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Abstract. This note extends the results in [2], by describing the dependence of the
optimal constant in the p-version of Friedrichs’ inequality on the boundary integral
term. In particular, it is shown that this constant is continuous, increasing, concave
and increases to the optimal constant for the Dirichlet problem as s → ∞.

1. Introduction

Recently in [2], the optimal constants in the inequality

(1.1)

∫

Ω

N
∑

j=1

|Dj u|p dx +

∫

∂Ω

b|u|p dσ ≥ CF

∫

Ω

ρ|u|p dx.

for all u ∈ W 1,p(Ω) were studied. In particular CF was characterized as the principal
eigenvalue of an eigenvalue problem for the p-Laplacian with Robin boundary condi-
tions. See sections 6 and 7 of ([2]).

Here our interest is in the dependence of the constant CF on the boundary integral
term in (1.1). Specifically we shall describe the behaviour of CF (s) on [0,∞) where
CF (s) is the optimal constant in

(1.2)

∫

Ω

N
∑

j=1

|Dj u|p dx + s

∫

∂Ω

b|u|p dσ ≥ CF (s)

∫

Ω

ρ|u|p dx.

Here we shall show that CF (s) is increasing, locally Lipschitz continuous, and
concave on (0,∞). Moreover

(1.3) lim
s→∞

CF (s) = CD

where CD is the least eigenvalue of the Dirichlet eigenproblem for the p-Laplacian on
Ω. This p-Laplacian is slightly different to the usual one as studied for example in [5],
but it has many similar properties and defines an equivalent norm on W 1,p(Ω).
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2. Definitions and Notation.

The definitions and notation of Auchmuty [2] will be used. Our essential assump-
tions include the following

• Ω is a non-empty bounded connected open subset of R
N .

• ∂Ω is a finite union of disjoint Lipschitz surfaces with finite surface area.
• σ represents Hausdorff (N − 1)−dimensional surface measure on ∂Ω,

We shall assume that the boundary is sufficiently regular that the Sobolev imbed-
ding theorem and the Rellich-Kondrachov theorem hold for W 1,p(Ω). Specifically

(A1): The imbedding i : W 1,p(Ω) → C0(Ω) is compact when p > N and i : W 1,p(Ω) →
Lq(Ω) is compact for 1 ≤ q < qc when p ≤ N and qc = Np/(N − p).

Criteria for this assumption are given in Adams and Fournier [1] and in Edmunds
and Evans [4] chapter V.

Let Γ denote the boundary trace operator, then we will require
(A2): The boundary trace operator Γ : W 1,p(Ω) → Lp(∂Ω, dσ) is continuous.

See Evans and Gariepy [3] chapter 4 for a discussion of this.

The standard norm on W 1,p(Ω) is denoted ‖u‖
1,p and is defined by

(2.1) ‖u‖p

1,p :=

∫

Ω

[

N
∑

j=1

|Dj u|p + |u|p

]

dx.

Our assumptions on the coefficient functions in (1.2) are
(A3): The function ρ is in L1(Ω) when p > N or else ρ is in Lq(Ω) for some q > q0

with q0 := N/p when 1 < p ≤ N and also ρ(x) ≥ ρ0 > 0 a.e. on Ω.

(A4): b : ∂Ω → [0,∞) is in L∞(∂Ω, dσ) and b(x) > 0 σa.e. on ∂Ω.

To investigate the inequality (1.2), variational methods will be used. Define F :
W 1,p(Ω) × [0,∞) → [0,∞) by

(2.2) F(u, s) :=

∫

Ω

N
∑

j=1

|Dj u|p dx + s

∫

∂Ω

b|u|p dσ.

Let B : W 1,p(Ω) → [0,∞) and P : W 1,p(Ω) → [0,∞) be defined by

B(u) :=

∫

∂Ω

b |Γu|p dσ, and(2.3)

P(u) :=

∫

Ω

ρ(x)|u(x)|p dx.(2.4)
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3. Description of Friedrichs’ Constants

The constant CF (s) in (1.2) is said to be optimal if it is the largest number such
that (1.2) holds. A non-zero function û in W 1,p(Ω) optimizes (1.2) provided equality
holds in (1.2).

When s = 0, constant functions optimize this inequality and CF (0) = 0. Hence-
forth we’ll consider s ∈ (0,∞).

The optimal constant in (1.2) can be characterized by a variational principle. Let
S1 := { u ∈ W 1,p(Ω) : P(u) = 1}. When condition (A3) holds then S1 is a weakly
closed subset of W 1,p(Ω) - from proposition 3.1 of [2].

Consider the family of variational principles of minimizing F(., s) on S1. Then

(3.1) CF (s) := inf
u∈S1

F(u, s).

Some properties of this value function of these principles may be summarized as
follows. In the following a function g is said to be increasing on an interval I provided
g(t1) ≤ g(t2) whenever t1 ≤ t2 in I.

Theorem 3.1. Assume (A1) - (A4) hold, 1 < p < ∞ and s ∈ (0,∞). Then there
are optimal functions ±u1(s) for this variational principle. Moreover, CF (s) is strictly
positive, increasing, locally Lipschitz and concave on (0,∞).

Proof. The existence of solutions is theorem 6.2 of [2]. In the proof of that theorem
it is shown that CF (s) ∈ (0,∞) when s > 0. For each u ∈ S1, F(u, s1) ≤ F(u, s2)
whenever s1 < s2, hence CF (s1) ≤ CF (s2).

The functionals F(u, .) are affine functions of s on (0,∞), so their infimum on S1

will be a concave function of s, as the infimum of any family of concave functions is
concave. Since CF (s) is concave and finite on (0,∞) it is locally Lipschitz there. �

4. Optimal Functions as s → ∞

We now wish to prove (1.3). The optimal functions in (1.2) were characterized in
section 7 of [2]. They are the non-zero functions in W 1,p(Ω) that satisfy

(4.1)

∫

Ω

[

N
∑

j=1

|Dj u|p−2Dj u Djh − µ1ρ|u|
p−2uh

]

dx +

∫

∂Ω

s b|u|p−2uh dσ = 0.
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for all h ∈ W 1,p(Ω). Here µ1 is the least eigenvalue of this problem. This is the weak
form of the p-Laplacian eigenproblem

−∆pu = −
N

∑

j=1

Dj(|Dj u|p−2Dj u) = µ1 ρ |u|p−2 u in Ω(4.2)

N
∑

j=1

(|Dj u|p−2Dj u)νj + s b|u|p−2u = 0 on ∂Ω.(4.3)

To treat the limiting case as s increases, let t := s/(1 + s), so this boundary
condition becomes

(4.4) (1 − t)

N
∑

j=1

(|Dj u|p−2Dj u)νj + t b|u|p−2u = 0 on ∂Ω.

Let µ1(t) be the least eigenvalue of (4.1) with s replaced by t/(1−t) and 0 ≤ t < 1
and u1(t) be a corresponding minimizer which exists from theorem 3.1. Then theorem
7.1 of [2] says that µ1(t) = CF (t/(1 − t)).

There is a similar variational principle for the first eigenvalue of the Dirichlet
eigenproblem. Let F0(u) := F(u, 0) be defined by (2.2) and S0 := { u ∈ W 1,p

0 (Ω) :
P(u) = 1}. Consider the variational problem of minimizing F0 on S0 and define

(4.5) CD := inf
u∈S0

F0(u)

Just as for the previous problems, CD is the least eigenvalue µ̂1 of the problem of
finding nonzero functions in W 1,p

0 (Ω) and eigenvalues µ satisfying

(4.6)

∫

Ω

N
∑

j=1

|Dj u|p−2Dj u Dj h dx = µ

∫

Ω

ρ|u|p−2u h dx

for all h ∈ W 1,p
0 (Ω).

Theorem 4.1. Assume 1 < p < ∞ and (A1) - (A4) hold. Then limt→1− µ1(t) = µ̂1

and (1.3) holds.

Proof. For 0 ≤ t < 1 we have, since û1 ∈ W 1,p
0 (Ω),

(4.7) µ1(t) ≤ F(û1, t/(1 − t)) = µ̂1

From theorem 3.1, µ1(t) is increasing on (0, 1), so there is a µ∗ := limt→1− µ1(t).
The preceding inequality shows that µ∗ ≤ µ̂1.

Let {tk : k ≥ 1} be a sequence which increases to 1 and {uk : k ≥ 1} be a
corresponding sequence of eigenfunctions in S1. From (4.7),

(4.8) 0 ≤

∫

∂Ω

b |Γuk|
p dσ ≤ µ̂1(1 − tk)/tk
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for all k ≥ 1. Thus B(uk) → 0 as tk → 1−.

From (2.1), (4.7), (A3) and the definition of S1,

‖uk‖
p

1,p ≤ µ̂1 + ρ0
−1 for k ≥ 1.

Thus this sequence has a weakly convergent subsequence, which will again be denoted
uk. Let u∗ be the weak limit of this sequence. From (A2), Γuk converges weakly to
Γu∗ in Lp(∂Ω, dσ). Thus B(Γu∗) = 0 from (4.8) and proposition 3.2 of [2], as B will
be weakly l.s.c. on Lp(∂Ω, dσ). This and (A4) implies that u∗ = 0 σ a.e. on ∂Ω or
u∗ ∈ W 1,p

0 (Ω).

The assumption (A1) implies that uk converges strongly to u∗ in Lp(Ω) so P(u∗) =
1 and thus u∗ ∈ S0. Finally F0 is weakly l.s.c on W 1,p(Ω), so

(4.9) F0(u
∗) ≤ lim inf

k→∞

F0(uk) ≤ µ∗

Thus µ̂1 ≤ µ∗ as u∗ ∈ S0, so µ̂1 = µ∗ and the theorem is proved. �

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd ed., Academic Press, 2003.
[2] G. Auchmuty, “Optimal Coercivity Inequalities in W

1,p(Ω)”, (submitted).
[3] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press,

Boca Raton (1992).
[4] D.E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators, Oxford (1987).
[5] Peter Lindqvist, On the equation div( |∇u|p−2 ∇u)+λ|u|p−2

u = 0. Proc Amer Math Soc., 109,
(1990), 157-164.

Department of Mathematics, University of Houston, Houston, TX 77204-3008,

USA

Department of Mathematics, The Petroleum Institute, P. O. Box 2533, Abu

Dhabi, UAE.

Department of Mathematics, Iran University of Science and Technology, Nar-

mak, Tehran, Iran

E-mail address : auchmuty@uh.edu

E-mail address : bemamizadeh@pi.ac.ae

E-mail address : m zivari@iust.ac.ir


