- 1. At the end of the semester, half the final exam grade will replace the lowest test grade.
 - (a) True for all students.
 - (b) True, but only for some students.
 - (c) False.
 - (d) None of the above.

2. $e^{4\ln x} =$

- (a) 4x
- (b) $\ln(x^4)$
- (c) x^4
- (d) 4^x
- (e) None of the above.

3. $\ln\left(e^{\sin x}\right) =$

- (a) $\sin x$
- (b) $\ln(\sin x)$
- (c) $\cos x$
- (d) $\tan x$
- (e) None of the above.

4.
$$\int 6x \cos x^2 \, dx =$$

- (a) $-3\sin x^2 + C$
- (b) $6\sin x^2 + C$
- (c) $3\sin x^2 + C$
- (d) $-12\sin x^2 + C$
- (e) None of the above.

5.
$$\int e^{x^2} dx =$$
(a)
$$\frac{e^{x^2}}{2x} + C$$
(b)
$$e^{x^2} + C$$
(c)
$$2xe^{x^2} + C$$
(d)
$$e^{x^2} - 2xe^{x^2} + C$$
(e) None of the above.

6.
$$\int_{2}^{e} \frac{1}{x \ln x} dx =$$
(a) $2 \ln 2$
(b) $\ln(\ln 2)$
(c) $\ln(\ln 2) + \ln e$
(d) $-\ln(\ln 2)$
(e) None of the above.
7.
$$\int_{-1}^{0} \frac{dx}{\sqrt{4-x^{2}}} =$$
(a) $-\pi/6$

- (b) $\pi/3$
- (c) $-\pi/2$
- (d) $\pi/6$
- (e) None of the above.

8. The order of the differential equation $\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} = \frac{d^3(\cos 2x)}{dx^3}$ is:

(a) 1 (b) 2 (c) 3 (d) 4 (e) None of the above

9. The value(s) of r such that $y = e^{rx}$ is a solution of

$$y'' + 2y' - 8y = 0$$

is (are):

- (a) r = -4, r = 2
- (b) r = -2
- (c) r = -4
- (d) r = -2, r = 4
- (e) None of the above.
- 10. The value(s) of r such that $y = e^{rx}$ is a solution of

$$y'' + 6y' + 9y = 0$$

is (are):

(a) r = 3(b) r = -3, r = 3

- (c) r = 0, r = 3
- (d) r = -3
- (e) None of the above.

11. The value(s) of r such that $y = x^r$ is a solution of

$$y'' - \frac{3}{x}y' - \frac{12}{x^2}y = 0$$

is (are):

- (a) r = 6
 (b) r = 2, r = -6
 (c) r = -2, r = 6
 (d) r = -3, r = 4
 (e) None of the above.
- 12. The value(s) of r such that $y = x^r$ is a solution of $x^2y'' 7xy' + 16y = 0$

is (are):

(a) r = 4
(b) r = -4, r = 4
(c) r = 0, r = 4
(d) r = -4
(e) None of the above.

13. Which of the following differential equations has $y = e^{3x}$ as a solution?

(a) y'' - 5y' + 6y = 0(b) y'' - y' - 12y = 0(c) y'' + 2y' - 15y = 0(d) (a) and (c) (e) (a), (b) and (c)

14. Which of the following differential equations has $y = x^{-2}$ as a solution?

(a)
$$y'' + \frac{2}{x}y' - \frac{6}{x^2}y = 0$$

(b) $y'' + \frac{5}{x}y' + \frac{4}{x^2}y = 0$
(c) $y'' - \frac{1}{x}y' - \frac{8}{x^2}y = 0$
(d) (a), (b), (c)
(e) (b) and (c)