Summary: Solving Systems of Equa-

Lions

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
A \mathbf{x}=\mathbf{b}
\end{gathered}
$$

1. If A is not square (i.e., more
unknowns then equations or more equations than unknowns), then augmented matrix \rightarrow row echelon or reduce row echelon form.
2. If A is square, then
$(A \mid b) \rightarrow$ row echelon form \& back substitute
$(A \mid b) \rightarrow$ reduced row echelon form
find A^{-1}, if possible, then $\mathbf{x}=A^{-1} \mathbf{b}$

Cramer's rule: $x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}, \quad$ provided $\operatorname{det} A \neq 0$

Note: if A^{-1} does not exist, or
if $\operatorname{det} A=0$, then the system either
has infinitely many solutions or no

solutions.

BUT, Special Case:

If the system is homogeneous, then
it has infinitely many solutions; " no
solutions" is not an option for ho-
mogeneous systems,

Section 5.7. Vector Spaces

$$
\mathbb{R}^{2}=\{(a, b): a, b \in \mathbb{R}\} \text { - "the plane" }
$$

space"

$$
\mathbb{R}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}-" 4 \text {-space" }
$$

$\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)\right\} \quad$ ordered n-tuples of real numbers

For any two vectors $\mathbf{u}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
and $\mathbf{v}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in \mathbb{R}^{n}, we
have
$\mathbf{u}+\mathbf{v}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)$

$$
=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

and for any real number λ,

$$
\begin{aligned}
\lambda \mathbf{v} & =\lambda\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\left(\lambda a_{1}, \lambda a_{2}, \ldots, \lambda a_{n}\right)
\end{aligned}
$$

Clearly, the sum of two vectors in
\mathbb{R}^{n} is another vector in \mathbb{R}^{n} and a

scalar multiple of a vector in \mathbb{R}^{n} is

a vector in \mathbb{R}^{n}.

Properties:

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^{n}.
Addition:

1. $\mathbf{u}+\mathbf{v} \in \mathbb{R}^{n} \quad$ closed
2. $\mathbf{u}+\mathrm{v}=\mathrm{v}+\mathrm{u}$ commutative
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
associative
4. Zero vector: $0=(0,0,0, \ldots, 0)$,

$$
\mathrm{v}+0=0+\mathrm{v}=\mathrm{v} \quad \text { (additive identity). }
$$

5. Additive Inverse: For each vec-

 tor $\mathbf{v} \in \mathbb{R}^{n}$, there is a unique vector -v such that$$
\mathbf{v}+(-\mathrm{v})=\mathrm{v}-\mathrm{v}=\mathbf{0}
$$

-v is the additive inverse (or negative) of v.

Multiplication by a scalar:

If α and β are numbers, and \mathbf{u} and v are vectors, then:

1. $\alpha \mathbf{v} \in \mathbb{R}^{n} \quad$ (closed)
2. $1 \mathbf{v}=\mathbf{v}(1$ multiplicative iden-
tity)
3. $\alpha(\beta \mathbf{v})=(\alpha \beta) \mathbf{v} \quad$ (associative property)
4. $(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v} \quad$ (distributive property)
5. $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v} \quad$ (distributive property)

Any non-empty set V on which there
are defined two operations, addition
$(+)$ and multiplication by a scalar,
which satisfy the properties 1 - 5 for
addition and 1-5 for multiplication
by a scalar is called a vector space.
Examples:

1. \mathbb{R}^{n}
2. $\mathcal{C}(0,1)=\{f:(0,1) \rightarrow \mathbb{R} \mid f$ is continuous $\}$
3. The set \mathcal{S} of solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Section 5.8. Linear Dependence/Independence in \mathbb{R}^{n}

Let V be a vector space and let

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}\right\}
$$

be a set of vectors in V. Let

$$
\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{k}\right\}
$$

be real numbers. Then

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{k} \mathbf{v}_{k}
$$

is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

$\mathbb{R}^{2}=\{(a, b): a, b \in \mathbb{R}\}$ - "the plane"

$$
\mathbb{R}^{3}=\{(a, b, c): a, b, c \in \mathbb{R}\}-" 3-
$$ space"

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}.

The set \mathcal{S} is linearly dependent if
there exist k numbers $c_{1}, c_{2}, \cdots, c_{k}$
NOT ALL ZERO such that
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$.
$\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}\right.$ is a linear
combination of $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}$)
\mathcal{S} is linearly independent if it is
not linearly dependent. That is, \mathcal{S} is linearly independent if
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$
implies $c_{1}=c_{2}=\cdots=c_{k}=0$.

The set \mathcal{S} is linearly dependent if there exist k numbers $c_{1}, c_{2}, \cdots, c_{k}$

NOT ALL ZERO such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Another way to say this:

The set \mathcal{S} is linearly dependent
if one of the vectors can be written
as a linear combination of the other
vectors.

The set \mathcal{S} is linearly dependent if

there exist k numbers $c_{1}, c_{2}, \cdots, c_{k}$
NOT ALL ZERO such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{O}
$$

NOTE: If there is one such set

$$
\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{k}\right\}
$$

then there are infinitely many such sets.

1. Two vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$.

Linearly dependent iff one vector is
a constant multiple of the other.

Examples:

$\mathbf{v}_{1}=(1,-2,4), \quad \mathbf{v}_{2}=\left(-\frac{1}{2}, 1,-2\right)$
linearly dependent: $\quad \mathbf{v}_{1}=-2 \mathbf{v}_{2}$

$$
\mathbf{v}_{1}=(2,-4,5), \quad \mathbf{v}_{2}=(0,0,0)
$$

linearly dependent: $\quad \mathbf{v}_{2}=0 \mathbf{v}_{1}$

$$
\mathbf{v}_{1}=(5,-2,0), \quad \mathbf{v}_{2}=(-3,1,9)
$$

linearly independent
2. Given the three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$
in \mathbb{R}^{2} :
$\mathbf{v}_{1}=(1,-1), \mathbf{v}_{2}=(-2,3)$

$$
\mathbf{v}_{3}=(3,-5)
$$

1. $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ Dependent or independent??

Solution 1. Independent: \mathbf{v}_{1} is not a constant multiple of \mathbf{v}_{2}; and \mathbf{v}_{2} is not a constant multiple of \mathbf{v}_{1}.

Solution 2. Suppose they are dependent. Then there are two numbers c_{1}, c_{2}, not both 0 , such that

$$
c_{1}(1,-1)+c_{2}(-2,3)=\mathbf{O}
$$

That is

$$
\begin{aligned}
c_{1}-2 c_{2} & =0 \\
-c_{1}+3 c_{2} & =0
\end{aligned}
$$

$$
\mathbf{v}_{1}=(1,-1), \mathbf{v}_{2}=(-2,3)
$$

$$
\mathrm{v}_{3}=(3,-5)
$$

Dependent or independent??

Does there exist three numbers, c_{1}, c_{2}, c_{3}, not all zero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=(0,0)
$$

$c_{1}(1,-1)+c_{2}(2,-3)+c_{3}(3,-5)$

I.e, does the system of equations

$$
\begin{array}{r}
c_{1}+2 c_{2}+3 c_{3}=0 \\
-c_{1}-3 c_{2}-5 c_{3}=0
\end{array}
$$

have nontrivial solutions?

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
-1 & 3 & -5 & 0
\end{array}\right)
$$

3. Four vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbb{R}^{3}

$$
\begin{aligned}
& \mathrm{v}_{1}=(1,-1,2), \quad \mathrm{v}_{2}=(2,-3,0), \\
& \mathrm{v}_{3}=(-1,-2,2), \quad \mathrm{v}_{4}=(0,4,-3)
\end{aligned}
$$

Are there 4 real numbers $c_{1}, c_{2}, c_{3}, c_{4}$,
NOT ALL ZERO, such that
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}=(0,0,0) ?$

$$
\left(\begin{array}{cccc|c}
1 & 2 & -1 & 0 & 0 \\
-1 & -3 & -2 & 4 & 0 \\
2 & 0 & 2 & -3 & 0
\end{array}\right)
$$

- A homogeneous system with more unknowns than equations ALWAYS has infinitely many nontrivial solutions.
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{k}$ be a set of k vectors in \mathbb{R}^{n}. If $k>n$, then the set of vectors is (automatically) linearly dependent.

In \mathbb{R}^{3} :

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,-1,2), \quad \mathbf{v}_{2}=(2,-3,0), \\
& \mathbf{v}_{3}=(-1,-2,2), \quad \mathbf{v}_{4}=(0,4,-3)
\end{aligned}
$$

Dependent or independent??

(a) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$
(b) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
(c) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$

$$
\begin{aligned}
& \text { (b) } \mathrm{v}_{1}=(1,-1,2), \quad \mathrm{v}_{2}=(2,-3,0), \\
& \mathrm{v}_{3}=(-1,-2,2)
\end{aligned}
$$

Does $\quad c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=0$
have non-trivial solutions? That is,
does

$$
\begin{aligned}
c_{1}+2 c_{2}-c_{3} & =0 \\
-c_{1}-3 c_{2}-2 c_{3} & =0 \\
2 c_{1}+2 c_{3} & =0
\end{aligned}
$$

have non-trivial solutions?

Augmented matrix and row reduce:

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
-1 & -3 & -2 & 0 \\
2 & 0 & 2 & 0
\end{array}\right)
$$

NOTE: It's enough to row reduce:

$$
\left(\begin{array}{rrr}
1 & 2 & -1 \\
-1 & -3 & -2 \\
2 & 0 & 2
\end{array}\right)
$$

since the numbers to the right of the bar will always be 0 .

Or, calculate the determinant

$$
\left|\begin{array}{rrr}
1 & 2 & -1 \\
-1 & -3 & -2 \\
2 & 0 & 2
\end{array}\right|
$$

- det $\neq 0$ implies unique solution

$$
c_{1}=c_{2}=c_{3}=0
$$

and independent,

- det $=0$ implies infinitely many so-
lutions and dependent
$\left|\begin{array}{rrr}1 & 2 & -1 \\ -1 & -3 & -2 \\ 2 & 0 & 2\end{array}\right|=$

Note: When testing a set of vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ for independence/dependence:

1. If you use the definition

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Then the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ appear as columns.
2. If you use the determinant, then
you can write the vectors either as
rows or columns.

From the previous example:

$$
\left|\begin{array}{rrr}
1 & 2 & -1 \\
-1 & -3 & -2 \\
2 & 0 & 2
\end{array}\right|=\left|\begin{array}{rrr}
1 & -1 & 2 \\
2 & -3 & 0 \\
-1 & -2 & 2
\end{array}\right|
$$

This follows from the fact that to evaluate a determinant you can expand across any row or down any column.

$$
\begin{aligned}
& \text { 4. } \mathbf{v}_{1}=(a, 1,-1), \quad \mathbf{v}_{2}=(-1,2 a, 3), \\
& \mathbf{v}_{3}=(-2, a, 2), \quad \mathbf{v}_{4}=(3 a,-2, a)
\end{aligned}
$$

$$
\text { For what values of } a \text { are the vectors }
$$

linearly dependent?

> 5. $\mathbf{v}_{1}=(a, 1,-1), \quad \mathbf{v}_{2}=(-1,2 a, 3)$,
> $\mathbf{v}_{3}=(-2, a, 2)$

For what values of a are the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ linearly dependent?

$$
\begin{array}{r}
a c_{1}-c_{2}-2 c_{3}=0 \\
c_{1}+2 a c_{2}+a c_{3}=0 \\
-c_{1}+3 c_{2}+2 c_{3}=0
\end{array}
$$

Augmented matrix and row reduce:

$$
\left(\begin{array}{rrr|r}
a & -1 & -2 & 0 \\
1 & 2 a & a & 0 \\
-1 & 3 & 2 & 0
\end{array}\right)
$$

Or row reduce:

$$
\left(\begin{array}{rrr}
a & -1 & -2 \\
1 & 2 a & a \\
-1 & 3 & 2
\end{array}\right)
$$

Or calculate the determinant

$$
\left|\begin{array}{rrr}
a & -1 & -2 \\
1 & 2 a & a \\
-1 & 3 & 2
\end{array}\right|
$$

5. $\mathbf{v}_{1}=(1,-1,2,1), \quad \mathbf{v}_{2}=(3,2,0,-1)$

$$
v_{3}=(-1,-4,4,3), \quad v_{4}=(2,3,-2,-2)
$$

a. $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$
dependent or independent?
b. If dependent, what is the max-
imum number of independent vectors?

Row reduce

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
3 & 2 & 0 & -1 \\
-1 & -4 & 4 & 3 \\
2 & 3 & -2 & -2
\end{array}\right)
$$

Or, calculate the determinant.

$$
\left|\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
3 & 2 & 0 & -1 \\
-1 & -4 & 4 & 3 \\
2 & 3 & -2 & -2
\end{array}\right|
$$

$$
\begin{aligned}
& v_{1}=(1,-1,2,1), V_{2}=(3,2,0,-1), \\
& v_{3}=(-1,-4,4,3), v_{4}=(2,3,-2,-2) \\
& \left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
3 & 2 & 0 & -1 \\
-1 & 4 & 4 & 3 \\
2 & 3 & -2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
0 & 5 & -6 & -4 \\
0 & -5 & 6 & 4 \\
0 & 5 & -6 & -4
\end{array}\right) \rightarrow
\end{aligned}
$$

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
0 & 5 & -6 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Tests for independence/dependence

$$
\text { Let } \mathcal{S}=\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k} \text { be a set of }
$$ vectors in \mathbb{R}^{n}.

Case 1: $k>n: \mathcal{S}$ is linearly dependent.

Case 2: $k=n:$

1. Solve the system of equations

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

If a unique solution:

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

the vectors are independent.

If infinitely many solutions:

The vectors are dependent.

OR 2. Form the $n \times n$ matrix A
whose rows are $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ and
row reduce A :
if the reduced matrix has n nonzero
rows, i.e., if the rank of A is n, then
independent;
if the reduced matrix has one or more
zero rows, then dependent.

OR 3. Calculate $\operatorname{det} A$:

If $\operatorname{det} A \neq 0$,
the vectors are independent.

If $\operatorname{det} A=0$,
the vectors are dependent.

Note: If $\mathbf{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{n}$ is a lin-
early independent set of vectors in
\mathbb{R}^{n}, then each vector in \mathbb{R}^{n} has

a unique representation as a linear

 combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.Case 3: $k<n:$ Form the
$k \times n$ matrix A whose rows are
$\mathbf{v}_{1}, \quad \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$

1. Row reduce A :
if the reduced matrix has k nonzero
rows -independent;
one or more zero rows - dependent.

Equivalently, solve the system of equations

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

If unique solution: $c_{1}=c_{2}=\cdots=$
$c_{n}=0$, then independent; If in-
finitely many solutions, then dependent.

Linear Independence/Dependence

\& Row Operations

Example. $\mathrm{v}_{1}=(1,-2,3)$,

$$
\mathrm{v}_{2}=(2,-3,1), \mathrm{v}_{3}=(3,-4,-1)
$$

Dependent or independent?

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & -3 & 1 \\
3 & -4 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & -5 \\
0 & 2 & -10
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & -5 \\
0 & 0 & 0
\end{array}\right)
$$

That is, R_{3} is a linear combination of R_{1} and R_{2}; the vectors are linearly dependent; the vector equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{O}
$$

has infinitely many non-zero solu-
tions.

The General Result: Given a
 set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ in \mathbb{R}^{n}.

Form the matrix V with $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots$ as
rows and row reduce.

If you get a row of 0 's, the vec-
tors are linearly dependent and at least one of the vectors is a linear combination of the other vectors.
(THIS IS WHY A SYSTEM WITH INFINITELY MANY SOLUTIONS IS

CALLED DEPENDENT. See Chapter 5, Part 1, pg 55.)

If you get no rows of 0 's, the vec-

tors are linearly independent

Given an $m \times n$ matrix $A . A: \mathbb{R}^{n} \rightarrow$
\mathbb{R}^{m} is a linear transformation!
$A[\mathbf{v}+\mathbf{w}]=A \mathbf{v}+A \mathbf{w} \quad$ and $\quad A[\alpha \mathbf{v}]=\alpha A \mathbf{v}$

Example:

$$
A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
3 & 0 & 2
\end{array}\right)
$$

is a linear transformation from \mathbb{R}^{3}
to \mathbb{R}^{2}.

Section 5.9. Eigenvalues/Eigenvectors

Example: Set

$$
A=\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right) .
$$

A is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3}.

$$
\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right)\left(\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{r}
12 \\
-2 \\
10
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right)\left(\begin{array}{r}
3 \\
2 \\
-3
\end{array}\right)=\left(\begin{array}{r}
-6 \\
-4 \\
6
\end{array}\right)=-2\left(\begin{array}{r}
3 \\
2 \\
-3
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)=2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Let A be an $n \times n$ matrix.

A number λ is an eigenvalue of
A if there is a non-zero vector \mathbf{v}
such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

How to find eigenvalues: Suppose
λ is a number and \mathbf{v} is a non-zero
vector such that $A \mathbf{v}=\lambda \mathbf{v}$. Then

To find the eigenvalues of A, find

 the values of λ that satisfy$$
\operatorname{det}(A-\lambda I)=0
$$

Example: Let $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
$A-\lambda I=\left(\begin{array}{cc}2-\lambda & 3 \\ 1 & 4-\lambda\end{array}\right)$
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}2-\lambda & 3 \\ 1 & 4-\lambda\end{array}\right|$
$=(2-\lambda)(4-\lambda)-3=\lambda^{2}-6 \lambda+5=0$

Eigenvalues: $\quad \lambda_{1}=5, \quad \lambda_{2}=1$

$$
\text { Let } A=\left(\begin{array}{rrr}
1 & -3 & 1 \\
-1 & 1 & 1 \\
3 & -3 & -1
\end{array}\right)
$$

$$
\operatorname{det}(A-\lambda I)=\left\lvert\, \begin{array}{ccc}
1-\lambda & -3 & 1 \\
-1 & 1-\lambda & 1 \\
3 & -3 & -1-\lambda
\end{array}\right.
$$

$$
=-\lambda^{3}+\lambda^{2}+4 \lambda-4
$$

$$
\operatorname{det}(A-\lambda I)=0 \quad \text { implies }
$$

$$
-\lambda^{3}+\lambda^{2}+4 \lambda-4=0
$$

$$
\text { or } \quad \lambda^{3}-\lambda^{2}-4 \lambda+4=0
$$

Terminology:

- $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n, called the characteristic polynomial of A.
- The zeros of the characteristic polynomial are the eigenvalues of A
- The equation $\operatorname{det}(A-\lambda I)=0$ is
called the characteristic equation of A.
- A non-zero vector \mathbf{v} that satis-
fies

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

is called an eigenvector corresponding to the eigenvalue λ.

Note: Eigenvectors are NOT unique; an eigenvalue has infinitely many eigenvectors.

Examples: 1. $\quad A=\left(\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right)$

Characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right|
$$

$$
=(2-\lambda)(-1-\lambda)-4
$$

$$
=\lambda^{2}-\lambda-6
$$

Characteristic equation:

$$
\lambda^{2}-\lambda-6=(\lambda-3)(\lambda+2)=0
$$

Eigenvalues: $\quad \lambda_{1}=3, \quad \lambda_{2}=-2$

Eigenvectors:

$$
\begin{aligned}
& \quad(A-\lambda I)=\left(\begin{array}{cc}
2-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right) \\
& \lambda_{1}=3: \text { Solve } \\
& (A-3 I) \mathbf{x}=\left(\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2}=-2: \text { Solve } \\
& (A-(-2) I) \mathrm{x}=\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=
\end{aligned}
$$

2. $\quad A=\left(\begin{array}{rr}4 & -1 \\ 4 & 0\end{array}\right)$

Characteristic polynomial:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
4-\lambda & -1 \\
4 & -\lambda
\end{array}\right| \\
=\lambda^{2}-4 \lambda+4
\end{gathered}
$$

Characteristic equation:

$$
\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0
$$

Eigenvalues: $\lambda_{1}=\lambda_{2}=2$

Eigenvectors:

$$
(A-\lambda I)=\left(\begin{array}{cc}
4-\lambda & -1 \\
4 & -\lambda
\end{array}\right)
$$

$$
\lambda_{1}=\lambda_{2}=2
$$

Solve:

$$
(A-2 I) \mathrm{x}=\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

3. $\quad A=\left(\begin{array}{rr}5 & 3 \\ -6 & -1\end{array}\right)$

Characteristic polynomial:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
5-\lambda & 3 \\
-6 & -1-\lambda
\end{array}\right| \\
=\lambda^{2}-4 \lambda+13
\end{gathered}
$$

Characteristic equation:

$$
\lambda^{2}-4 \lambda+13=0
$$

Eigenvalues:

$$
\lambda_{1}=2+3 i, \quad \lambda_{2}=2-3 i
$$

Eigenvectors: $(A-\lambda I)=\left(\begin{array}{cc}5-\lambda & 3 \\ -6 & -1-\lambda\end{array}\right)$

$$
\lambda_{1}=2+3 i: \text { Solve }
$$

$$
(A-(2+3 i) I) \mathrm{x}=\left(\begin{array}{cc}
3-3 i & 3 \\
-6 & -3-3 i
\end{array}\right)\binom{x_{1}}{x_{2}}=
$$

$$
\binom{0}{0}
$$

NOTE: If $a+b i$ is an eigenvalue of A with eigenvector $\alpha+\beta i$, then $a-b i$ is also an eigenvalue of A and $\alpha-\beta i$ is a corresponding eigenvector.
4. $A=\left(\begin{array}{rrr}4 & -3 & 5 \\ -1 & 2 & -1 \\ -1 & 3 & -2\end{array}\right)$

Characteristic polynomial:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}4-\lambda & -3 & 5 \\ -1 & 2-\lambda & -1 \\ -1 & 3 & -2-\lambda\end{array}\right|$

$$
=-\lambda^{3}+4 \lambda^{2}-\lambda-6
$$

Characteristic equation:
$\lambda^{3}-4 \lambda^{2}+\lambda+6=(\lambda-3)(\lambda-2)(\lambda+1)=0$.

Eigenvalues: $\lambda_{1}=3, \lambda_{2}=2, \lambda_{3}=$
-1

Eigenvectors:

$$
(A-\lambda I)=\left(\begin{array}{ccc}
4-\lambda & -3 & 5 \\
-1 & 2-\lambda & -1 \\
-1 & 3 & -2-\lambda
\end{array}\right)
$$

$\lambda_{1}=3:$

$$
(A-\lambda I)=\left(\begin{array}{ccc}
4-\lambda & -3 & 5 \\
-1 & 2-\lambda & -1 \\
-1 & 3 & -2-\lambda
\end{array}\right)
$$

$\lambda_{2}=2$

$$
(A-\lambda I)=\left(\begin{array}{ccc}
4-\lambda & -3 & 5 \\
-1 & 2-\lambda & -1 \\
-1 & 3 & -2-\lambda
\end{array}\right)
$$

$$
\lambda_{3}=-1
$$

5. $A=\left(\begin{array}{rrr}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right)$

Characteristic polynomial:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
4-\lambda & 1 & -1 \\
2 & 5-\lambda & -2 \\
1 & 1 & 2-\lambda
\end{array}\right| \\
=-\lambda^{3}+11 \lambda^{2}-39 \lambda+45
\end{gathered}
$$

Characteristic equation:
$\lambda^{3}-11 \lambda^{2}+39 \lambda-45=(\lambda-3)^{2}(\lambda-5)=0$.

Eigenvalues: $\lambda_{1}=5, \lambda_{2}=\lambda_{3}=3$

Eigenvectors:

$$
(A-\lambda I)=\left(\begin{array}{ccc}
4-\lambda & 1 & -1 \\
2 & 5-\lambda & -2 \\
1 & 1 & 2-\lambda
\end{array}\right)
$$

$\lambda_{1}=5$

$$
\begin{aligned}
& (A-\lambda I)=\left(\begin{array}{ccc}
4-\lambda & 1 & -1 \\
2 & 5-\lambda & -2 \\
1 & 1 & 2-\lambda
\end{array}\right) \\
& \lambda_{2}=\lambda_{3}=3
\end{aligned}
$$

6. $A=\left(\begin{array}{lll}-3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2\end{array}\right)$

Characteristic polynomial:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}-3-\lambda & 1 & -1 \\ -7 & 5-\lambda & -1 \\ -6 & 6 & -2-\lambda\end{array}\right|$
$=-\lambda^{3}+12 \lambda+16$

Characteristic equation:
$\lambda^{3}-12 \lambda-16=(\lambda-4)(\lambda+2)^{2}=0$.

Eigenvalues: $\quad \lambda_{1}=4, \lambda_{2}=\lambda_{3}=$
-2

Eigenvectors:

$$
(A-\lambda I)=\left(\begin{array}{ccc}
-3-\lambda & 1 & -1 \\
-7 & 5-\lambda & -1 \\
-6 & 6 & -2-\lambda
\end{array}\right)
$$

$\lambda_{1}=4:$

$$
(A-\lambda I)=\left(\begin{array}{ccc}
-3-\lambda & 1 & -1 \\
-7 & 5-\lambda & -1 \\
-6 & 6 & -2-\lambda
\end{array}\right)
$$

$$
\lambda_{2}=\lambda_{3}=-2
$$

Some Facts

THEOREM If

$$
\mathbf{v}_{1}, \quad \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}
$$

are eigenvectors of a matrix A corresponding to distinct eigenvalues

$$
\lambda_{1}, \quad \lambda_{2}, \ldots, \quad \lambda_{k}
$$

then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

THEOREM Let A be a (real) $n \times n$ matrix. If the complex num-
ber $\lambda=a+b i$ is an eigenvalue of A with corresponding (complex)
eigenvector $\mathbf{u}+i \mathbf{v}$, then $\lambda=a-b i$,
the conjugate of $a+b i$, is also an
eigenvalue of A and $\mathbf{u}-i \mathbf{v}$ is a
corresponding eigenvector.

THEOREM Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Then

$\operatorname{det} A=(-1)^{n} \lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \cdot \cdots \lambda_{n}$.

That is, $\operatorname{det} A$ is the ± 1 times the product of the eigenvalues of A.
(The λ 's are not necessarily distinct, the multiplicity of an eigenvalue may be greater than 1, and they are not necessarily real.)

Equivalences: (A an $n \times n$ matrix)

1. $A \mathrm{x}=\mathrm{b}$ has a unique solution.

2. The reduced row echelon form
of A is I_{n}.
3. The rank of A is n.
4. A has an inverse.
5. $\operatorname{det} A \neq 0$.
6. 0 is not an eigenvalue of A

The following are equivalent:

1. $\operatorname{det} A=0$.
2. A does not have an inverse.
3. The rank of A is less than n.
4. The reduced row echelon form of A is not I_{n}.
5. The system $A \mathrm{x}=\mathrm{b}$ does not
have a unique solution.
6. 0 is an eigenvalue of A.
