1.
$$\int_{-1}^{2} \frac{1}{\sqrt{4 - x^{2}}} dx =$$
(a) $\pi/3$
(b) $\pi/4$
(c) $-\pi/3$
(d) $2\pi/3$
(e) None of the above.
2.
$$\int_{1}^{e} \ln x \, dx =$$
(a) 1
(b) $e + 1$
(c) 0
(d) $2e$
(e) None of the above.
3.
$$\int \frac{1}{u^{2} - 1} \, du =$$
(a) $2 \ln \frac{|u + 1|}{|u - 1|} + C$
(b) $\ln \sqrt{\frac{u - 1}{u + 1}} + C$
(c) $\frac{1}{2} \ln |u^{2} - 1| + C$

- (d) $\sin^{-1} u + C$
- (e) None of the above.

4. Find A so that $z = Axe^x$ is a solution of

$$y'' + y' - 2y = 6e^x.$$

- (a) A = -2
- (b) A = 4
- (c) A = 3
- (d) A = 2
- (e) None of the above.

5. The differential equation that has $y^3 = Cx^4 - 3x$ as its general solution is:

(a)
$$y' = \frac{4y^3 + 6x}{3xy^2}$$

(b) $y' = \frac{4y^3 + 9x}{3xy^2}$
(c) $y' = \frac{4y^3 - 9}{3xy^2}$
(d) $y' = \frac{4y^3 - 9x}{3xy^2}$

- (e) None of the above.
- 6. The differential equation that has $y = C_1 e^x + C_2 e^{-2x}$ as its general solution is:
 - (a) y'' + y' 2y = 0(b) y'' - y' + 2y = 0(c) y'' - y' - 2y = 0(d) y'' + 2y' + y = 0
 - (e) None of the above.

7. The differential equation that has $y = C_1 x^4 + C_2 x^{-2}$ as its general solution is:

- (a) $y'' + \frac{3}{x}y' \frac{8}{x^2}y = 0$ (b) $y'' - \frac{1}{x}y' - \frac{8}{x^2}y = 0$ (c) $x^2y'' - 4xy' - 8y = 0$ (d) $x^2y'' - 2xy' - 8y = 0$
- (e) None of the above.
- 8. The differential equation that has $y = C_1 \cos 3x + C_2 \sin 3x$ as its general solution is:
 - (a) y'' 3y = 0
 - (b) $y' 3y = \cos 3x$
 - (c) y'' + 9y = 0
 - (d) y'' 9y = 0
 - (e) None of the above.

- 9. The differential equation that has $y = C_1 \sin(4x + C_2)$ as its general solution is:
 - (a) y'' + 16y' = 0
 - (b) $y' 4y = \cos 4x$
 - (c) y'' 16y = 0
 - (d) y'' + 16y = 0
 - (e) None of the above.

10. The differential equation that has $y = C_1 + C_2 x + C_3 x^2 + x^3$ as its general solution is:

- (a) y''' = 6
- (b) xy''' y'' = 6x
- (c) y'' = 6x
- (d) $y'' xy' = 3x^2$
- (e) None of the above.
- 11. The differential equation that has $y = C_1 + C_2 x^3$ as its general solution is:
 - (a) $x^2y'' 2xy' + y = 0$ (b) xy'' - 2y' = 0

 - (c) $y'' \frac{2}{x}y' + \frac{1}{x^2}y = 0$
 - (d) y'' 2xy' = 0
 - (e) None of the above.
- 12. $y = C_1 e^{5x} + C_2 e^{-3x}$ is the general solution of y'' 2y' 15y = 0. Find the solution that satisfies the initial conditions y(0) = 7, y'(0) = 3.
 - (a) $y = 4e^{5x} + 3e^{-3x}$
 - (b) $y = -2e^{5x} + 9e^{-3x}$
 - (c) $y = 3e^{5x} + 4e^{-3x}$
 - (d) $y = e^{5x} + 6e^{-3x}$
 - (e) None of the above.

13. The differential equation that has $y = C_1 x^3 + C_2 x^{-1}$ as its general solution is:

- (a) $x^2y'' 2xy' 3y = 0$
- (b) $y'' + \frac{1}{x}y' \frac{3}{x^2}y = 0$
- (c) $x^2y'' + 3xy' 3y = 0$
- (d) $y'' \frac{1}{x}y' \frac{3}{x^2}y = 0$
- (e) None of the above.
- 14. $y = C_1 x^3 + C_2 x^2$ is the general solution of $x^2 y'' 4xy' + 6y = 0$. If y = y(x) is the solution that satisfies the initial conditions y(1) = 2, y'(1) = 4, then y(-1) = ?
 - (a) -4
 - (b) 2
 - (c) 4
 - (d) 6
 - (e) None of the above.