & =1
\end{aligned}
$$

Solution set: no solution.
6. Solve the system

$$
\begin{array}{r}
x+y-3 z=1 \\
2 x+y-4 z=0 \\
-3 x+2 y-z=7
\end{array}
$$

Augmented matrix:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -3 & 1 \\
2 & 1 & -4 & 0 \\
-3 & 2 & -1 & 7
\end{array}\right)
$$

Row reduce

$$
\left(\begin{array}{rrr|r}
1 & 1 & -3 & 1 \\
2 & 1 & -4 & 0 \\
-3 & 2 & -1 & 7
\end{array}\right)
$$

Equivalent system:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -3 & 1 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Corresponding system of equations:

$$
\begin{array}{r}
x+y-3 z=1 \\
0 x+y-2 z=2 \\
0 x+0 y+0 z=0
\end{array}
$$

or

$$
\begin{array}{r}
x+y-3 z=1 \\
y-2 z=2 \\
0 z=0
\end{array}
$$

or

$$
\begin{array}{r}
x+y-3 z=1 \\
y-2 z=2
\end{array}
$$

This system has infinitely many soIutions given by:
$x=-1+a$,
$y=2+2 a$,
$z=a, \quad a$ any real number.
7. Solve the system (same as Ex.
4)

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =-2 \\
-2 x_{1}+5 x_{2}-x_{3}+4 x_{4} & =1 \\
3 x_{1}-7 x_{2}+2 x_{3}+x_{4} & =9
\end{aligned}
$$

Augmented matrix:

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
-2 & 5 & -1 & 4 & 1 \\
3 & -7 & 2 & 1 & 9
\end{array}\right)
$$

Row Reduce $\left(\begin{array}{rrrr|r}1 & -2 & 1 & -1 & -2 \\ -2 & 5 & -1 & 4 & 1 \\ 3 & -7 & 2 & 1 & 9\end{array}\right) \rightarrow$

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
0 & 1 & 1 & 2 & -3 \\
0 & -1 & -1 & 4 & 15
\end{array}\right) \rightarrow
$$

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
0 & 1 & 1 & 2 & -3 \\
0 & 0 & 0 & 6 & 12
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
0 & 1 & 1 & 2 & -3 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
0 & 1 & 1 & 2 & -3 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Equivalent system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =-2 \\
x_{2}+x_{3}+2 x_{4} & =-3 \\
x_{4} & =2
\end{aligned}
$$

Solution set:

$$
\begin{aligned}
& x_{1}=-14-3 a \\
& x_{2}=-7-a \\
& x_{3}=a \\
& x_{4}=2, \quad a \quad \text { any real number. }
\end{aligned}
$$

Row echelon form:

1. Rows consisting entirely of zeros are at the bottom of the matrix.
2. The first nonzero entry in a
nonzero row is a 1 . It is called the leading 1.
3. If row i and row $i+1$ are
nonzero rows, then the leading 1 in
row $i+1$ is to the right of the leading
1 in row i.

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 3
\end{array}\right) \quad \text { (Example 4) } \\
& \left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 \\
0 & 1 & -5 & -3 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { (Example 5) } \\
& \left(\begin{array}{rrr|r}
1 & 1 & -3 & 1 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { (Example 6) }
\end{aligned}
$$

$$
\left(\begin{array}{rrrr|r}
1 & -2 & 1 & -1 & -2 \\
0 & 1 & 1 & 2 & -3 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \quad \text { (Example 7) }
$$

NOTE:

1. All the entries below a leading

1 are zero.
2. The number of leading 1 's is
less than or equal to the number of
rows.
3. The number of leading 1 's is
less than or equal to the number of
columns.

Solution method for systems of

linear equations:

1. Write the augmented matrix
$(A \mid b)$ for the system.
2. Use elementary row operations
to transform the augmented matrix
to row echelon form.
3. Write the system of equa-
tions corresponding to the row echelon form.

4. Back substitute to find the solution set.

This method is called Gaussian elimination with back substitution.

Consistent/Inconsistent systems:

A system of linear equations is consistent if it has at least one solution.

That is, a system is consistent if it has either a unique solution or infinitely many solutions.

A system that has no solutions is
inconsistent.

Consistent systems:

A consistent system is said to be independent if it has a unique soIution.

A system with infinitely many solutions is called dependent.
8. Solve the system of equations

$$
\begin{array}{r}
2 x_{1}+5 x_{2}-5 x_{3}-7 x_{4}=8 \\
x_{1}+2 x_{2}-3 x_{3}-4 x_{4}=2 \\
-3 x_{1}-6 x_{2}+11 x_{3}+16 x_{4}=0
\end{array}
$$

Augmented matrix:

$$
\left(\begin{array}{rrrr|r}
2 & 5 & -5 & -7 & 8 \\
1 & 2 & -3 & -4 & 2 \\
-3 & -6 & 11 & 16 & 0
\end{array}\right)
$$

Transform to row echelon form:

$$
\left(\begin{array}{rrrr|r}
2 & 5 & -5 & -7 & 8 \\
1 & 2 & -3 & -4 & 2 \\
-3 & -6 & 11 & 16 & 0
\end{array}\right)
$$

Equivalent system:

$\left(\begin{array}{rrrr|r}1 & 2 & -3 & -4 & 2 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & 2 & 3\end{array}\right)$.

Corresponding system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}-3 x_{3}-4 x_{4}=2 \\
x_{2}+x_{3}+x_{4}=4 \\
x_{3}+2 x_{4}=3
\end{array}
$$

Solution set:

$$
\begin{aligned}
& x_{1}=9-4 a \\
& x_{2}=1+a \\
& x_{3}=3-2 a \\
& x_{4}=a, \quad a \quad \text { any real number. }
\end{aligned}
$$

9. Solve the system of equations

$$
\begin{array}{r}
x_{1}-3 x_{2}+2 x_{3}-x_{4}+2 x_{5}=2 \\
3 x_{1}-9 x_{2}+7 x_{3}-x_{4}+3 x_{5}=7 \\
2 x_{1}-6 x_{2}+7 x_{3}+4 x_{4}-5 x_{5}=7
\end{array}
$$

Augmented matrix:

$$
\left(\begin{array}{rrrrr|r}
1 & -3 & 2 & -1 & 2 & 2 \\
3 & -9 & 7 & -1 & 3 & 7 \\
2 & -6 & 7 & 4 & -5 & 7
\end{array}\right)
$$

Transform to row echelon form:

$$
\left(\begin{array}{rrrrr|r}
1 & -3 & 2 & -1 & 2 & 2 \\
3 & -9 & 7 & -1 & 3 & 7 \\
2 & -6 & 7 & 4 & -5 & 7
\end{array}\right)
$$

Equivalent system:

$$
\left(\begin{array}{rrrrr|r}
1 & -3 & 2 & -1 & 2 & 2 \\
0 & 0 & 1 & 2 & -3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Corresponding system of equations:

$$
\begin{array}{r}
x_{1}-3 x_{2}+2 x_{3}-x_{4}+2 x_{5}=2 \\
0 x_{1}+0 x_{2}+x_{3}+2 x_{4}-3 x_{5}=1 \\
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}=0
\end{array}
$$

which is

$$
\begin{array}{r}
x_{1}-3 x_{2}+2 x_{3}-x_{4}+2 x_{5}=2 \\
x_{3}+2 x_{4}-3 x_{5}=1
\end{array}
$$

Solution set:

$$
\begin{aligned}
& x_{1}=3 a+5 b-8 c, \\
& x_{2}=a \\
& x_{3}=1-2 b+3 c, \\
& x_{4}=b, \\
& x_{5}=c
\end{aligned}
$$

a, b, c arbitrary real numbers

10. For what value(s) of k, if any, does the system

$$
\begin{array}{r}
x+y-z=1 \\
2 x+3 y+k z=3 \\
x+k y+3 z=2
\end{array}
$$

have:
(a) a unique solution?
(b) infinitely many solutions?
(c) no solution?

$$
\left(\begin{array}{rrr|r}
1 & 1 & -1 & 1 \\
2 & 3 & k & 3 \\
1 & k & 3 & 2
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & k+2 & 1 \\
0 & 0 & (k+3)(k-2) & k-2
\end{array}\right)
$$

(a) Unique solution: $k \neq 2,-3$.
(b) Infinitely many solns: $k=2$.
(c) No solution: $k=-3$.
11. For what value(s) of k, if any, does the system

$$
\begin{aligned}
x+2 y+3 z & =4 \\
y+5 z & =9 \\
2 x+3 y+\left(k^{2}-8\right) z & =k+2
\end{aligned}
$$

have:
(a) a unique solution?
(b) infinitely many solutions?
(c) no solution?

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
0 & 1 & 5 & 9 \\
2 & 3 & k^{2}-8 & k+2
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
0 & 1 & 5 & 9 \\
0 & 0 & k^{2}-9 & k+3
\end{array}\right)
$$

(a) Unique solution: $k \neq-3,3$.
(b) Infinitely many solns: $k=-3$.
(c) No solution: $k=3$.

If an $m \times n$ matrix A is reduced to

 row echelon form, then the number of non-zero rows in its row echelon form is called the rank of A.Equivalently, the rank of a matrix is
the number of leading 1 's in its row echelon form.

The rank of a matrix is less than or equal to the number of rows. (Obvious)

Consistent/Inconsistent Systems

Theorem: A system of linear equa-
tions is consistent if and only if the
rank of the coefficient matrix equals
the rank of the augmented matrix.

If the rank of the augmented matrix is greater than the rank of the coefficient matrix, then the system has no solutions.

5.4. Reduced Row Echelon Form

Examples

1. Solve the system (See Example 5, pg. 41)

$$
\begin{gathered}
x-2 y+4 z=12 \\
2 x-y+5 z=18 \\
-x+3 y-3 z=-8
\end{gathered}
$$

Augmented matrix:

$$
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
2 & -1 & 5 & 18 \\
-1 & 3 & -3 & -8
\end{array}\right)
$$

Row reduce to:

$$
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Corresponding (equivalent) system of equations

$$
\begin{aligned}
x-2 y+4 z & =12 \\
y-z & =-2 \\
z & =3
\end{aligned}
$$

Back substitute to get:

$$
x=2, \quad y=1, \quad z=3
$$

Or, continue row operations:

$$
\left(\begin{array}{rrr|r}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & 3
\end{array}\right) \rightarrow
$$

Corresponding system of equations

2. Solve the system (c.f. Example
8)

$$
\begin{aligned}
2 x_{1}+5 x_{2}-5 x_{3}-7 x_{4} & =8 \\
x_{1}+2 x_{2}-3 x_{3}-4 x_{4} & =2 \\
-3 x_{1}-6 x_{2}+11 x_{3}+16 x_{4} & =0
\end{aligned}
$$

Augmented matrix:

$$
\left(\begin{array}{rrrr|r}
2 & 5 & -5 & -7 & 8 \\
1 & 2 & -3 & -4 & 2 \\
-3 & -6 & 11 & 16 & 0
\end{array}\right) \rightarrow
$$

Row echelon form:

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -3 & -4 & 2 \\
0 & 1 & 1 & 1 & 4 \\
0 & 0 & 1 & 2 & 3
\end{array}\right) .
$$

Corresponding system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}-3 x_{3}-4 x_{4}=2 \\
x_{2}+x_{3}+x_{4}=4 \\
x_{3}+2 x_{4}=3
\end{array}
$$

Solution set:

$$
\begin{aligned}
& x_{1}=9-4 a \\
& x_{2}=1+a \\
& x_{3}=3-2 a, \\
& x_{4}=a, \quad a \quad \text { any real number. }
\end{aligned}
$$

Alternative solution: Continue the row operations

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -3 & -4 & 2 \\
0 & 1 & 1 & 1 & 4 \\
0 & 0 & 1 & 2 & 3
\end{array}\right) \rightarrow
$$

Reduced row echelon form

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 0 & 4 & 9 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 & 3
\end{array}\right)
$$

Corresponding system of equations:

$$
\begin{gathered}
x_{1}+4 x_{4}=9 \\
x_{2}-x_{4}=1 \\
x_{3}+2 x_{4}=3 \\
x_{3}=3-2 x_{4}, x_{2}=1+x_{4}, x_{1}=9-4 x_{4}, \\
x_{4} \text { any real number. }
\end{gathered}
$$

3. Solve the system of equations

$$
\begin{aligned}
2 x_{1}+3 x_{2}-5 x_{3}-2 x_{4} & =2 \\
-2 x_{1}-4 x_{2}+4 x_{3}-3 x_{4} & =6 \\
x_{1}+2 x_{2}-2 x_{3}+3 x_{4} & =0
\end{aligned}
$$

$$
\left(\begin{array}{rrrr|r}
2 & 3 & -5 & -2 & 2 \\
-2 & -4 & 4 & -3 & 6 \\
1 & 2 & -2 & 3 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -2 & 3 & 0 \\
-2 & -4 & 4 & -3 & 6 \\
2 & 3 & -5 & -2 & 2
\end{array}\right)
$$

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -2 & 3 & 0 \\
0 & 0 & 0 & 3 & 6 \\
0 & -1 & -1 & -8 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{rrrr|r}
1 & 2 & -2 & 3 & 0 \\
0 & 1 & 1 & 8 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \quad \text { row echelon form } \\
& \left(\begin{array}{rrrr|r}
1 & 2 & -2 & 3 & 0 \\
0 & 1 & 1 & 8 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \quad \rightarrow \\
& \left(\begin{array}{rrrr|r}
1 & 2 & -2 & 0 & -6 \\
0 & 1 & 1 & 0 & -18 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \quad \rightarrow \\
& \left(\begin{array}{rrrr|r}
1 & 0 & -4 & 0 & 30 \\
0 & 1 & 1 & 0 & -18 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \\
& x_{4}=2,
\end{aligned} x_{2}=-18-x_{3}, x_{1}=30+\quad\left[\begin{array}{l}
4 x_{3}
\end{array}\right.
$$

Reduced Row Echelon Form

1. Rows consisting entirely of zeros
are at the bottom of the matrix.
2. The first nonzero entry in a nonzero row is a 1 .
3. The leading 1 in row $i+1$ is to
the right of the leading 1 in row i.
4. The leading 1 is the only nonzero
entry in its column.

Examples

Example 1
$\left(\begin{array}{rrr|r}1 & -2 & 4 & 12 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 3\end{array}\right) \quad\left(\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3\end{array}\right)$
Example 2
$\left(\begin{array}{rrrr|r}1 & 2 & -3 & -4 & 2 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 1 & 2 & 3\end{array}\right) \quad\left(\begin{array}{rrrr|r}1 & 0 & 0 & 4 & 9 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 & 3\end{array}\right)$
Example 3

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -2 & 3 & 0 \\
0 & 1 & 1 & 8 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \quad\left(\begin{array}{rrrr|r}
1 & 0 & -4 & 0 & 30 \\
0 & 1 & 1 & 0 & -18 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Homogeneous Systems

The system of linear equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
: & =: \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

is homogeneous if

$$
b_{1}=b_{2}=\cdots=b_{m}=0
$$

otherwise, the system is nonhomo-
geneous.
C.f. Linear differential equations.

A homogeneous system
$\begin{array}{cccc}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\ \vdots & \vdots & \vdots & \vdots\end{array}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0$

ALWAYS has at least one solus-
tion, namely

$$
x_{1}=x_{2}=\cdots=x_{n}=0
$$

called the trivial solution. (Sound familiar?) Homogeneous systems are ALWAYS CONSISTENT.
3. Solve the homogeneous system

$$
\begin{array}{r}
x-2 y+2 z=0 \\
4 x-7 y+3 z=0 \\
2 x-y+2 z=0
\end{array}
$$

Augmented matrix:

$$
\left(\begin{array}{lll|l}
1 & -2 & 2 & 0 \\
4 & -7 & 3 & 0 \\
2 & -1 & 2 & 0
\end{array}\right)
$$

Row echelon form:

$$
\left(\begin{array}{rrr|r}
1 & -2 & 2 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Corresponding system of equations:

$$
\begin{array}{r}
x-2 y+2 z=0 \\
y-5 z=0 \\
z=0
\end{array}
$$

This system has the unique solution

$$
\begin{aligned}
& x=0 \\
& y=0 \\
& z=0
\end{aligned}
$$

The trivial solution is the only solution.
4. Solve the homogeneous system

$$
\begin{array}{r}
3 x-2 y+z=0 \\
x+4 y+2 z=0 \\
7 x+4 z=0
\end{array}
$$

Augmented matrix:

$$
\left(\begin{array}{ccc|c}
3 & -2 & 1 & 0 \\
1 & 4 & 2 & 0 \\
7 & 0 & 4 & 0
\end{array}\right)
$$

Row echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 4 & 2 & 0 \\
0 & 1 & 5 / 14 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Corresponding system of equations:

$$
\begin{array}{r}
x+4 y+2 z=0 \\
y+\frac{5}{14} z=0
\end{array}
$$

This system has infinitely many so-

Iutions:

$$
x=-\frac{2}{7} a, \quad y=-\frac{5}{14} a, \quad z=a
$$

a any real number.

