MATH 3321

Sample Questions for Exam 3

1. Find the solution set of the system of linear equations

$$
\begin{aligned}
4 x-y+2 z & =3 \\
-4 x+y-3 z & =-10 \\
8 x-2 y+9 z & =-1
\end{aligned}
$$

Answer: No solution
2. Find the solution set of the system of linear equations

$$
\begin{array}{r}
2 x-5 y-3 z=7 \\
-4 x+10 y+2 z=6 \\
6 x-15 y-z=-19
\end{array}
$$

Answer: $x=\frac{5}{2} a-4, y=a, z=-5, a$ any real number
3. Find the solution set of the system of linear equations

$$
\begin{aligned}
5 x-3 y+2 z & =13 \\
2 x-y-3 z & =1 \\
4 x-2 y+4 z & =12
\end{aligned}
$$

Answer: $x=1, y=-2, z=1$
4. Find the solution set of the system of linear equations

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}-x_{4}=0 \\
x_{1}+2 x_{2}+x_{4}=4 \\
-x_{1}-2 x_{2}+2 x_{3}+4 x_{4}=5
\end{gathered}
$$

Answer: $x_{1}=3-2 a, x_{2}=a, x_{3}=2, x_{4}=1, a$ any real number
5. Given the system of equations

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =-2 \\
-2 x_{1}+5 x_{2}-x_{3}+4 x_{4} & =1 \\
3 x_{1}-7 x_{2}+2 x_{3}-5 x_{4} & =9 \\
2 x_{2}+x_{3}+5 x_{4} & =-2
\end{aligned}
$$

Find the rank of the matrix of coefficients and the rank of the augmented matrix. Does the system have a unique solution, infinitely many solutions, or no solutions.

Answer: 3, 4; no solutions
6. Find the row echelon form of $\left(\begin{array}{rrrr}1 & 2 & 3 & 2 \\ -1 & -2 & -2 & 1 \\ 2 & 4 & 8 & 12\end{array}\right)$

Answer: $\left(\begin{array}{llll}1 & 2 & 3 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right)$
7. Find the reduced row echelon form of $\left(\begin{array}{rrrrr}1 & 2 & -3 & 4 & 2 \\ 2 & 5 & -2 & 1 & 1 \\ 5 & 12 & -7 & 6 & 7\end{array}\right)$

Answer: $\left(\begin{array}{rrrrr}1 & 0 & -11 & 18 & 0 \\ 0 & 1 & 4 & -7 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$
8. Find the solution set of the system of linear equations

$$
\begin{gathered}
x_{1}+2 x_{2}-3 x_{3}-4 x_{4}=2 \\
2 x_{1}+4 x_{2}-5 x_{3}-7 x_{4}=7 \\
-3 x_{1}-6 x_{2}+11 x_{3}+14 x_{4}=0
\end{gathered}
$$

Answer: $x_{1}=11-2 a+b, x_{2}=a, x_{3}=3-b, x_{4}=b, a, b$ any real numbers
9. Find the solution set of the homogeneous system of linear equations

$$
\begin{gathered}
3 x_{1}+x_{2}-5 x_{3}-x_{4}=0 \\
2 x_{1}+x_{2}-3 x_{3}-2 x_{4}=0 \\
x_{1}+x_{2}-x_{3}-3 x_{4}=0
\end{gathered}
$$

Answer: $x_{1}=2 a-b, x_{2}=-a+4 b, x_{3}=a, x_{4}=b, a, b$ any real numbers
10. For what values of k, does the system of equations

$$
\begin{gathered}
x-2 y=1 \\
x-y+k z=-2 . \\
k y+4 z=6
\end{gathered}
$$

have (a) a unique solution? (b) infinitely many solutions? (c) no solutions?
Answer: (a) $k \neq \pm 2$ (b) $k=-2 \quad$ (c) $k=2$
11. For what values of k, does the system of equations

$$
\begin{aligned}
x+2 y+3 z & =4 \\
y+5 z & =9 \\
2 x+3 y+\left(k^{2}-8\right) z & =k+2
\end{aligned}
$$

have (a) a unique solution? (b) infinitely many solutions? (c) no solutions?
Answer: (a) $k \neq \pm 3$ (b) $k=-3 \quad$ (c) $k=3$
12. Let $A=\left(\begin{array}{rrr}2 & -1 & 3 \\ 0 & 4 & -2\end{array}\right), \quad B=\left(\begin{array}{rr}-3 & 1 \\ 2 & 5\end{array}\right), \quad C=\left(\begin{array}{rr}3 & -2 \\ 0 & -1 \\ 1 & 2\end{array}\right)$.

Perform the indicated operations, if possible: (a) $A C$ (b) $A B$ (c) $B+A C \quad$ (d) $C B A$
Answer: $A C=\left(\begin{array}{rr}9 & 3 \\ -2 & -8\end{array}\right), \quad A B$ no, $\quad B+A C=\left(\begin{array}{rr}6 & 4 \\ 0 & -3\end{array}\right), \quad C B A=\left(\begin{array}{rrr}-26 & -15 & -25 \\ -4 & -18 & 4 \\ 2 & 43 & -19\end{array}\right)$
13. Find the inverse of $A=\left(\begin{array}{ll}5 & 3 \\ 4 & 2\end{array}\right)$.

Answer: $\quad A^{-1}=\left(\begin{array}{cc}-1 & 3 / 2 \\ 2 & -5 / 2\end{array}\right)$
14. Determine whether or not $A=\left(\begin{array}{ccc}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6\end{array}\right)$ has an inverse.
15. Find the inverse of $A=\left(\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right)$.

Answer: $\quad A^{-1}=\left(\begin{array}{ccc}-16 & -11 & 3 \\ 7 / 2 & 5 / 2 & -1 / 2 \\ -5 / 2 & -3 / 2 & 1 / 2\end{array}\right)$
16. Show that the matrix of coefficients is non-singular and use Cramer's rule to find the values of y and z in the solution set,

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =1 \\
2 x_{2}-x_{3} & =1 \\
2 x_{1}+3 x_{2} & =1
\end{aligned}
$$

Answer: $\quad y=-3, z=-7$
17. Find the values of λ for which the homogeneous system

$$
\begin{aligned}
& (2-\lambda) x-3 y=0 \\
& 4 x+(2-\lambda) y=0
\end{aligned}
$$

has only the trivial solution.
Answer: $\lambda \neq 5,-2$
18. Find the values of λ for which the system

$$
\begin{array}{r}
\lambda x+2 y-4 z=0 \\
-x+y+\lambda z=0 \\
-y+5 z=0
\end{array}
$$

has nontrivial solutions.
Answer: $\lambda=-2, \lambda=-3$
19. Given the set of vectors

$$
\{\mathbf{u}=(1,-2,1), \mathbf{v}=(2,1,-1), \mathbf{w}=(7,-4,1)\}
$$

Is the set linearly dependent or linearly independent? If it is linearly dependent, express one of the vectors as a linear combination of the other two.

Answer: Dependent, $\mathbf{u}=-\frac{2}{3} \mathbf{v}+\frac{1}{3} \mathbf{w} \quad$ or $\quad \mathbf{v}=-\frac{3}{2} \mathbf{u}+\frac{1}{2} \mathbf{w} \quad$ or $\quad \mathbf{w}=3 \mathbf{u}+2 \mathbf{v}$
20. Given the set of vectors

$$
\left\{\mathbf{v}_{1}=(2,0,-1), \mathbf{v}_{2}=(-3,1,2), \mathbf{v}_{3}=(8,-2,-5), \mathbf{v}_{4}=(-9,1,5)\right\}
$$

Is the set linearly dependent or linearly independent? If it is linearly dependent, how many independent vectors are there in the set?

Answer: Dependent, 2
21. For what values of a are the vectors

$$
\mathbf{v}_{1}=(a, 1,-1), \mathbf{v}_{2}=(-1,2 a, 3), \mathbf{v}_{3}=(-2, a, 2), \mathbf{v}_{4}=(3 a,-2, a)
$$

linearly dependent?
Answer: All real numbers. (Four vectors in \mathbb{R}^{3}.)
22. For what values of a are the vectors

$$
\mathbf{u}=(a, 1,-1), \mathbf{v}=(-1,2 a, 3), \mathbf{w}=(-2, a, 2)
$$

linearly dependent?
Answer: $a=4,-1$
23. The eigenvalues of a 3×3 matrix $A=$ are $\lambda_{1}=4, \lambda_{2}=-2, \lambda_{3}=2$. What is the characteristic polynomial of A ?

Answer: $p(\lambda)=(\lambda-4)(\lambda+2)(\lambda-2) \quad$ (which is $\lambda^{3}-4 \lambda^{2}-4 \lambda+16$ if you multiply it out.)
24. The eigenvalues of a 3×3 matrix $A=$ are $\lambda_{1}=-3, \lambda_{2}=\lambda_{3}=2$. What is the characteristic polynomial of A ?

Answer: $p(\lambda)=(\lambda+3)(\lambda-2)^{2}$ (which is $\lambda^{3}-\lambda^{2}-8 \lambda+12$ if you multiply it out.)
25. Find the eigenvalues and the number of independent eigenvectors of $A=\left(\begin{array}{rrr}3 & 5 & -2 \\ 0 & 2 & 2 \\ 0 & -2 & 6\end{array}\right)$.

Answer: $\lambda_{1}=3, \lambda_{2}=\lambda_{3}=4$; two independent eigenvectors.
26. The eigenvalues and eigenvectors of $\left(\begin{array}{rrr}6 & -2 & 0 \\ 4 & 0 & 0 \\ 4 & 1 & -1\end{array}\right)$ are:

Answer: $4,\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) ; \quad 2,\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right) ; \quad-1,\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
27. The eigenvalues and eigenvectors of $\left(\begin{array}{lll}3 & -2 & 1 \\ 2 & -2 & 2 \\ 2 & -3 & 3\end{array}\right)$ are: (Hint: 1 is an eigenvalue.)

Answer: $2,\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) ; \quad 1,1,\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
28. The eigenvalues and eigenvectors of $\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$ are: (Hint: 2 is an eigenvalue.)

Answer: $8,\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) ; \quad 2,\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right) ; \quad 2,\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$
29. The eigenvalues and eigenvectors of $\left(\begin{array}{rr}1 & -2 \\ 5 & 3\end{array}\right)$ are:

Answer: $2+3 i,\binom{-1}{5}+i\binom{3}{0} \quad 2-3 i,\binom{-1}{5}-i\binom{3}{0}$
30. Find the general solution of $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & 4 \\ 4 & 1\end{array}\right) \mathbf{x}$.

Answer: $\mathbf{x}=C_{1} e^{-3 t}\binom{1}{-1}+C_{2} e^{5 t}\binom{1}{1}$.
31. Find the solution of the initial-value problem $\mathbf{x}^{\prime}=\left(\begin{array}{rrr}1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3\end{array}\right) \mathbf{x} ; \mathbf{x}(0)=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$. HINT:

2 is a root of the characteristic polynomial.
Answer: General solution: $\mathbf{x}=C_{1} e^{3 t}\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)+C_{2} e^{2 t}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+C_{3} e^{t}\left(\begin{array}{r}0 \\ 2 \\ -1\end{array}\right)$;
Solution of the initial-value problem: $\mathbf{x}=2 e^{2 t}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)-e^{t}\left(\begin{array}{r}0 \\ 2 \\ -1\end{array}\right)$
32. Find the general solution of $\mathbf{x}^{\prime}=\left(\begin{array}{rr}5 & -2 \\ 2 & 1\end{array}\right) \mathbf{x}$.

Answer: $\mathbf{x}(t)=C_{1} e^{3}\binom{1}{1}+C_{2}\left[e^{3 t}\binom{3 / 2}{1}+t e^{3 t}\binom{1}{1}\right]$
33. Find a fundamental set of solutions of $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 4 \\ -2 & 5\end{array}\right) \mathbf{x}$.

Answer: $\left\{e^{3 t}\left[\cos 2 t\binom{1}{1}-\sin 2 t\binom{-1}{0}\right], e^{3 t}\left[\cos 2 t\binom{-1}{0}+\sin 2 t\binom{1}{1}\right]\right\}$
34. Find the general solution of $\mathbf{x}^{\prime}=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1\end{array}\right) \mathbf{x}$. HINT: 2 is a root of the characteristic polynomial.

Answer: $\mathrm{x}=C_{1} e^{-t}\left(\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right)+C_{2} e^{2 t}\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right)+C_{3}\left[e^{2 t}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+t e^{2 t}\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right)\right]$
35. Find a fundamental set of solutions of $\mathbf{x}^{\prime}=\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right) \mathbf{x}$. HINT: 10 is a root of the characteristic polynomial.

Answer: $\left\{e^{10 t}\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right), e^{t}\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right), e^{t}\left(\begin{array}{r}0 \\ 1 \\ -2\end{array}\right)\right\}$

