Section 5.5. Matrices and

 VectorsA matrix is a rectangular array of
objects arranged in rows and columns.
The objects are called the entries.

A matrix with m rows and n columns
is called an $m \times n$ matrix. $m \times n$
is called the size of the matrix, and
the numbers m and n are its
dimensions.

A matrix in which the number of rows equals the number of columns, $m=n, \quad$ is called a square matrix of order n.

If A is an $m \times n$ matrix, then $a_{i j}$ denotes the element in the $i^{t h}$ row and $j^{\text {th }}$ column of A :

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right)
$$

The notation $A=\left(a_{i j}\right)$ also repre-
sents this display.

Special Cases: Vectors

A $1 \times n$ matrix

$$
\mathbf{v}=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

also written as

$$
\mathbf{v}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

is called an row vector.

An $m \times 1$ matrix

$$
\mathbf{v}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)
$$

is called a column vector.

The entries of a row or column vec-
tor are called the components of
the vector.
"Physics" \& " Geometry/Mathematics"

Physics: A quantity that has magnitude and direction.

Examples: velocity, acceleration, force

Mathematics: A directed line segment.

Examples:

Arithmetic of Matrices

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix
and let $B=\left(b_{i j}\right)$ be a $p \times q$ matrix.

- Equality: $A=B$ if and only if

1. $m=p$ and $n=q$;
2. $a_{i j}=b_{i j}$ for all i and j.

That is, $A=B$ if and only if A and B are identical.

Example:

$$
\left(\begin{array}{lll}
a & b & 3 \\
2 & c & 0
\end{array}\right)=\left(\begin{array}{ccc}
7 & -1 & x \\
2 & 4 & 0
\end{array}\right)
$$

if and only if

$$
a=7, b=-1, c=4, x=3
$$

Matrix Operations
I. Addition: Let $A=\left(a_{i j}\right)$ and
$B=\left(b_{i j}\right)$ be $m \times n$ matrices.
$A+B$ is the $m \times n$ matrix $C=\left(c_{i j}\right)$
where

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { for all } i \text { and } j
$$

That is,

$$
A+B=\left(a_{i j}+b_{i j}\right)
$$

Addition of matrices is not defined for matrices of different sizes.

Examples:

(a)

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & 4 & -3 \\
2 & 5 & 0
\end{array}\right)+\left(\begin{array}{lll}
-4 & 0 & 6 \\
-1 & 2 & 0
\end{array}\right)= \\
\left(\begin{array}{cc}
2+(-4) & 4+0 \\
\hline 2+(-1) & 5+2 \\
2+6+0
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 4 & 3 \\
1 & 7 & 0
\end{array}\right)
\end{gathered}
$$

(b)
$\left(\begin{array}{ccc}2 & 4 & -3 \\ 2 & 5 & 0\end{array}\right)+\left(\begin{array}{cc}1 & 3 \\ 5 & -3 \\ 0 & 6\end{array}\right) \quad$ is not defined.

PROPERTIES: Let A, B, and
C be matrices of the same size.

Then:

1. $A+B=B+A$ (Commutative)
2. $(A+B)+C=A+(B+C)$
(Associative)

A matrix with all entries equal to 0
is called a zero matrix. E.g.,

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

The symbol O will be used to de-

 note the zero matrix of arbitrary size.3. $A+\mathrm{O}=\mathrm{O}+A=A$.

The zero matrix is the additive iden-

tity.

The negative of a matrix A, de-
noted by $-A$ is the matrix whose entries are the negatives of the en-
tries of $A .-A$ is also called the additive inverse of A.

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
1 & 7 & -2 \\
2 & 0 & 6 \\
-4 & -1 & 5
\end{array}\right) \\
& -A=\left(\begin{array}{rrr}
-1 & -7 & 2 \\
-2 & 0 & -6 \\
4 & 1 & -5
\end{array}\right)
\end{aligned}
$$

4. $A+(-A)=\mathbf{O}$.

Subtraction: Let $A=\left(a_{i j}\right)$ and
$B=\left(b_{i j}\right)$ be $m \times n$ matrices. Then

$$
A-B=A+(-B)
$$

Example:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 4 & -3 \\
2 & 5 & 0
\end{array}\right)-\left(\begin{array}{ccc}
4 & 0 & -6 \\
1 & -2 & 0
\end{array}\right)= \\
& \left(\begin{array}{ccc}
2 & 4 & -3 \\
2 & 5 & 0
\end{array}\right)+\left(\begin{array}{ccc}
-4 & 0 & 6 \\
-1 & 2 & 0
\end{array}\right)=
\end{aligned}
$$

PROPERTIES: Let A, B, and C be matrices of the same size. Then:

1. $A+B=B+A$ (commutative)
2. $(A+B)+C=A+(B+C)$
(associative)
3. $A+\mathrm{O}=\mathrm{O}+A=A$ (additive
identity)
4. $\quad A+(-A)$
(additive inverse)

II. Multiplication of a Matrix by

a Number

The product of a number k and
a matrix A, denoted $k A$, is given
by

$$
k A=\left(k a_{i j}\right)
$$

This product is called multiplication by a scalar.

Examples:

2(1, 3)

$-3\left(\begin{array}{ccc}2 & -1 & 4 \\ 1 & 5 & -2 \\ 4 & 0 & 3\end{array}\right)=$

PROPERTIES: Let A, B be
$m \times n$ matrices and let α, β be
real numbers. Then

1. $1 A=A$
2. $0 A=\mathrm{O}$
3. $\alpha(A+B)=\alpha A+\alpha B$
4. $(\alpha+\beta) A=\alpha A+\beta A$
(3 and 4 are called distributive laws)

III. Matrix Multiplication

1. The Product of a Row Veg-

 tor and a Column Vector: The product of a $1 \times n$ row vector and an $n \times 1$ column vector, called the dot product, is the number given by$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right) \\
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\cdots+a_{n} b_{n} .
\end{aligned}
$$

Also called scalar product (because
the result is a number (scalar)), and
inner product.

The product of a row vector and a
column vector (of the same dimen-
sion and in that order!) is a number.

The product of a row vector and
a column vector of different dimen-
sions is not defined.

Examples:

$$
(3,-2,5)\left(\begin{array}{c}
-1 \\
-4 \\
1
\end{array}\right)
$$

$$
(-2,3,-1,4)\left(\begin{array}{c}
2 \\
4 \\
-3 \\
-5
\end{array}\right)
$$

2. The Product of Two Mari-
ces: Let $A=\left(a_{i j}\right)$ be an $m \times p$
matrix and let $B=\left(b_{i j}\right)$ be a $p \times n$ matrix.

The matrix product of A and B
(in that order), denoted $A B$, is the $m \times n$ matrix $C=\left(c_{i j}\right)$, where $c_{i j}$ is the product of the $i^{\text {th }}$ row of A and the $j^{\text {th }}$ column of B.

$$
A B=C=\left(c_{i j}\right)
$$

Let A and B be given matrices.
The product $A B$, in that order, is
defined if and only if the number of
columns of A equals the number of rows of B.

If the product $A B$ is defined, then the size of the product is: (no. of rows of $A) \times($ no. of columns of $B)$:

$$
\underset{m \times p}{A} \underset{p \times n}{B}=\underset{m \times n}{C}
$$

Examples:

$$
\begin{aligned}
& \text { 1. } A=\left(\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right), B=\left(\begin{array}{cc}
3 & 0 \\
-1 & 2 \\
1 & -2
\end{array}\right) \\
& A B=\left(\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
-1 & 2 \\
1 & -2
\end{array}\right)=
\end{aligned}
$$

$$
B A=\left(\begin{array}{cc}
3 & 0 \\
-1 & 2 \\
1 & -2
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right)=
$$

NOTE: $A B \neq B A$ matrix multiplication is NOT COMMUTA-

TIVE.

$$
\begin{aligned}
& \text { 2. } A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-3 & 0 & 5
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & 2 \\
-3 & 0 & 5
\end{array}\right)=
\end{aligned}
$$

$$
B A=\text { ? }
$$

$$
\underset{2 \times 3}{B} \underset{2 \times 2}{A} \quad B A \text { does not exist. }
$$

$$
\text { 3. } \quad A=\left(\begin{array}{rr}
2 & 1 \\
-4 & -2
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 1 \\
-2 & -2
\end{array}\right)
$$

$$
A B=\left(\begin{array}{rr}
2 & 1 \\
-4 & -2
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-2 & -2
\end{array}\right)
$$

$$
B A=\left(\begin{array}{rr}
1 & 1 \\
-2 & -2
\end{array}\right)\left(\begin{array}{rr}
2 & 1 \\
-4 & -2
\end{array}\right)
$$

Compare with real numbers: $\alpha \beta=$
0 implies $\alpha=0$, or $\beta=0$, or $\alpha=$
$\beta=0$

Remember: Matrix multi-

 plication is not commutative;$$
A B \neq B A
$$

in general.

However, there do exist occasions
when $A B=B A$.

PROPERTIES: Let A, B, and
C be matrices.

1. $A B \neq B A$ in general; NOT

COMMUTATIVE.
2. $(A B) C=A(B C)$ matrix multiplication is associative.
3. Multiplicative Identity (the ana-
log of the number 1). ??

Let A be a square matrix of order

n. The entries $a_{11}, a_{22}, a_{33}, \ldots, a_{n n}$ form the main diagonal of A.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right)
$$

(multiplicative) Identity Matrices:

For each positive integer $n>1$, let
I_{n} denote the square matrix of or-
der n whose entries on the main
diagonal are all 1 , and all other
entries are 0. The matrix I_{n} is
called the $n \times n$ identity matrix.

$$
\begin{aligned}
& I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& I_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and so on.
3. If A is an $m \times n$ matrix, then

$$
I_{m} A=A \quad \text { and } \quad A I_{n}=A
$$

If A is a square matrix of order n, then

$$
A I_{n}=I_{n} A=A,
$$

4. (multiplicative) Inverse ?????

Recall, for real numbers: If $a \neq 0$

$$
a\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) a=1
$$

or $\quad a \cdot a^{-1}=a^{-1} \cdot a=1$
$\frac{1}{a}$ or a^{-1} is the multiplicative in-
verse of a

0 does not have a multiplicative inverse!!

For matrices: Given a matrix A. A matrix B is a multiplicative inverse of A if
$A B=B A=I \quad$ (the identity matrix)

Problems:

- $A B$ and $B A$ might not both exist.
- If $A B$ and $B A$ both exist, they might have different size.
- If $A B$ and $B A$ both exist and have
the same size, $A B \neq B A$, in general.
- If $A B$ and $B A$ both exist and have
the same size, then A and B must
be square.

Distributive Laws:

1. $A(B+C)=A B+A C$. This is

called the left distributive law.
2. $(A+B) C=A C+B C$. This is called the right distributive law.
3. $k(A B)=(k A) B=A(k B)$

Other ways to look at systems of linear equations.

A system of m linear equations in n
unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\ldots \ldots
\end{gathered}
$$

Because of the way we defined mustiplication, the system can be written as:

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right)
$$

or in the vector-matrix form

$$
\begin{equation*}
A \mathrm{x}=\mathrm{b} \quad \text { c.f. } \quad a x=b \tag{1}
\end{equation*}
$$

Solution: $\mathrm{x}=A^{-1} \mathrm{~b}$?????

Section 5.6. Square matri-
ces

1. Inverse

Let A be an $n \times n$ matrix. An
$n \times n$ matrix B with the property
that

$$
A B=B A=I_{n}
$$

is called the multiplicative inverse
of A or, more simply, the inverse
of A.

Uniqueness: If A has an inverse,
then it is unique. That is, there is
one and only one matrix B such
that

$$
A B=B A=I
$$

B is denoted by A^{-1}.

Procedure for finding the inverse:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

We want $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

1) Solve $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{x}{z}=\binom{1}{0}$
$\left(\begin{array}{ll|l}1 & 2 & 1 \\ 3 & 4 & 0\end{array}\right) \rightarrow$

$$
\begin{aligned}
& \text { 2) Now solve }\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right)\binom{y}{w}=\binom{0}{1} \\
& \left(\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 2 & 0 \\
0 & -2 & 1
\end{array}\right) \rightarrow \\
& \left(\begin{array}{ll|c}
1 & 2 & 0 \\
0 & 1 & -1 / 2
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 0 & 1 \\
0 & 1 & -1 / 2
\end{array}\right)
\end{aligned}
$$

$$
A^{-1}=\left(\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right)
$$

Solve the two systems simultaneously:

$$
\left(\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right) \rightarrow
$$

Examples:

$$
\begin{aligned}
& \text { 1. } \quad A=\left(\begin{array}{rr}
2 & -8 \\
-1 & 6
\end{array}\right) \\
& \left(\begin{array}{rr|rr}
2 & -8 & 1 & 0 \\
-1 & 6 & 0 & 1
\end{array}\right) \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \quad B=\left(\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right) \\
& \left(\begin{array}{rr|rr}
2 & -1 & 1 & 0 \\
-4 & 2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

B does not have an inverse.

NOTE: Not every nonzero $n \times n$ matrix A has an inverse!
3. $\quad C=\left(\begin{array}{rrr}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right)$

Form the augmented matrix:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right) \rightarrow
$$

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right) \longrightarrow \\
& \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & -11 & 2 & 2 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & 1 & 6 & -1 & -1
\end{array}\right) \\
& C^{-1}=\left(\begin{array}{rrr}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right)
\end{aligned}
$$

4. $B=\left(\begin{array}{ccc}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6\end{array}\right)$

Form the augmented matrix
$\left(\begin{array}{rrr|rrr}1 & 3 & -4 & 1 & 0 & 0 \\ 1 & 5 & -1 & 0 & 1 & 0 \\ 3 & 13 & -6 & 0 & 0 & 1\end{array}\right)$
and row reduce
$\left(\begin{array}{rrr|rrr}1 & 3 & -4 & 1 & 0 & 0 \\ 1 & 5 & -1 & 0 & 1 & 0 \\ 3 & 13 & -6 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr|rrr}1 & 3 & -4 & 1 & 0 & 0 \\ 0 & 2 & 3 & -1 & 1 & 0 \\ 0 & 4 & 6 & -3 & 0 & 1\end{array}\right) \rightarrow$
$\left(\begin{array}{rrr|rrr}1 & 3 & -4 & 1 & 0 & 0 \\ 0 & 2 & 3 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -2 & 1\end{array}\right)$
B does not have an inverse.

Finding the inverse of A. Let A be an $n \times n$ matrix.
a. Form the augmented matrix $\left(A \mid I_{n}\right)$.
b. Reduce $\left(A \mid I_{n}\right)$ to reduced row echelon form. If the reduced row echelon form is
$\left(I_{n} \mid B\right), \quad$ then $\quad B=A^{-1}$

If the reduced row echelon form is
not $\left(I_{n} \mid B\right)$, then A does not have an inverse.

That is, if the reduced row echelon

form of A is not the identity, then
A does not have an inverse.

Application: Solve the system

$$
\begin{array}{r}
x+2 z=3 \\
2 x-y+3 z=5 \\
4 x+y+8 z=-2
\end{array}
$$

The system written in matrix form:

$$
\left(\begin{array}{rrr}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
3 \\
5 \\
-2
\end{array}\right)
$$

$C \mathrm{x}=\mathrm{b} ; \quad$ solution: $\quad \mathrm{x}=C^{-1} \mathrm{~b}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right)\left(\begin{array}{r}
3 \\
5 \\
-2
\end{array}\right)=\left(\begin{array}{r}
-29 \\
-14 \\
15
\end{array}\right)
$$

Note 1: The $n \times n$ system of equations

$$
A \mathrm{x}=\mathrm{b}
$$

has a unique solution if and only if
the matrix of coefficients, A, has an inverse.

2. Determinants

Find the solution set:

$$
\begin{gathered}
a x+b y=\alpha \\
c x+d y=\beta \\
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{\alpha}{\beta}, \quad A \mathbf{x}=\mathbf{b} \\
(a d-b c) x=(\alpha d-\beta b) \\
(a d-b c) y=(a \beta-c \alpha)
\end{gathered}
$$

The number $a d-b c$ is called the determinant of A, denoted $\operatorname{det} A$.

NOTE: The determinant $a d-b c$ determines whether or not the 2×2
system has a unique solution:

- $a d-b c \neq 0$ implies unique solution,
- $a d-b c=0 \quad$ implies either infinitely many solutions or no solutions.

NOTE: The determinant does not

 completely "determine."
A. Calculations

$$
\text { 1. } 1 \times 1 \quad A=(a)
$$

$$
\operatorname{det} A=a
$$

2. $2 \times 2 \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\operatorname{det} A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
3. $3 \times 3 \quad A=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right)$
$\operatorname{det} A=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=$

$$
a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
$$

Re-write as:

$$
a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

$$
=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

This is called the expansion across the first row.

Example: $A=\left(\begin{array}{rrr}2 & -3 & 3 \\ 0 & 4 & 2 \\ -2 & 1 & 3\end{array}\right)$

$$
\begin{aligned}
& \left|\begin{array}{rrr}
2 & -3 & 3 \\
0 & 4 & 2 \\
-2 & 1 & 3
\end{array}\right|= \\
& 2\left|\begin{array}{lr}
4 & 2 \\
1 & 3
\end{array}\right|-(-3)\left|\begin{array}{rr}
0 & 2 \\
-2 & 3
\end{array}\right|+3\left|\begin{array}{rr}
0 & 4 \\
-2 & 1
\end{array}\right|=
\end{aligned}
$$

$$
2(12-2)-(-3)(0+4)+3(0+8)=
$$

$$
2(10)-(-3)(4)+3(8)=56
$$

$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=$
$a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)=$
Re-write as:

$$
-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+b_{2}\left(a_{1} c_{3}-a_{3} c_{1}\right)-c_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)=
$$

$$
-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right|-c_{2}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|
$$

Expansion down the second column.

Example: $A=\left(\begin{array}{rrr}2 & -3 & 3 \\ 0 & 4 & 2 \\ -2 & 1 & 3\end{array}\right)$
$\left|\begin{array}{rrr}2 & -3 & 3 \\ 0 & 4 & 2 \\ -2 & 1 & 3\end{array}\right|=$
$-(-3)\left|\begin{array}{rr}0 & 2 \\ -2 & 3\end{array}\right|+4\left|\begin{array}{rr}2 & 3 \\ -2 & 3\end{array}\right|-1\left|\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right|=$
$3(4)+4(12)-4=56$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|= \\
& a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)
\end{aligned}
$$

$$
=a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-b_{3} a_{1} c_{2}+b_{3} a_{2} c_{1}+c_{3} a_{1} b_{2}-c_{3} a_{2} b_{1}
$$

$$
=a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)
$$

$$
=a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|-b_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
$$

Expansion down the third column
and so on. You can expand across any row, or down any column.

BUT: Associated with each posi-
ton is an algebraic sign:

$$
\left|\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

For example, across the second row:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=$
$=-b_{1}\left|\begin{array}{ll}a_{2} & a_{3} \\ c_{2} & c_{3}\end{array}\right|+b_{2}\left|\begin{array}{ll}a_{1} & a_{3} \\ c_{1} & c_{3}\end{array}\right|-b_{3}\left|\begin{array}{cc}a_{1} & a_{2} \\ c_{1} & c_{2}\end{array}\right|$
3. 4×4 determinants

$$
\left|\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right|
$$

Sign chart

$$
\left|\begin{array}{cccc}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right|
$$

An application of determinants

Recall: Find the solution set:

$$
\begin{gathered}
a x+b y=\alpha \\
c x+d y=\beta \\
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{\alpha}{\beta}, \quad A \mathbf{x}=\mathbf{b} \\
(a d-b c) x=\alpha d-b \beta \\
(a d-b c) y=a \beta-\alpha c
\end{gathered}
$$

$(\operatorname{det} A) x=\alpha d-b \beta=\left|\begin{array}{ll}\alpha & b \\ \beta & d\end{array}\right|$
$(\operatorname{det} A) y=a \beta-\alpha c=\left|\begin{array}{cc}a & \alpha \\ c & \beta\end{array}\right|$
$(\operatorname{det} A) x=\alpha d-\beta b=\left|\begin{array}{ll}\alpha & b \\ \beta & d\end{array}\right|$
$(\operatorname{det} A) y=a \beta-c \alpha=\left|\begin{array}{ll}a & \alpha \\ c & \beta\end{array}\right|$
If $\operatorname{det} A \neq 0$, then

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ll}
\alpha & b \\
\beta & d
\end{array}\right|}{\operatorname{det} A} \\
& y=\frac{\left|\begin{array}{ll}
a & \alpha \\
c & \beta
\end{array}\right|}{\operatorname{det} A}
\end{aligned}
$$

If $\operatorname{det} A=0$, then the system either has infinitely many solutions or no solutions.

Cramer's Rule \& systems of equa-

tions.

Given a system of n linear equations
in n unknowns: (a "square" system)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+\cdots+a_{3 n} x_{n}=b_{3}
\end{aligned}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}
$$

(provided $\operatorname{det} A \neq 0$)
where A_{i} is the matrix A with the $i^{t h}$
column replaced by the vector \mathbf{b}.

Note:

- The $n \times n$ system of equations
$A \mathrm{x}=\mathrm{b}$ has a unique solution if and only if $\operatorname{det} A \neq 0$.
- If $\operatorname{det} A=0$, then the system either has infinitely many solutions or no solutions.

Definitions:

A is nonsingular if $\operatorname{det} A \neq 0$;
A is singular if $\operatorname{det} A=0$.

Examples:

1. Given the system

$$
\begin{aligned}
x+2 y+2 z & =3 \\
2 x-y+z & =5 \\
-4 x+y-2 z & =-2
\end{aligned}
$$

Does Cramer's rule apply?
$\operatorname{det} A=\left|\begin{array}{ccc}1 & 2 & 2 \\ 2 & -1 & 1 \\ -4 & 1 & -2\end{array}\right|=$

$$
\begin{array}{r}
x+2 y+2 z=3 \\
2 x-y+z=5 \\
-4 x+y-2 z=-2
\end{array}
$$

Find y.

$$
y=\frac{\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 5 & 1 \\
-4 & -2 & -2
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 2 & 2 \\
2 & -1 & 1 \\
-4 & 1 & -2
\end{array}\right|}=
$$

2. Given the system

$$
\begin{array}{r}
-2 x+7 y+6 z=-1 \\
5 x+y-2 z=7 \\
3 x+8 y+4 z=-1
\end{array}
$$

Does Cramer's rule apply?
$\operatorname{det} A=\left|\begin{array}{ccc}-2 & 7 & 6 \\ 5 & 1 & -2 \\ 3 & 8 & 4\end{array}\right|=0$

Cramer's Rule does not apply

Does the system have infinitely many
solutions or no solutions??

Compare with $a x=b$ when $a=0$.

B. Properties of determinants:

Let A be an $n \times n$ matrix.

1. If A has a row or column of
zeros, then $\operatorname{det} A=0$

Example:

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 3 \\
4 & 0 & 8
\end{array}\right)
$$

Expand down second column:

$$
-0\left|\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right|+0\left|\begin{array}{ll}
1 & 2 \\
4 & 8
\end{array}\right|-0\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right|=0
$$

2. If A is a diagonal matrix,

$$
A=\left(\begin{array}{rrr}
a_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & c_{3}
\end{array}\right)
$$

$\operatorname{det} A=a_{1}\left|\begin{array}{cc}b_{2} & 0 \\ 0 & c_{3}\end{array}\right|-0\left|\begin{array}{cc}0 & 0 \\ 0 & c_{3}\end{array}\right|+0\left|\begin{array}{cc}0 & b_{2} \\ 0 & 0\end{array}\right|$
$=a_{1} \cdot b_{2} \cdot c_{3}$.

In particular, $\quad \operatorname{det} I_{n}=1$

For example, I_{3} :

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1
$$

3. If A is a triangular matrix,
e.g.,
$A=\left(\begin{array}{rrrr}a_{1} & a_{2} & a_{3} & a_{4} \\ 0 & b_{2} & b_{3} & b_{4} \\ 0 & 0 & c_{3} & c_{4} \\ 0 & 0 & 0 & d_{4}\end{array}\right)$
(upper triangular)

Expand down first column!!
$\operatorname{det} A=a_{1} \cdot b_{2} \cdot c_{3} \cdot d_{4}$
4. If B is obtained from by inter-
changing any two rows (columns),
then

$$
\operatorname{det} B=-\operatorname{det} A
$$

NOTE: If A has two identical rows (or columns), then
$\operatorname{det} A=0$.
5. Multiply a row (column) of A by a nonzero number k to obtain a matrix B. Then
$\operatorname{det} B=k \operatorname{det} A$.
6. Multiply a row (column) of
A by a number k and add it to
another row (column) to obtain a
matrix B. Then

$$
\operatorname{det} B=\operatorname{det} A
$$

7. Let A and B be $n \times n$
matrices. Then

$$
\operatorname{det}[A B]=\operatorname{det} A \operatorname{det} B
$$

Example:

Calculate $\left|\begin{array}{rrrr}3 & 3 & 1 & 5 \\ 2 & 2 & 0 & -2 \\ 4 & 1 & -3 & 2 \\ 2 & 10 & 3 & 2\end{array}\right|$

$$
=-6\left|\begin{array}{lllr}
1 & 1 & 0 & -1 \\
0 & 1 & 1 & -2 \\
0 & 0 & 1 & 8 \\
0 & 0 & 0 & 60
\end{array}\right|=-360
$$

Equivalences: The following state-

 ments are equivalent:> 1. \quad The system of equations:
> $A \mathrm{x}=\mathrm{b} \quad$ has a unique solution.
2. The reduced row echelon form
of A is I_{n}.
3. The rank of A is n.
4. A has an inverse.
5. $\operatorname{det} A \neq 0$.

