
Chapter 6: Systems of Lin-

ear Differential Equations -

Part 1 (See Section 3.1)

Let a11(t), a12(t), . . . , ann(t),

b1(t), b2(t), . . . , bn(t)

be continuous functions on the in-

terval I.

The system of n first-order linear

differential equations
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x′1 = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + b1(t)

x′2 = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + b2(t)

... ...

x′n = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + bn(t)

is called a first-order linear differ-

ential system.

The system is homogeneous if

b1(t) ≡ b2(t) ≡ · · · ≡ bn(t) ≡ 0 on I.

It is nonhomogeneous if the func-

tions bi(t) are not all identically

zero on I.
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Set

A(t) =















a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

... ... ...
an1(t) an2(t) · · · ann(t)















and

x =















x1
x2
...

xn















, b(t) =















b1(t)
b2(t)

...
bn(t)















.

The system can be written in the

vector-matrix form

x
′ = A(t)x + b(t). (S)

3



The matrix A(t) is called the ma-

trix of coefficients or the coeffi-

cient matrix.

The vector b(t) is called the non-

homogeneous term, or ”forcing func-

tion.”
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A solution of the linear differential

system (S) is a differentiable vector

function

x(t) =















x1(t)
x2(t)

...
xn(t)















that satisfies (S) on the interval I.
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Example 1:

x′1 = x1 + 2x2 − 5e2t

x′2 = 3x1 + 2x2 + 3e2t

Vector/matrix form





x1
x2





′

=





1 2
3 2









x1
x2



 +





−5e2t

3e2t





or

x
′ =





1 2
3 2



x +





−5e2t

3e2t
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Show that

x(t) =







−e2t

2 e2t





 is a solution of

x
′ =





1 2
3 2



x +





−5e2t

3e2t
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Example 2:

x′1 = 3x1 − x2 − x3

x′2 = −2x1 + 3x2 + 2x3

x′3 = 4x1 − x2 − 2x3

Vector/matrix form









x1
x2
x3









′

=









3 −1 −1
−2 3 2
4 −1 −2

















x1
x2
x3









or

x
′ =









3 −1 −1
−2 3 2
4 −1 −2









x

8



Show that

x(t) =











e3t

−e3t

e3t











is a solution.
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In fact, as we shall see

x(t) =

C1











e3t

−e3t

e3t











+C2











e2t

0

e2t











+C3









e−t

−3e−t

7e−t









is a solution for any numbers C1, C2, C3,

and this is the general solution of

the system.
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THEOREM. The initial-value

problem

x
′ = A(t)x + b(t), x(t0) = c

has a unique solution x = x(t).
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II. Homogeneous Systems:

General Theory (See Section 3.2)

x′1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn(t)

x′2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn(t)

... ...

x′n = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn(t)

x
′ = A(t)x. (H)

Note: The zero vector z(t) ≡ 0 =














0
0
...
0















is a solution of (H). This so-

lution is called the trivial solution.
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THEOREM 1. If x1 and x2

are solutions of (H), then u = x1 +

x2 is also a solution of (H); the

sum of any two solutions of (H) is

a solution of (H).
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THEOREM 2. If x is a solu-

tion of (H) and α is any real num-

ber, then u = αx is also a solution

of (H); any constant multiple of a

solution of (H) is a solution of (H).



In general,

THEOREM. If x1, x2, . . . , xk

are solutions of (H), and if C1, C2, . . . , Ck

are real numbers, then

C1x1 + C2x2 + · · · + Ckxk

is a solution of (H); any linear com-

bination of solutions of (H) is also

a solution of (H).
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Linear Dependence/Independence

of vectors – in general Let

v1(t) =















v11
v21

...
vn1















, v2(t) =















v12
v22

...
vn2















,

. . . , vk(t) =















v1k
v2k

...
vnk















be vector functions defined on some

interval I.
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The vectors are linearly dependent

on I if there exist k real numbers

c1, c2, . . . , ck, not all zero, such

that

c1v1(t)+c2v2(t)+· · ·+ckvk(t) ≡ 0 on I.

Otherwise the vectors are linearly

independent on I.
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THEOREM. Let

v1(t), v2(t), . . . , vk(t)

be k, k-component vector func-

tions defined on an interval I. If

the vectors are linearly dependent,

then the determinant

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 · · · v1k
v21 v22 · · · v2k
... ... ... ...

vk1 vk2 · · · vkk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡ 0 on I.

That is, the determinant is 0 for all

t ∈ I.
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Equivalently,

THEOREM. Let

v1(t), v2(t), . . . , vk(t)

be k, k-component vector func-

tions defined on an interval I. The

vectors are linearly independent if

the determinant

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 · · · v1k
v21 v22 · · · v2k
... ... ... ...

vk1 vk2 · · · vkk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0

for at least one t ∈ I.
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The determinant

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 · · · v1k
v21 v22 · · · v2k
... ... ... ...

vk1 vk2 · · · vkk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called the Wronskian of the vec-

tor functions v1, v2, . . . , vk.
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SPECIAL CASE: Solutions of (H)

THEOREM. Let x1, x2, . . . , xn

be n solutions system of n equations

(H). Exactly one of the following

holds:

1. W (x1, x2, . . . , xn)(t) ≡ 0 on

I and the solutions are linearly de-

pendent.

2. W (x1, x2, . . . , xn)(t) 6= 0 for

all t ∈ I and the solutions are lin-

early independent.
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THEOREM. Let x1, x2, . . . , xn

be n linearly independent solutions

of (H). Let u be any solution of

(H). Then there exists a unique set

of constants C1, C2, . . . , Cn such

that

u = C1x1 + C2x2 + · · · + Cnxn.

That is, every solution of (H) can

be written as a unique linear combi-

nation of x1, x2, . . . , xn.
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A set of n linearly independent so-

lutions of (H)

x1, x2, . . . , xn

is called a fundamental set of so-

lutions. A fundamental set is also

called a solution basis for (H).
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Let x1, x2, . . . , xn be a fundamen-

tal set of solutions of (H). Then

x = C1x1 + C2x2 + · · · + Cnxn,

C1, C2, . . . , Cn arbitrary constants, is

the general solution of (H).

Example: x1 =





e2t

2e2t



 and x2 =




e3t

e3t



 are solutions of

x
′ =





4 −1
2 1



x (Verify)

W (x1.x2) =

∣

∣

∣

∣

∣

∣

e2t e3t

2e2t e3t

∣

∣

∣

∣

∣

∣

= −e5t 6= 0
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Therefore,











e2t

2e2t



 ,





e3t

e3t











is a

fundamental set of solutions and

x(t) = C1





e2t

2e2t



 + C2





e3t

e3t





is the general solution of the sys-

tem.

24



III. An nth order linear equation

can be converted into a system

of n first order linear equations

Consider the second order equation

y′′ + p(t)y′ + q(t)y = 0

Solve for y′′

y′′ = −q(t)y − p(t)y′
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Introduce new dependent variables

x1, x2, as follows:

x1 = y

x2 = x′1 (= y′)
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Vector-matrix form:





x1
x2





′

=





0 1
−q(t) −p(t)









x1
x2





Note that this system is just a very

special case of the “general” homo-

geneous system of two, first-order

differential equations:





x1
x2





′

=





a11(t) a12(t)
a21(t) a22(t)









x1
x2





or

x
′ = A(t)x
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Example 1: y′′ − 5y′ + 6y = 0

Characteristic equation:

Fundamental set:

General solution:
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In system form:





x1
x2





′

=





0 1
−6 5









x1
x2





Corresponding solutions of the sys-

tem are:

Solution of equation: y

Corresponding solution of system:

x =





y
y′





That is: y → x =





y
y′
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y1 = e2t −→





e2t

2e2t



 = e2t





1
2





y2 = e3t −→





e3t

3e3t



 = e3t





1
3





The Wronskian

W (x1,x2) =

∣

∣

∣

∣

∣

∣

e2t e3t

2e2t 3e3t

∣

∣

∣

∣

∣

∣

= e5t 6= 0

and so x1 =





e2t

2e2t



 , x2 =





e3t

3e3t





is a fundamental set of solutions of

the system.





x1
x2





′

=





0 1
−6 5









x1
x2
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The general solution of the system

is

x(t) = C1





e2t

2e2t



 + C2





e3t

3e3t





and





e2t e3t

2e2t 3e3t



 is the fundamen-

tal matrix.

31



Example 2: y′′ −
5

t
y′ +

8

t2
y = 0

Look for solutions of the form y = tr

y1 = t2, y2 = t4 are independent

solutions
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In system form, the equation is:





x1
x2





′

=





0 1

−8/t2 5/t









x1
x2





Corresponding solutions of system:

y → x =





y
y′





y1 = t2 −→





t2

2t



 = x1,

y2 = t4 −→





t4

4t3



 = x2
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x1 =





t2

2t



 , x2 =





t4

4t3





is a fundamental set of solutions of

the system





x1
x2





′

=





0 1

−8/t2 5/t









x1
x2









x1
x2





The matrix

X(t) =





t2 t4

2t 4t3





is a fundamental matrix.
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Consider the third-order equation

y′′′ + p(t)y′′ + q(t)y′ + r(t)y = 0

or

y′′′ = −r(t)y − q(t)y′ − p(t)y′′.
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Introduce new dependent variables

x1, x2, x3, as follows:

x1 = y

x2 = x′1 (= y′)

x3 = x′2 (= y′′)

Then

y′′′ = x′3 = −r(t)x1 − q(t)x2 − p(t)x3

The third-order equation can be writ-

ten equivalently as the system of

three first-order equations:
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x′1 = x2

x′2 = x3

x′3 = −r(t)x1 − q(t)x2 − p(t)x3

That is

x′1 = 0x1 + 1 x2 + 0x3

x′2 = 0x1 + 0x2 + 1 x3

x′3 = −r(t)x1 − q(t)x2 − p(t)x3
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Vector-matrix form:








x1
x2
x3









′

=









0 1 0
0 0 1

−r(t) −q(t) −p(t)

















x1
x2
x3
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Note that this system is just a very

special case of the “general” sys-

tem of three, first-order differential

equations:









x1
x2
x3









′

=











a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)



















x1
x2
x3









or in vector-matrix form:

x
′ = A(t)x
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Example 3:

y′′′ − 3y′′ − 4y′ + 12y = 0.

which can be written

y′′′ = −12y + 4y′ + 3y′′.

Set

x1 = y

x2 = x′1 (= y′)

x3 = x′2 (= y′′)
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Then

x′3 = y′′′ = −12x1 + 4x2 + 3x3

and equivalent system:

x′1 = x2

x′2 = x3

x′3 = −12x1 + 4x2 + 3x3

which is

x′1 = 0x1 + 1x2 + 0x3

x′2 = 0x1 + 0x2 + 1x3

x′3 = −12x1 + 4x2 + 3x3
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Vector-matrix form:








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3









or

x
′ = Ax



y′′′ − 3y′′ − 4y′ + 12y = 0

Characteristic equation:

r3−3r2−4r+12 = (r−3)(r−2)(r+2)

Fundamental set:

{

e3t, e2t, e−2t
}

General solution:

y = C1e3t + C2e2t + C3e−2t
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System:








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3









If y is a solution of the equation,

then

x =









y
y′

y′′









is the corresponding solution of the

system.

y −→ x =









y
y′

y′′
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Equation:

y′′′ − 3y′′ − 4y′ + 12y = 0

Fundamental set:

{

y1 = e3t, y2 = e2t, y3 = e−2t
}

Equivalent differential system:








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3
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Solutions:

y1 = e3t −→ x1 =











e3t

3e3t

9e3t











= e3t









1
3
9









y2 = e2t −→ x2 =











e2t

2e2t

4e2t











= e2t









1
2
4









y3 = e−2t −→ x3 =











e−2t

−2e−2t

4e−2t











= e2t









1
−2
4
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W (x1,x2,x3) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

e3t e2t e−2t

3e3t 2e2t −2e−2t

9e3t 4e2t 4e−2t

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −20e3t 6= 0

Therefore,

x1 =











e3t

3e3t

9e3t











, x2 =











e2t

2e2t

4e2t











x3 =











e−2t

−2e−2t

4e−2t











is a fundamental set of solutions of








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3
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and

x(t) = C1e3t









1
3
9









+C2e2t









1
2
4









+C3e−2t









1
2
4









is the general solution.

X =











e3t e2t e−2t

3e3t 2e2t −2e−2t

9e3t 4e2t 4e−2t











is the fundamental matrix.



IV. Homogeneous Systems

with Constant Coefficients

(See Section 3.3)

x′1 = a11x1 + a12x2 + · · · + a1nxn

x′2 = a21x1 + a22x2 + · · · + a2nxn

− − − −

x′n = an1x1 + an2x2 + · · · + annxn

where a11, a12, . . . , ann are constants.
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The system in vector-matrix form is















x1
x2
...

xn















′

=















a11 a12 · · · a1n
a21 a22 · · · a2n
... ... ...

an1 an2 · · · ann





























x1
x2
...

xn















or

x
′ = Ax.

48



Solutions of x
′ = Ax

Example 1: (See Example 1, pg.

27)

x1 =





e2t

2e2t



 = e2t





1
2





is a solution of

x
′ =





0 1
−6 5



x

How is the number 2 and the vec-

tor





1
2



 related to the matrix





0 1
−6 5



?
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0 1
−6 5









1
2



 =

THAT IS:

2 is an eigenvalue of A and

v =





1
2





is a corresponding eigenvector.

You can verify that 3 is an eigen-

value of A with eigenvector





1
3
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NOTE:

y′′ − 5y′ + 6y = 0

Characteristic equation

r2−5r +6 = (r−2)(r−3) = 0 (∗)

Characteristic roots: r1 = 2, r2 = 3

Fundamental set:

{

y1 = e2t, y2 = e3t
}
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Vector-matrix system





x1
x2





′

=





0 1
−6 5









x1
x2





A =





0 1
−6 5





Characteristic equation:

det (A − λI) =

∣

∣

∣

∣

∣

∣

−λ 1
−6 5 − λ

∣

∣

∣

∣

∣

∣

=

λ2 − 5λ + 6 = (λ − 2)(λ − 3) = 0

Eigenvalues: λ1 = 2, λ2 = 3

Fund set: x1 = e2t





1
2



 ,x2 = e3t





1
3
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Example 2: (See Example 3, pg.

38)

x1 =











e3t

3e3t

9e3t











= e3t









1
3
9









is a solution of








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3









How is the number 3 and the vec-

tor









1
3
9









related to the matrix









0 1 0
0 0 1

−12 4 3









?
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0 1 0
0 0 1

−12 4 3

















1
3
9









=
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THAT IS:

3 is an eigenvalue of A and

v =









1
3
9









is a corresponding eigenvector.
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y′′′ − 3y′′ − 4y′ + 12y = 0

Characteristic equation:

r3−3r2−4r+12 = (r−3)(r−2)(r+2) = 0

Characteristic roots:

r1 = 3, r2 = 2, r3 = −2

Fundamental set:

{

y1 = e3t, y2 = e2t, y3 = e−2t
}
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Vector-matrix form








x1
x2
x3









′

=









0 1 0
0 0 1

−12 4 3

















x1
x2
x3









Characteristic equation:

det (A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0
0 −λ 1

−12 4 3 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 3λ2 + 4λ − 12 = 0

or

λ3−3λ2−4λ+12 = (λ−3)(λ−2)(λ+2) = 0
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Eigenvalues:

λ1 = 3, λ2 = 2, λ3 = −2

Eigenvectors:

y1 = e3t −→ x1 =











e3t

3e3t

9e3t











= e3t









1
3
9









y2 = e2t −→ x2 =











e2t

2e2t

4e2t











= e2t









1
2
4









y3 = e−2t −→ x3 =











e−2t

−2e−2t

4e−2t











= e−2t









1
−2
4
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Fundamental set:














e3t









1
3
9









, e2t









1
2
4









, e−2t









1
−2
4























and general solution

x = C1e3t









1
3
9









+C2e2t









1
2
4









+C3e−2t









1
−2
4
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In general, given the homogeneous

system with constant coefficients

x
′ = Ax.

THEOREM 1. If λ is an

eigenvalue of A and v is a corre-

sponding eigenvector, then

x = eλt
v

is a solution.
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Proof:

Let λ be an eigenvalue of A with

corresponding eigenvector v.

Set x = eλtv
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THEOREM 2. If λ1, λ2, · · · , λk

are distinct eigenvalues of A with

corresponding eigenvectors v1, v2, · · · , vk,

then

x1 = eλ1t
v1, x2 = eλ2t

v2, · · · ,xk = eλkt
vk

are linearly independent solutions of

x
′ = Ax.
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Corollary. If λ1, λ2, · · · , λn are

distinct eigenvalues of A with cor-

responding eigenvectors v1, v2, · · · , vn,

then

x1 = eλ1t
v1, x2 = eλ2t

v2, · · · ,xn = eλnt
vn

is a fundamental set of solutions of

x
′ = Ax and

x(t) = C1x1 + C2x2 + · · · + Cnxn

is the general solution.
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Example 1: Find the general so-

lution of

x
′ =





2 2
2 −1



x.

Step 1. Find the eigenvalues of A:

det(A − λI) =

∣

∣

∣

∣

∣

∣

2 − λ 2
2 −1 − λ

∣

∣

∣

∣

∣

∣

= λ2 − λ − 6.

Characteristic equation:

λ2 − λ − 6 = (λ − 3)(λ + 2) = 0.

Eigenvalues: λ1 = 3, λ2 = −2.

64



Step 2. Find the eigenvectors:

A − λI =





2 − λ 2
2 −1 − λ





λ1 = 3:
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A − λI =





2 − λ 2
2 −1 − λ





λ2 = −2
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λ1 = 3, v1 =





2
1



 ; λ2 = −2, v2 =





−1
2



 .

Solutions:

Fundamental set of solution vectors:







x1 = e3t





2
1



 , x2 = e−2t





−1
2











General solution of the system:

x = C1e3t





2
1



 + C2e−2t





−1
2



 .
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Graphs

-4 -2 2 4
x

-4

-2

2

4

y
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Example 2: Solve x′ =









3 −1 −1
−2 3 2
4 −1 −2









x.

(See the example on pg. 8)

Step 1. Find the eigenvalues of A:

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

3 − λ −1 −1
−2 3 − λ 2
4 −1 −2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 4λ2 − λ − 6.

Characteristic equation:

λ3−4λ2+λ+6 = (λ−3)(λ−2)(λ+1) = 0.

Eigenvalues:

λ1 = 3, λ2 = 2, λ3 = −1.
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Step 2. Find the eigenvectors:

A − λI =









3 − λ −1 −1
−2 3 − λ 2
4 −1 −2 − λ









λ1 = 3:
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λ2 = 2:
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λ3 = −1:
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λ1 = 3 : v1 =









1
−1
1









,

λ2 = 2 : v2 =









1
0
1









,

λ3 = −1 : v3 =









1
−3
7









.

Solutions.

Fundamental set of solutions:

x1 = e3t









1
−1
1









, x2 = e2t









1
0
1









,

x3 = e−t









1
−3
7









.
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The general solution of the system:

x = C1e3t









1
−1
1









+C2et









1
0
1









+C3e−t









1
−3
7









.
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Example 3: Find the solution of

the initial-value problem

x
′ =









3 −1 −1
−2 3 2
4 −1 −2









x, x(0) =









1
−3
1









.

(See Example 2.)

General solution:

x = C1e3t









1
−1
1









+C2et









1
0
1









+C3e−t









1
−3
7









.

To find the solution satisfying the
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initial condition, set t = 0 and solve

C1









1
−1
1









+C2









1
0
1









+C3









1
−3
7









=









1
−3
1









or








1 1 1
−1 0 −3
1 1 7

















C1
C2
C3









=









1
−3
1









.

Augmented matrix:








1 1 1 1
−1 0 −3 −3
1 1 7 1











Solution:

C1 = 3, C2 = −2, C3 = 0.

The solution of the initial-value prob-

lem is:

x = 3e3t









1
−1
1









− 2e2t









1
0
1









.
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Example 4: Find the general so-

lution of

x
′ =









−4 1 1
1 5 −1
0 1 −3









x

Step 1. Find the eigenvalues of A:

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

−4 − λ 1 1
1 5 − λ −1
0 1 −3 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ3 − 2λ2 + 23λ + 60.

Characteristic equation:

λ3+2λ2−23λ−60 = (λ+3)(λ+4)(λ−5) = 0.
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Eigenvalues:

λ1 = −3, λ2 = −4, λ3 = 5.

Step 2. Find the eigenvectors:

A − λI =









−4 − λ 1 1
1 5 − λ −1
0 1 −3 − λ









λ1 = −3:



λ2 = −4:

λ3 = 5:
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Solutions:

λ1 = −3 : v1 =









1
0
1









,

λ2 = −4 : v2 =









10
−1
1









,

λ3 = 5 : v3 =









1
8
1









.

Fundamental set of solutions:

x1 = e−3t









1
0
1









, x2 = e−4t









10
−1
1









,

x3 = e5t









1
8
1









.
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The general solution of the system:

x = C1e−3t









1
0
1









+C2e−4t









10
−1
1









+C3e5t









1
8
1









.
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