
Summary: Solving Systems of Equa-

tions

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
... ... ... ...

am1x1 + am2x2 + · · · + amnxn = bm

Ax = b

1. If A is not square (i.e., more

unknowns then equations or more

equations than unknowns), then aug-

mented matrix → row echelon or re-

duced row echelon form.
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2. If A is square, then

(A|b) → row echelon form & back substitute

(A|b) → reduced row echelon form

find A−1, if possible, then x = A−1b

Cramer’s rule: xi =
detAi

detA
, provided

detA 6= 0

Note: If A−1 does not exist, or

if det A = 0, then the system either
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has infinitely many solutions or no

solutions.

BUT, Special Case:

If the system is homogeneous, then

it has infinitely many solutions; ”no

solutions” is not an option for ho-

mogeneous systems,



Section 5.7. Vector Spaces

R2 = {(a, b) : a, b ∈ R} – ”the plane”

R3 = {(a, b, c) : a, b, c ∈ R} – ”3-

space”
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R4 = {(x1, x2, x3, x4)} – “4-space”

Rn = {(x1, x2, x3, . . . , xn)} ordered

n-tuples of real numbers
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For any two vectors u = (a1, a2, . . . , an)

and v = (b1, b2, . . . , bn) in Rn, we

have

u + v = (a1, a2, . . . , an) + (b1, b2, . . . , bn)

= (a1 + b1, a2 + b2, . . . , an + bn)

and for any real number λ,

λv = λ (a1, a2, . . . , an)

= (λa1, λa2, . . . , λan).

Clearly, the sum of two vectors in

Rn is another vector in Rn and a
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scalar multiple of a vector in Rn is

a vector in Rn.

Properties:

Let u,v and w be vectors in Rn.

Addition:

1. u + v ∈ Rn closed

2. u + v = v + u commutative

3. u + (v + w) = (u + v) + w

associative



4. Zero vector: 0 = (0, 0, 0, . . . , 0),

v+0 = 0+v = v (additive identity).

5. Additive Inverse: For each vec-

tor v ∈ Rn, there is a unique vector

−v such that

v + (−v) = v − v = 0

−v is the additive inverse (or neg-

ative) of v.



Multiplication by a scalar:

If α and β are numbers, and u and

v are vectors, then:

1. αv ∈ Rn (closed)

2. 1v = v (1 multiplicative iden-

tity)

3. α(β v) = (αβ)v (associative

property)

4. (α + β)v = αv + β v (distribu-

tive property)
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5. α(u + v) = αu + αv (distribu-

tive property)



Any non-empty set V on which there

are defined two operations, addition

(+) and multiplication by a scalar,

which satisfy the properties 1 - 5 for

addition and 1 - 5 for multiplication

by a scalar is called a vector space.

Examples:

1. Rn

2. C(0,1) = {f : (0,1) → R | f is continuous}

3. The set S of solutions of

y′′ + p(x)y′ + q(x)y = 0
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Section 5.8. Linear Depen-

dence/Independence in R
n

Let V be a vector space and let

{v1, v2, v3, · · · , vk}

be a set of vectors in V . Let

{c1, c2, c3, · · · , ck}

be real numbers. Then

v = c1v1 + c2v2 + c3v3 + · · · + ckvk

is a linear combination of v1, . . . ,vk.
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R2 = {(a, b) : a, b ∈ R} – ”the plane”
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R3 = {(a, b, c) : a, b, c ∈ R} – ”3-

space”
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Let S = {v1,v2, · · · ,vk} be a set

of vectors in Rn.

The set S is linearly dependent if

there exist k numbers c1, c2, · · · , ck

NOT ALL ZERO such that

c1v1 + c2v2 + · · · + ckvk = 0.

(c1v1 + c2v2 + · · ·+ ckvk is a linear

combination of v1, v2, . . . , vk)
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S is linearly independent if it is

not linearly dependent. That is, S

is linearly independent if

c1v1 + c2v2 + · · · + ckvk = 0

implies c1 = c2 = · · · = ck = 0.
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The set S is linearly dependent if

there exist k numbers c1, c2, · · · , ck

NOT ALL ZERO such that

c1v1 + c2v2 + · · · + ckvk = 0.

Another way to say this:

The set S is linearly dependent

if one of the vectors can be written

as a linear combination of the other

vectors.
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The set S is linearly dependent if

there exist k numbers c1, c2, · · · , ck

NOT ALL ZERO such that

c1v1 + c2v2 + · · · + ckvk = O.

NOTE: If there is one such set

{c1, c2, c3, . . . , ck},

then there are infinitely many such

sets.
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1. Two vectors v1, v2.

Linearly dependent iff one vector is

a constant multiple of the other.

Examples:

v1 = (1, −2, 4 ), v2 = (−
1

2
, 1, −2 )

linearly dependent: v1 = −2v2
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v1 = (2, −4, 5 ), v2 = (0, 0, 0 )

linearly dependent: v2 = 0v1

v1 = (5, −2, 0 ), v2 = (−3, 1, 9 )

linearly independent
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2. Given the three vectors v1, v2, v3

in R2:

v1 = (1, −1 ), v2 = (−2, 3 )

v3 = (3, −5 )

1. {v1, v2} Dependent or inde-

pendent??

Solution 1. Independent: v1 is not

a constant multiple of v2; and v2 is

not a constant multiple of v1.
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Solution 2. Suppose they are de-

pendent. Then there are two num-

bers c1, c2, not both 0, such that

c1(1,−1) + c2(−2,3) = O.

That is

c1 − 2c2 = 0

−c1 + 3c2 = 0
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v1 = (1, −1 ), v2 = (−2, 3 )

v3 = (3, −5 )

Dependent or independent??

Does there exist three numbers, c1, c2, c3,

not all zero such that

c1v1 + c2v2 + c3v3 = (0,0)

c1( 1, −1 )+c2( 2, −3 )+c3( 3, −5 )
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I.e, does the system of equations

c1 + 2c2 + 3c3 = 0

−c1 − 3c2 − 5c3 = 0

have nontrivial solutions?





1 2 3 0
−1 3 −5 0







3. Four vectors: v1, v2, v3, v4 in

R3

v1 = (1, −1, 2 ), v2 = (2, −3, 0 ),

v3 = (−1, −2, 2 ), v4 = (0, 4, −3 )

Are there 4 real numbers c1, c2, c3, c4,

NOT ALL ZERO, such that

c1v1+c2v2+c3v3+c4v4 = (0,0,0)?
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







1 2 −1 0 0
−1 −3 −2 4 0
2 0 2 −3 0








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• A homogeneous system with

more unknowns than equa-

tions ALWAYS has infinitely

many nontrivial solutions.

• Let v1, v2, · · · , vk be a set

of k vectors in R
n. If

k > n, then the set of vec-

tors is (automatically) lin-

early dependent.
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In R3:

v1 = (1, −1, 2 ), v2 = (2, −3, 0 ),

v3 = (−1, −2, 2 ), v4 = (0, 4, −3 )

Dependent or independent??

(a) {v1, v2, v3, v4}

(b) {v1, v2, v3}

(c) {v1, v2}
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(b) v1 = (1, −1, 2 ), v2 = (2, −3, 0 ),

v3 = (−1, −2, 2 )

Does c1v1 + c2v2 + c3v3 = 0

have non-trivial solutions? That is,

does

c1 + 2c2 − c3 = 0

−c1 − 3c2 − 2c3 = 0

2c1 + 2c3 = 0

have non-trivial solutions?
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Augmented matrix and row reduce:








1 2 −1 0
−1 −3 −2 0
2 0 2 0








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NOTE: It’s enough to row reduce:








1 2 −1
−1 −3 −2
2 0 2









since the numbers to the right of

the bar will always be 0.

26



Or, calculate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

1 2 −1
−1 −3 −2
2 0 2

∣

∣

∣

∣

∣

∣

∣

∣

• det 6= 0 implies unique solution

c1 = c2 = c3 = 0

and independent,

• det = 0 implies infinitely many so-

lutions and dependent

∣

∣

∣

∣

∣

∣

∣

∣

1 2 −1
−1 −3 −2
2 0 2

∣

∣

∣

∣

∣

∣

∣

∣

=
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Note: When testing a set of vectors

v1,v2, . . . ,vk for independence/dependence:

1. If you use the definition

c1v1 + c2v2 + · · · + ckvk = 0

Then the vectors v1,v2, . . . ,vk ap-

pear as columns.

2. If you use the determinant, then

you can write the vectors either as

rows or columns.
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From the previous example:
∣

∣

∣

∣

∣

∣

∣

∣

1 2 −1
−1 −3 −2
2 0 2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 2
2 −3 0

−1 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

This follows from the fact that to

evaluate a determinant you can ex-

pand across any row or down any

column.
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4. v1 = ( a, 1, −1 ), v2 = (−1, 2a, 3 ),

v3 = (−2, a, 2 ), v4 = (3a, −2, a )

For what values of a are the vectors

linearly dependent?
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5. v1 = ( a, 1, −1 ), v2 = (−1, 2a, 3 ),

v3 = (−2, a, 2 )

For what values of a are the vectors

v1, v2, v3 linearly dependent?

a c1 − c2 − 2c3 = 0

c1 + 2a c2 + a c3 = 0

−c1 + 3c2 + 2c3 = 0
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Augmented matrix and row reduce:








a −1 −2 0
1 2a a 0

−1 3 2 0








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Or row reduce:








a −1 −2
1 2a a

−1 3 2









Or calculate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

a −1 −2
1 2a a

−1 3 2

∣

∣

∣

∣

∣

∣

∣

∣
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5. v1 = (1,−1,2,1), v2 = (3,2,0,−1)

v3 = (−1,−4,4,3), v4 = (2,3,−2,−2)

a. {v1, v2, v3, v4}

dependent or independent?

b. If dependent, what is the max-

imum number of independent vec-

tors?
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Row reduce














1 −1 2 1
3 2 0 −1

−1 −4 4 3
2 3 −2 −2















Or, calculate the determinant.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 2 1
3 2 0 −1

−1 −4 4 3
2 3 −2 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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v1 = (1,−1,2,1), V2 = (3,2,0,−1),

v3 = (−1,−4,4,3), v4 = (2,3,−2,−2)















1 −1 2 1
3 2 0 −1

−1 4 4 3
2 3 −2 −2















→















1 −1 2 1
0 5 −6 −4
0 −5 6 4
0 5 −6 −4















→















1 −1 2 1
0 5 −6 −4
0 0 0 0
0 0 0 0














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Tests for independence/dependence

Let S = v1,v2, · · · ,vk be a set of

vectors in Rn.

Case 1: k > n: S is linearly

dependent.

37



Case 2: k = n :

1. Solve the system of equations

c1v1 + c2v2 + · · · + ckvk = 0.

If a unique solution:

c1 = c2 = · · · = cn = 0,

the vectors are independent.

If infinitely many solutions:

The vectors are dependent.
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OR 2. Form the n × n matrix A

whose rows are v1, v2, · · · ,vn and

row reduce A:

if the reduced matrix has n nonzero

rows, i.e., if the rank of A is n, then

independent;

if the reduced matrix has one or more

zero rows, then dependent.
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OR 3. Calculate det A:

If det A 6= 0,

the vectors are independent.

If det A = 0,

the vectors are dependent.

Note: If v1,v2, · · · ,vn is a lin-

early independent set of vectors in

Rn, then each vector in Rn has
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a unique representation as a linear

combination of v1,v2, · · · ,vn.



Case 3: k < n: Form the

k × n matrix A whose rows are

v1, v2, · · · ,vk

1. Row reduce A:

if the reduced matrix has k nonzero

rows –independent;

one or more zero rows – depen-

dent.
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Equivalently, solve the system of equa-

tions

c1v1 + c2v2 + · · · + ckvk = 0.

If unique solution: c1 = c2 = · · · =

cn = 0, then independent; If in-

finitely many solutions, then de-

pendent.
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Linear Independence/Dependence

& Row Operations

Example. v1 = (1, −2, 3 ),

v2 = (2, −3, 1 ), v3 = (3, −4, −1 )

Dependent or independent?
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







1 −2 3
2 −3 1
3 −4 −1









−→









1 −2 3
0 1 −5
0 2 −10

















1 −2 3
0 1 −5
0 0 0











That is, R3 is a linear combination

of R1 and R2; the vectors are lin-

early dependent; the vector equa-

tion

c1v1 + c2v2 + c3v3 = O

has infinitely many non-zero solu-

tions.

The General Result: Given a

set of vectors {v1,v2, . . . ,vk} in Rn.

Form the matrix V with v1,v2 . . . as
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rows and row reduce.

If you get a row of 0’s, the vec-

tors are linearly dependent and

at least one of the vectors is a

linear combination of the other

vectors.

(THIS IS WHY A SYSTEM WITH

INFINITELY MANY SOLUTIONS IS

CALLED DEPENDENT. See Chap-

ter 5, Part 1, pg 55.)



If you get no rows of 0’s, the vec-

tors are linearly independent



Given an m × n matrix A. A : Rn →

Rm is a linear transformation!

A[v+w] = Av+Aw and A[αv] = α Av

Example:

A =





1 2 −1
3 0 2





is a linear transformation from R3

to R2.
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Section 5.9. Eigenvalues/Eigenvectors

Example: Set

A =









1 −3 1
−1 1 1
3 −3 −1









.

A is a linear transformation from

R3 to R3.









1 −3 1
−1 1 1
3 −3 −1

















1
1
1









=









−1
1

−1








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







1 −3 1
−1 1 1
3 −3 −1

















1
−3
2









=









12
−2
10

















1 −3 1
−1 1 1
3 −3 −1

















3
2

−3









=









−6
−4
6









= −2









3
2

−3

















1 −3 1
−1 1 1
3 −3 −1

















1
0
1









=









2
0
2









= 2









1
0
1








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Let A be an n × n matrix.

A number λ is an eigenvalue of

A if there is a non-zero vector v

such that

Av = λv

How to find eigenvalues: Suppose

λ is a number and v is a non-zero

vector such that Av = λv. Then
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To find the eigenvalues of A, find

the values of λ that satisfy

det (A − λ I) = 0.

Example: Let A =





2 3
1 4





A − λI =





2 − λ 3
1 4 − λ





det (A − λI) =

∣

∣

∣

∣

∣

∣

2 − λ 3
1 4 − λ

∣

∣

∣

∣

∣

∣

= (2−λ)(4−λ)−3 = λ2−6λ+5 = 0

Eigenvalues: λ1 = 5, λ2 = 1
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Let A =









1 −3 1
−1 1 1
3 −3 −1









det (A−λI) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ −3 1
−1 1 − λ 1
3 −3 −1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + λ2 + 4λ − 4

det (A − λI) = 0 implies

−λ3 + λ2 + 4λ − 4 = 0

or λ3 − λ2 − 4λ + 4 = 0

50



Terminology:

• det (A − λ I) is a polynomial of

degree n, called the characteristic

polynomial of A.

• The zeros of the characteristic poly-

nomial are the eigenvalues of A

• The equation det (A−λ I) = 0 is

called the characteristic equation

of A.
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• A non-zero vector v that satis-

fies

Av = λv

is called an eigenvector correspond-

ing to the eigenvalue λ.

Note: Eigenvectors are NOT unique;

an eigenvalue has infinitely many eigen-

vectors.



Examples: 1. A =





2 2
2 −1





Characteristic polynomial:

det (A − λ I) =

∣

∣

∣

∣

∣

∣

2 − λ 2
2 −1 − λ

∣

∣

∣

∣

∣

∣

= (2 − λ)(−1 − λ) − 4

= λ2 − λ − 6

Characteristic equation:

λ2 − λ − 6 = (λ − 3)(λ + 2) = 0

Eigenvalues: λ1 = 3, λ2 = −2
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Eigenvectors:

(A − λ I) =





2 − λ 2
2 −1 − λ





λ1 = 3: Solve

(A−3 I)x =





−1 2
2 −4









x1
x2



 =





0
0




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λ2 = −2: Solve

(A − (−2) I)x =





4 2
2 1









x1
x2



 =
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2. A =





4 −1
4 0





Characteristic polynomial:

det (A − λ I) =

∣

∣

∣

∣

∣

∣

4 − λ −1
4 −λ

∣

∣

∣

∣

∣

∣

= λ2 − 4λ + 4

Characteristic equation:

λ2 − 4λ + 4 = (λ − 2)2 = 0

Eigenvalues: λ1 = λ2 = 2
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Eigenvectors:

(A − λ I) =





4 − λ −1
4 −λ





λ1 = λ2 = 2

Solve:

(A−2 I)x =





2 −1
4 −2









x1
x2



 =





0
0




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3. A =





5 3
−6 −1





Characteristic polynomial:

det (A − λ I) =

∣

∣

∣

∣

∣

∣

5 − λ 3
−6 −1 − λ

∣

∣

∣

∣

∣

∣

= λ2 − 4λ + 13

Characteristic equation:

λ2 − 4λ + 13 = 0

Eigenvalues:

λ1 = 2 + 3i, λ2 = 2 − 3i
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Eigenvectors: (A−λ I) =





5 − λ 3
−6 −1 − λ





λ1 = 2 + 3i: Solve

(A−(2+3i) I)x =





3 − 3i 3
−6 −3 − 3i









x1
x2



 =




0
0




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NOTE: If a + b i is an eigenvalue

of A with eigenvector α+β i, then

a−b i is also an eigenvalue of A and

α− β i is a corresponding eigenvec-

tor.
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4. A =









4 −3 5
−1 2 −1
−1 3 −2









Characteristic polynomial:

det (A−λ I) =

∣

∣

∣

∣

∣

∣

∣

∣

4 − λ −3 5
−1 2 − λ −1
−1 3 −2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 4λ2 − λ − 6

Characteristic equation:

λ3−4λ2+λ+6 = (λ−3)(λ−2)(λ+1) = 0.

Eigenvalues: λ1 = 3, λ2 = 2, λ3 =

−1
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Eigenvectors:

(A − λ I) =









4 − λ −3 5
−1 2 − λ −1
−1 3 −2 − λ









λ1 = 3:
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(A − λ I) =









4 − λ −3 5
−1 2 − λ −1
−1 3 −2 − λ









λ2 = 2
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(A − λ I) =









4 − λ −3 5
−1 2 − λ −1
−1 3 −2 − λ









λ3 = −1
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5. A =











4 1 −1

2 5 −2

1 1 2











Characteristic polynomial:

det (A − λ I) =

∣

∣

∣

∣

∣

∣

∣

∣

4 − λ 1 −1
2 5 − λ −2
1 1 2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 11λ2 − 39λ + 45

Characteristic equation:

λ3−11λ2+39λ−45 = (λ−3)2(λ−5) = 0.

Eigenvalues: λ1 = 5, λ2 = λ3 = 3
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Eigenvectors:

(A − λ I) =









4 − λ 1 −1
2 5 − λ −2
1 1 2 − λ









λ1 = 5
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(A − λ I) =









4 − λ 1 −1
2 5 − λ −2
1 1 2 − λ









λ2 = λ3 = 3
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6. A =











−3 1 −1

−7 5 −1

−6 6 −2











Characteristic polynomial:

det (A−λ I) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−3 − λ 1 −1

−7 5 − λ −1

−6 6 −2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 12λ + 16

Characteristic equation:

λ3−12λ−16 = (λ−4)(λ+2)2 = 0.

Eigenvalues: λ1 = 4, λ2 = λ3 =

−2
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Eigenvectors:

(A−λ I) =











−3 − λ 1 −1

−7 5 − λ −1

−6 6 −2 − λ











λ1 = 4:
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(A−λ I) =











−3 − λ 1 −1

−7 5 − λ −1

−6 6 −2 − λ











λ2 = λ3 = −2:
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Some Facts

THEOREM If

v1, v2, . . . , vk

are eigenvectors of a matrix A cor-

responding to distinct eigenvalues

λ1, λ2, . . . , λk,

then v1, v2, . . . , vk are linearly

independent.
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THEOREM Let A be a (real)

n × n matrix. If the complex num-

ber λ = a + bi is an eigenvalue

of A with corresponding (complex)

eigenvector u+iv, then λ = a−bi,

the conjugate of a + bi, is also an

eigenvalue of A and u − iv is a

corresponding eigenvector.
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THEOREM Let A be an n × n

matrix with eigenvalues λ1, λ2, . . . , λn.

Then

detA = (−1)nλ1 · λ2 · λ3 · · · · λn.

That is, detA is the ±1 times the

product of the eigenvalues of A.

(The λ’s are not necessarily distinct,

the multiplicity of an eigenvalue may

be greater than 1, and they are not

necessarily real.)
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Equivalences: (A an n×n matrix)

1. Ax = b has a unique solution.

2. The reduced row echelon form

of A is In.

3. The rank of A is n.

4. A has an inverse.

5. det A 6= 0.

6. 0 is not an eigenvalue of A
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The following are equivalent:

1. det A = 0.

2. A does not have an inverse.

3. The rank of A is less than n.

4. The reduced row echelon form

of A is not In.

5. The system Ax = b does not

have a unique solution.

6. 0 is an eigenvalue of A.
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