- 1. If the rank of the augmented matrix of a system of n linear equations in n unknowns equals the rank of the matrix of coefficients, then the system has a unique solution.
 - (a) Always true.
 - (b) Sometimes true.
 - (c) Never true.
 - (d) None of the above.
- 2. If 0 is an eigenvalue of the matrix of coefficients of a system of n linear equations in n unknowns, then the system has infinitely many solutions.
 - (a) Always true.
 - (b) Sometimes true.
 - (c) Never true.
 - (d) None of the above.
- 3. If a system of n linear equations in n unknowns is dependent, then 0 is an eigenvalue of the matrix of coefficients.
 - (a) Always true.
 - (b) Sometimes true.
 - (c) Never true.
 - (d) None of the above.
- 4. If the reduced row echelon form of the matrix of coefficients of a system of n linear equations in n unknowns is I_n , then the matrix of coefficients is singular.
 - (a) Always true.
 - (b) Sometimes true.
 - (c) Never true.
 - (d) None of the above.

5. The eigenvalues of
$$\begin{pmatrix} -1 & 6 \\ 2 & 3 \end{pmatrix}$$
 are:

,

- (a) $\{5, -2\}$
- (b) $\{5, -3\}$
- (c) $\{4, -3\}$
- (d) $\{-5,3\}$
- (e) None of the above.

- 6. The eigenvalues of $\begin{pmatrix} -2 & -8 \\ 2 & -2 \end{pmatrix}$ are: (a) $\{2+4i, 2-4i\}$
 - (b) $\{5,4\}$
 - (c) $\{2, 10\}$
 - (d) $\{-2+4i, -2-4i\}$
 - (e) None of the above.

7. The eigenvalues of
$$\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$$
 are:

- (a) $\{3\}$
- (b) $\{3, -3\}$
- (c) $\{-3\}$
- (d) $\{2,4\}$
- (e) None of the above.

8. Which of the following are eigenvectors for $\begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}$?

(a)
$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$
 (b) $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$
(c) $\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ (d) $\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$
(e) None of the above.

9. Which of the following are eigenvectors for $\begin{pmatrix} 3 & -10 \\ 1 & 1 \end{pmatrix}$?

(a)
$$\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} + i \begin{pmatrix} -3\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix} - i \begin{pmatrix} -3\\0 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} -1\\1 \end{pmatrix} + i \begin{pmatrix} 0\\3 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix} - i \begin{pmatrix} 0\\3 \end{pmatrix} \right\}$$

(c)
$$\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} + i \begin{pmatrix} 3\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix} - i \begin{pmatrix} 3\\0 \end{pmatrix} \right\}$$

(d)
$$\left\{ \begin{pmatrix} 1\\-1 \end{pmatrix} + i \begin{pmatrix} 3\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} - i \begin{pmatrix} 3\\0 \end{pmatrix} \right\}$$

(e) None of the above.

- 10. The eigenvalues of a 3×3 matrix A are $\lambda_1 = 3$, $\lambda_2 = 2$. $\lambda_3 = -2$. The characteristic equation of A is:
 - (a) $\lambda^3 + 3\lambda^2 4\lambda 12 = 0$
 - (b) $\lambda^3 2\lambda^2 + 3\lambda 10 = 0$
 - (c) $(\lambda + 3)(\lambda + 2)(\lambda 2) = 0$
 - (d) $\lambda^3 3\lambda^2 4\lambda + 12 = 0$
 - (e) None of the above.

11. The eigenvalues of
$$\begin{pmatrix} 3 & -3 & 5 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{pmatrix}$$
 are:

,

、

- (a) $\{2,3\}$
- (b) $\{-2,3\}$
- (c) $\{3, -3, -2\}$
- (d) $\{3, -2, 2\}$
- (e) None of the above.

12. The characteristic polynomial of $A = \begin{pmatrix} 5 & -2 & 2 \\ 4 & -3 & 4 \\ 4 & -6 & 7 \end{pmatrix}$ is: (Hint: 5 is an eigenvalue.)

- (a) $-(\lambda 5)^2(\lambda 3)$ (b) $-(\lambda - 5)(\lambda - 3)(\lambda - 1)$ (c) $-(\lambda + 3)(\lambda + 4)(\lambda + 1)$ (d) $-(\lambda - 5)(\lambda + 3)(\lambda - 1)$
- (e) None of the above.
- 13. The number of independent eigenvectors of $\begin{pmatrix} 2 & 2 & 1 \\ 0 & 4 & 0 \\ 4 & -2 & -1 \end{pmatrix}$ is:
 - (a) 1, (b) 2, (c) 3, (d) 4, (e) None of the above.

14. The eigenvalues of $\begin{pmatrix} 6 & -2 & -4 \\ -4 & 8 & 8 \\ 4 & -4 & -4 \end{pmatrix}$ are: $\lambda_1 = 2, \ \lambda_2 = \lambda_3 = 4$. The number of independent eigenvectors is:

(a) 1, (b) 2, (c) 3, (d) 4, (e) None of the above.

- 15. The eigenvalues of $\begin{pmatrix} 0 & 6 & -5 \\ 1 & 4 & -4 \\ 2 & 10 & -9 \end{pmatrix}$ are: $\lambda_1 = \lambda_2 = -2$, $\lambda_3 = -1$. The number of independent eigenvectors is:
 - (a) 1, (b) 2, (c) 3, (d) 4, (e) None of the above.
- 16. The eigenvalues of $\begin{pmatrix} 1 & 3 & 3 \\ 4 & 2 & 4 \\ -2 & -2 & -4 \end{pmatrix}$ are: $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = -2$. Which of the following is not an eigenvector: (a) $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$ (c) $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ (d) $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$
 - (e) Each of these is an eigenvector.
- 17. The eigenvalues of $\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ are: $\lambda_1 = 4$, $\lambda_2 = \lambda_3 = -2$. Which of the following is not an

eigenvector:

(a)
$$\begin{pmatrix} 1\\1\\2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ (c) $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ (d) $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$

(e) Each of these is an eigenvector.