THE MAIN INEQUALITY OF 3D VECTOR ANALYSIS

GILES AUCHMUTY

ABSTRACT. This paper proves some simple inequalities for Sobolev vector fields on nice
bounded 3-dimensional regions, subject to homogeneous mixed normal and tangential
boundary data. The fields just have divergence and curl in L2. For the limit cases of
prescribed normal, respectively tangential, on the whole boundary, the inequalities were
proved by K.O. Friedrichs who called the result the main inequality of vector analysis.
For this mixed case, the optimal constants in the inequality are described, together with
the fields for which equality holds. The detailed results depend on a special orthogonal
decomposition and the analysis of associated eigenvalue problems.

1. INTRODUCTION

The analysis of many problems in classical continuum and electromagnetic field theories
often depends on inequalities involving the divergence and curl of a vector field. Thus
Friedrichs in [13], equation 5, calls the inequality

(1.1) /[|curlv|2 +|dive]* |’z > ¢ / v? &z,
Q o

the main inequality of vector analysis. Here () is a nice bounded region in space and v is a
vector field. He proved (1.1) held provided v satisfied either zero normal or zero tangential
boundary conditions and also is L?— orthogonal to the associated class of harmonic fields.

This and related inequalities have been further refined and described by others including
Duvaut and Lions [9], Foias and Temam [12], Leis [15], and Saranen [16]. Surveys of such
results are given in Cessenat [7], Girault and Raviart [14], chapter 1, section 3 and in
chapter 9, section 1 of [8] written by Cessenat. The existing literature generally treats
situations where the same homogeneous boundary condition is imposed everywhere of the
boundary 0f2.

Here we shall prove that (1.1) holds when v satisfies mixed zero normal and tangential
boundary conditions and is L?- orthogonal to the associated class of harmonic fields. These
mixed boundary conditions arise in many electromagnetic problems and the inequality is
needed for the proof of theorem 14.4 of Auchmuty and Alexander [5]. As discussed in
Fernandes and Gilardi [11], the case of mixed type boundary data is quite common in
engineering applications and numerical simulations.

Let Hpcx(92) be the space of vector fields which are L? on €2, whose curl and divergence
of the fields also are L? and which satisfy the mixed boundary conditions (2.8). This space
has a natural inner product and is a Hilbert space. In section 3, the class of H!-fields
with the same boundary conditions is shown to be equal to Hpcx(2) with the DC-norm
equivalent to the usual H'- norm. The equivalence of the norms on these spaces was
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called the auziliary inequality by Friedrichs and is proved by direct estimation in Section
3.

To prove (1.1) for fields in Hpex (), a special orthogonal decomposition into gradient,
curl and harmonic components is developed. This result is described in theorem 9.4
and is a variation on the L?-decomposition theory for the case of homogeneous normal
or tangential data described in Auchmuty [3]. There are many possible Hodge-Weyl
decompositions of vector fields into sums of a gradient, a curl and a harmonic component.
The analysis here depends on ensuring that the corresponding operators are orthogonal
projections with respect to the DC-inner product. For a recent geometric discussion of
similar decompositions of very smooth fields see Cantarella, De Turck and Gluck [6].

Inequalities on the individual components of this decomposition are obtained by an-
alyzing associated eigenvalue problems and obtaining coercivity results for the curl and
div operators on subspaces of Hpcx(§2). This is done in sections 5 and 8 and result in
the inequalities described in theorems 6.1 and 10.1. These individual inequalities have
many applications since, in many field theories, these operators are treated individually.
These results are combined to provide the proof of (1.1). The optimal constant in the
inequality is characterized and those fields for which equality holds are described. The
two-dimensional version of (1.1) is implicit in the analysis of [4] and is much simpler as
the vector fields can be represented using two scalar functions, a gradient potential and
a stream function.

2. DEFINITIONS AND NOTATION.

Throughout this paper, § is a non-empty bounded, connected, open subset of R?.
Such sets will be called regions. Its closure is denoted by € and its boundary is 92 :=
Q\ Q. Points in Q are denoted by = = (z1, z9, 73) and Cartesian coordinates will be used
exclusively. When u, v are vectors in R?, their scalar product, Euclidean norm and vector
product are denoted u - v, |u|, and u A v, respectively.

Further conditions on €2 will be required; namely
(B1): Q is a bounded region in R® and 00 is the union of a finite number of disjoint
closed C? surfaces; each surface having finite surface area.

A closed surface X in space is said to be C? if it has a unique unit outward normal v
at each point and v is a continuously differential vector field on ¥. See [14], Section 1.1.
for more details on this definition.

When (B1) holds and 092 consists of J + 1 disjoint, closed surfaces, then J is the
second Betti number of 2, or the dimension of the second de Rham cohomology group
of 2. Geometrically it counts the number of holes in the region 2. A subset is called a
component if it is a maximal (with respect to inclusion) subset.

Let H'(2) be the usual Sobolev space of real-valued functions on {2 with the H'— inner
product

(21) (.= [ [pl@)bta) + Vol@)- Volo)] da
Here Vi is the gradient of the function ¢ and is defined by
(2:2) Vo(z) := (p,1(2), p2(2), ¢ 3(2))
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with ¢ j(z) = 0¢(z)/0x; being the j™ weak derivative of ¢ on Q. Analytically the
assumption that (B1) holds is suffficient to guarantee the validity of Rellich’s theorem
that the imbedding of H'(Q) into L?(f2) is compact. See Amick [1].

When ¢ € WHP(Q) for some p > 1 and Q obeys (B1), then the trace of p on 99 is
well-defined and is a Lebesgue integrable function, see [10], Section 4.2 for details. If ¢,
Y € WHP(Q) for some p > 3/2, then the Gauss-Green theorem holds in the form

(2.3) /Qﬁow,id3$ = /{mwﬁl/jda—/ﬂwwd?’w

for 1 < 57 < 3. Here surface measure is denoted do and is 2-dimensional Hausdorff
measure. Two vector-valued consequences are that, when each of the following integrals
is finite,

(2.4) / u-Vod’z = / ¢ (u-v)do— / pdivu d®z, and
Q o0 Q
(2.5) /u-curlv d’r = / v-(uAv) da—i—/v-curlu dz.
Q ) Q

Let ¥ be a open subset of dQ and define ¥ := 9Q\ . Define Cyo(Q) to be the space
of continuous functions on 2 which are zero on ¥ and let Hy,(f2) to be the closure of
Cso(2) N H'(Q) with respect to the inner product (2.1).

When v : Q — R? is a vector field, its Cartesian components are denoted v;, so that
v(z) = (vi(z), v2(x), v3(x)). Its derivative matrix is Dv(z) := (v;k(x)). v is said to be
in L2(Q;R?), or H'(?;R®) when each component v; is in L?(Q) or H!(Q) respectively.
These are Hilbert spaces with respect to the inner products

(2.6) (u,v) = /Q u(z) - v(z) d’, and

(2.7) (u,vy; = /Q[u(:v)v(x) + Z uj(z) vix(z) | Pz

j,k=1

The corresponding norms are denoted |lul|, ||u||, respectively. When no subscript is
indicated, the corresponding norm is an L?- norm. Let Cxo(Q; R?) be the space of con-
tinuous vector fields on 2 which satisfy

(2.8) vAv = 0 on X and v-v = Oon X.

Define HL,(Q2;R?) to be the closure of Cxo(;R?) N H'(Q; R?) with respect to the inner
product (2.7).

The classical case of no flux, or zero tangential component correspond to the cases
Y = 0 or ¥ = 99 respectively. The corresponding Sobolev spaces will be denoted
H(Q;R?), HY,(Q2; R?) and many of their properties are described in chapter 9 of [8].

When v € L?(Q; R?) then a function p € LL () is said to be the (weak) divergence of
v on €2 provided

(2.9) /Q[gop—i-VqJ-v] d’z = 0.
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for all ¢ in the space C2°(2) of all C* functions on §2 whose support is a compact subset
of 2. The field u is solenoidal on §2 provided p = 0 on (2.

Similarly when v € L2(£; R?) then a field w € LL. (Q;R?) is the (weak) curl of v on
provided

(2.10) / [v-curlu —w-u] d®z = 0  for all u € C(Q;R?).
Q

v is irrotational on € provided (2.10) holds with w = 0.

A field v € L?(; R?) is harmonic on  if it is irrotational and solenoidal on €. Define
H=(Q) to be the subspace of harmonic vector fields in Hyy(€2;R?). This is a closed
subspace - which will be called the space of mixed harmonic fields on 2 obeying (2.8). It
may be the zero subspace; in general its dimension depends on on the topology of €2, ¥
and X.

Define Hpc(€2) to be the space of all fields v in L?(€; R?) such that divv and curlv are
also in L?(2;R®). This is a Hilbert space under the inner product

(2.11) (u,v)pc = / [u-v + curlu-curlv + divu.dive] d*z.
Q

This will be called the DC-inner product and Hpes(€2) will be the closure of Cx(€; R*)N
H'(Q;R®) with respect to this inner product.

In this paper our primary interest is in the space Hpcx(€2) and in showing that the
main inequality holds for fields in this space. To do this we require some further conditions
on the region Q and the sets ¥ and . The assumptions on the subsets where the mixed
boundary conditions (2.8) hold are
(B2): ¥ and Y are nonempty and each have a finite number of disjoint open components.
The Euclidean distance between disjoint components of ¥, and of &, is bounded below by
a positive number. . B

Note that when ¥ and ¥ satisfy (B2), then it remains true with ¥ and ¥ interchanged.

Our proof of the main inequality requires the analysis of certain eigenproblems. The
relevant results about these eigenproblems depend on variational principles involving the
maximization of quadratic functionals on closed convex subsets of a real Hilbert space.
To describe these results some elementary concepts and results from convex analysis
will be used. Let H be a real Hilbert space with inner product denoted by [.,.] and
f: H — (—o00,00] be a given functional. If f(u) is finite, an element w € H is a
subgradient of f at u provided

fv) > f(u)+ [w,v—ul for all v e H.

The subdifferential Of (u) of f at u is the set of all such subgradients. When f is convex
and G-differentiable at u, then 0f(u) = {Df(u)} is a singleton. For more information on
these issues, see Aubin [2]. In particular the indicator functional of a closed convex set C
in H is the functional I : H — [0, oo] defined by

0 for ueC
2.12 1 = ’
(2.12) o(u) {oo for u & C.
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When C is the closed unit ball of radius 1 in a closed subspace V of H, then its
subdifferential is given, when u € C, by

V4 when [luf <1
2.13 01 = |
(2.13) ou) {{)\u%—w:)\zo&wevL} when  Juf| = 1.

Here V+ is the orthogonal complement of V in H. The proof of this a nice exercise using
the sharp form of Schwarz’ inequality. The extremality result that will be used is the
following.

Theorem 2.1. Let C be a closed convex subset of a real Hilbert space H and F : H - R
be a G-differentable functional on H. If 4 mazimizes F on C, then U satisfies

(2.14) DF(u) e 0lc(u)

When C is a closed ball, centered at the origin, in a closed subspace V of H, and
mazximizes F on C, then U satisfies

(2.15) [DF (u),h] = [MAu-+w,h] for some A>0, we V" and all h € H.

This first part of this result is easy to prove using convex analysis methods and the
second part just uses the expression for the subdifferential given above. The following
corollary is useful in many eigenvalue problems and simplifies otherwise lengthy proofs
that certain multipliers are zero and that attention may be restricted to test functions in
specific subspaces.

Corollary 2.2. Let C be a closed ball, centered at the origin, of a closed subspace V of H
and F as in theorem 2.1. Suppose 4 maximizes F on C and DF(u) € V, then G satisfies

(2.16) [DF(u),v] = A [u,v] for some A>0 andallveV.
Proof. Substitute h = vy + v, in (2.15), where v; € V and v, € V4. Then [w, vs] = 0 for
all v, € V+. Thus w = 0 and (2.16) follows. O

3. D1v-cURL ESTIMATES

In this section we shall show that the DC-inner product (2.11) defines an equivalent
inner product to the usual inner product (2.7) on Hyy(€;R?). The first result is the
following which shows that the DC-norm is weaker than the usual H'— norm on vector
fields.

Proposition 3.1. Assume Q is an open set in R® and u € H'(Q;R®), then

3
(3.1) / [|curlu |* + |divul® | d*z < 3 / Z |k (2)]* .
0 0

Jk=1

Proof. Let A = (aj;) be a 3x3 real matrix and define vec(A) := (ass — ass, a13 — asy, a12 —
as1). Elementary algebra yields

3
(3.2) 0 < [tr A2+ |vec(4) |° < 3 ) a;® + 2 ) au’
j=1 i#k
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Substitute Du(z) for A and integrate over €2, then (3.1) follows. O

These norms are not equivalent on H'(; R?) but under further assumptions on €, ¥,
the following inequality holds.

Theorem 3.2. Assume that Q, % satisfy (B1) and (B2). Then there is a constant Cyx,
such that

3
(3.3) / S Jup@) d < /[|curlu|2 + |divel? ] d*z + 02/ lu[2do.

k=1 2 an

Proof. When u is C! on , a standard application of the Gauss-Green theorem yields

3
/ Z ujp(z)? Pz = / [eurlu | + |divu* ] &z
0 0

jk=1
(3.4) +/ [ua—u — (u-v)dive + (uAv)-curlu | do.
FIe) ov
To prove (3.3), it is sufficient to treat the boundary integral. On ¥, u Av = 0 and
(u-v)div u(z) = 2u(@)|®* H=z) + u- %(x)

from equation (1.27) in [8], chapter IX. Here H(z) is the mean curvature of 92 at x. The
surface integral over ¥ becomes

i / H(z) [u(z)2do
b
On Y, u-v = 0 so the surface integral over ¥ becomes
[ l/jukU,j,kdO = [ [uk[ujl/j],k — UjUpVjk ] do
5 5

where now v is taken to be a C! extension of the normal field to a neighborhood of 3.
This may be done in consequence of our regularity assumptions (B1) and (B2). Choose

Cs, to be the maximum of [H| on ¥ and |v; ()| on ¥ then (3.3) follows. O

Our results depend on the following result which is a Hilbert space version of a result
often known as Peetre’s lemma. See Girault and Raviart [14], chapter 1, section 3 for a
discussion of a general version of this result.

Theorem 3.3. Let Hi, Hy be Hilbert spaces and X be a reflexive Banach space. Assume
L : H — H, is continuous and K : Hy — X is compact and there is a C such that

(3.5) loll, < C L], + |IKv|x ] for all v € Hy.

Then (i): the null space N(L) of L is finite dimensional and the range of L is a closed
subspace of Hy, and

(i1): if Hy is the orthogonal complement of N(L) in Hy and Py is the projection of
H, onto Hy, then there is a Cy such that

(3.6) | Povll, < Co ||Lv]l, forall v e H.
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In this theorem take H; = Hy,(Q;R?), Hy = L?(; R*) and Lv := (curlv,divw). Also
X = L?(0f;R?) and K to be the trace map. Then L is continuous and condition (B1)
is sufficient for the trace map to be compact. The last two theorems combine to yield the
following

Theorem 3.4. Assume that 0, % satisfy (B1) and (B2). Then Hx(Q) is finite dimen-
sional and Hi (3 R?) = Hpes(Q)). The DC- inner product is an equivalent inner
product on Hy (S R?).

Proof. With the above choices of spaces and operators, the inequality (3.3) yields (3.5),
so the assumptions of theorem 3.3 hold. The null space of L is Hx(€2) so (i) of theorem
3.3 implies this space is finite dimensional. Let P, be the projection from Hg,(€;R?)
onto Hx(Q2). Then @, := I — P, plays the role of Py in (ii) of theorem 3.3.

When v € HL,(Q;R?) then from H'!'— orthogonality and (3.6),

2 2 2 2 2
lwlly = [1Pwlly + lI@nolly < NIPwoll; + Collvlipe

The H'— norm and the DC- norm are equivalent on Hyx(f2), since this space is finite
dimensional. Thus there is a C; such that

(3.7) o], € C1|lvllpe forall wve Hyy(Q;R?).

This shows that the H'- norm and the DC- norm are equivalent on the subspace Cx(€; R3)ﬂ
H'($;R?), so the completion of this space with respect to the two inner products will be
the same space and the corresponding inner products and norms also are equivalent. [

For the case of zero normal, or zero tangential, components of the field on the boundary,
Friedrichs [13] called the equivalence of these norms, the auziliary inequality for 3d vector
fields.

This result extends parts of theorem 3, Chapter IX, section 1 of [9] to this case of mixed
boundary data. Henceforth we will usually use the DC- inner product and norm.

4. THE GRADIENT PROJECTION

Our interest is in proving the main inequality (1.1) for fields in Hpcx(2). To do this
a Hodge-Weyl decomposition will be used. That is, given v € Hpcx(2), an orthogonal
representation of the form

(4.1) v(z) = Vo(z)+curl A(z) + h(z)

will be described. Each of these terms on the right hand side will be specified by a
Hilbert space projection using Riesz’ characterization applied to Hpcx(€2) and specific
closed subspaces. This will be done in a manner similar to the variational approach
described for L?— fields in Auchmuty [3].

In this section the gradient projection in (4.1) will be described and characterized.
Given v € Hpcx (), consider the functional D, : Hey(2) — R defined by

(4.2) D,(p) := /Q [[Vo|* —2v- V] d*z.
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We shall first show that the minimizer of this functional exists, and provides an appro-
priate scalar potential in the decomposition (4.1). The resulting field satisfies the same
boundary conditions. Note that this functional D, differs from the L2- norm of (Vy—v) by
a constant, so the solutions of this variational prioblem define the L?- gradient projection
of v when the scalar potential is required to be in Hgy ().

Theorem 4.1. Assume Q, % satisfy (B1) and (B2) and v € Hpcx(2). Then there is a
unique minimizer o, of D, on Hey(Q). A function ¢ € Hy,(Q2) minimizes D, if and only
if it is a solution of

(4.3) /Q (Vo —0)-Vpd®z = 0 forall 1 € Hyy(Q).

Proof. The functional D, defined by (4.2) is continuous and convex by standard argu-
ments. Hence it is weakly lower semi-continuous on H*(Q) and on Hgy(€2). Theorem 5.1
of the next section implies that there is a A;(X) > 0 such that

(4.0 [ Vel @ 2 0 [ @ @
Q Q
for all ¢ € H,(€2). Thus
Dule) 2 (/2) [ (96l + M) da =20l IVl
Q

Thus D, is coercive and strictly convex on Hg,(£2), so there is a unique minimizer , of
D, on Hy,(2). See [17], Chapter 42, or [5], Chapter 6, for such existence theorems. The
functional D, is Gateaux differentiable on Hyy(€2) and its derivative D) () satisfies

(4.5) (Di(g)) = 2 / (Vo —u)- Vi da

for all ¢ € Hey(Q2). From the convexity of D,, ¢ minimizes this functional if and only if
(D! (¢),v) =0 for all ¢ € Hy(2). Thus (4.3) holds. O

Substitute ¢, for ¢ in (4.3) then Schwarz inequality yields

(4.6) IVl = / Vel ds < |l

When ¢ is smooth enough, an integration by parts of (4.3) gives

(4.7) / (Ap — divo) ¢ d®z + / (g—gp—v-l/) Ydo = 0 forall ¢ € Hyy(9).
Q o OV

This is the weak form of the mixed boundary value problem

(4.8) Ap = dive on £, subject to

(4.9) ¢ =0 on¥ and 2—3:00ni.

Define the map Pgyx : Hpes () — L2(;R?) by
(4.10) Pgsv == Vo,
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where ¢, as above. This map can be shown to be linear and we will now prove that it is
a projection on Hpex (). Define Hyo(A;Q) == {p € Hy () : Ap € L?(Q)}. This is a
Hilbert space under the inner product

(4.11) (. 0)a = (o)1 + /Q Ap.AY d'z.

Observe that when ¢ € Hyo(A; Q) then Vo is in Hpe(Q2) and, in a trace sense,
(4.12) VoAnr =0 on 3.

The gradient projection in Hpex(€2) is described by the solution of the problem of
finding a function in Hyg(A; Q) which minimizes F, : Hyxg(A;2) — R defined by

(413)  Flp) = llv— Vel
(4.14) = D,(p) + / [|[v]> + |curlv]® 4+ |Ap — divo[’] d*z.
Q

These solutions may be described quite simply.

Theorem 4.2. Assume Q, Y satisfy (B1) and (B2) and v € Hpcx(RY). There is a unique
minimizer of F, on Hyo(A;Q). It is ., the minimizer of D, and moreover, Vi, is in
HDCE(Q)-

Proof. Suppose ¢, minimizes D, on Hg,(2). Then it satisfies (4.8), so divv € L?(Q2) and
thus ¢, is in Hyo(A;2) as . By inspection of (4.14) it must minimize F, on Hyo(A; Q).
The boundary conditions (4.9) and (4.12) are satisfied by ¢, so Vg, satisfies (2.8) and is
in Hch(Q). O

This result shows that the range of Pgy is actually the subspace
GE()(Q) = {V(p L € HE()(A,Q)} N HDCE(Q)-

Theorem 4.3. Assume Q.Y satisfy (B1) and (B2). Then Gxo(Q2) is a closed subspace of
Hpes(2) and Pgy, defined by (4.10) is the linear projection onto Gso(€2).

Proof. The map Pgy. is linear by standard arguments. From (4.6) and (4.8), one sees that
(4.15 IVolbe = [ 190 + 1aa 1 d

(4.16) < [ Iof + wivoPlds < ol

Hence Pgy: is a bounded linear map of Hpex(2) to Hpe(2). From theorem 4.2, its range
is a subspace of Hpex(€2). Since there is a solution ¢, for each v € Hpex(Q2), Gxo(€2)

will be a closed subspace of Hpcx(2) and this is the projection onto this subspace from
corollary 3.3 of [3]. O
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5. THE MIXED LAPLACIAN EIGENPROBLEM

The proof to be given of the main inequality (1.1) requires some specific results about
the properties of solutions of two eigenproblems. Although these problems are close to
some standard eigenproblems, the author was not able to find all the necessary results
in the literature. In consequence, this section describes the theory of these eigenvalue
problems ab initio and uses a formulation arising from a convex analysis version of the
usual Rayleigh principle. This approach generalizes in a straightforward manner to the
vector-valued eigenproblem described in section 8.

The classical eigenproblem to be considered here is to find non-trivial solutions of

(5.1) —Ap = Ap on £, subject to

(5.2) ¢ =0 onX¥ and 2—5:00ni.

The weak version of this is to find those values of A for which there are non-zero solutions
in HL(Q) of

(5.3) /Q (Vo -V —App) d®x = 0 for all ) € Hyy(Q).

This will be called the mized Laplacian eigenproblem on €). An integration by parts
shows that, if ¢ is smooth and satisfies (5.3), then it also satisfies

0
(5.4) / Ao —dp)p d'z + | wo
Q oo OV
Thus the eigenfunctions of this problem satisfy (5.1)-(5.2) in a weak sense and are in
Hxo(A; Q).
Consider the functional Q : Hi,(Q) — [0, 00) defined by

) o) = [ o) i,
Q
and the variational principle of maximizing Q on the unit ball
(5.6) By = {pe€Hy(Q): el < 1}
(5.7) Define  oq(X) = supyen, Q(p).

The following theorem shows that the solutions of this variational principle provide the
least eigenvalue A (X) and a corresponding normalized eigenfunction y; of (5.3).

do = 0 forall 9 € Hyy(9).

Theorem 5.1. Assume Q, 3% satisfy (B1) and (B2). Then there are functions +x; in
By which mazimize Q on By. These functions are solutions of (5.3) corresponding to the
least eigenvalue A\1(X) of the mized Laplacian eigenproblem. Moreover A\ (X) > 0 and
a(E) = (1+ M)

Proof. When Q satisfies (B1), the imbedding of H'(Q2) into L?(f2) is compact from Rel-
lich’s theorem, so the functional Q is weakly continuous. The space Hyy(Q2) is a closed
subspace of H'(Q) so B, is weakly compact in the H'-norm. Thus there are maximizers
of Q on B; from the basic existence theorem. See [17], chapter 42 or [5], chapter 6 for
details. Since @ and B; are symmetric, when x; is a maximizer, so is —Y;.
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A Lagrangian for this inequality constrained problem is to find critical points of the
functional £ : Hyy(€2) x [0,00) — R defined by

(5.8) Llp,p) = plelli — Q).

The critical points of this functional satisfy

(5.9) / (uVe -V + (p—1)ey) d®z = 0 forall ¢ € Hyy(9).
Q

The maximizer y; satisfies this from the theory of inequality constrained optimization,
and this equation has the form (5.3) with A = (1 — p)/p. Let Ay := A (X) be the
corresponding value of A\, put ¢ = x; in this equation then

(5.10) /|V><1\2 Br = N\ / xi12 dz.
Q Q

This implies A\;(X) > 0. The boundary conditions and (B2) do not permit A\; = 0, so
AM(2) > 0. Thus oy (X) = (14 A\ (X)) " and this quantity is less than 1. If there is an
eigenvalue A of (5.3) with A < A;(2) then there is a corresponding eigenfunction x € B;
with
Q) = (1+A) ' > au(x).
This contradicts the definition of a;(X), so A;(X) is the least eigenvalue of this problem.
t

When x;, xx are two eigenfunctions of (5.3) corresponding to distinct eigenvalues \;, A,
then they are L?—orthogonal. Choose % in (5.3) to be these eigenfunctions then

(5.11) / Vx; - Vxe Bz = /\j/ Xi Xk dBr = )\k/ Xi Xk A3z
Q Q Q

s0 Xj, xx will also be H'- orthogonal on €.

Higher eigenvalues and eigenfunctions of this problem may be found by induction in
the usual manner. Let 0 < A\ < Ay < ... < )\, be the first m eigenvalues of (5.3)
and X1, X2, ---, Xm be a corresponding family of H'- orthonormal eigenfunctions of this
problem. Consider the variational problem of maximizing Q as above on the set

(5.12) Bim = {p€Bi:{(px;), = 0forl<j<m}.
(5.13) Define O,/m_|_1(2) ‘= SUPyeBin Q(QO)

The solutions of this variational principle provide the next eigenvalue A\, 1(X) and a
corresponding normalized eigenfunction x,,,.1 of (5.3). Specifically one has,

Theorem 5.2. Assume Q, % satisfy (B1) and (B2). Then there are functions £xXm+1 in
By, which mazimize @ on Byy,. These functions are solutions of (5.3) corresponding to
the eigenvalue Apy1(X) > A (2) of the mized Laplacian eigenproblem, ||xm+1ll; = 1 and

ns1(E) = (L+ A (%))

Proof. The existence proof follows as above in Theorem 5.1 and by homogeniety || xm+1/;, =
1.
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In view of the extra m equality constraints, the appropriate Lagrangian for this problem
now is £ : H () x [0,00) x R™ — R defined by

(5.14) Lo, p,v) = p Ilelf—Q(w)JrZVj(%xg')-

Jj=1

The critical points of this functional satisfy

(5.15) /Q[,MV(p-V'Iﬁ + (p—1)py + (I/Z)Zuj x;¥] d®z = 0 forall o € Hyo(Q).
=1

The maximizer X, satisfies this equation. Take ¢ = xy for some k € {1,...,m}, then
Xm+1 Obeys
616 [ aVxe Vi + (=D x + (123w ud's = 0
Q .
j=1

The first term here is zero upon an integration by parts and the fact that yj is an
eigenfunction, the second term is zero since X,,+1 € Bi, and all except one term in the
last sum vanishes. Hence v, = 0 for each 1 < k£ < m. Thus (5.15) implies that .1
satisfies (5.3) or it is an eigenfunction of this problem corresponding to an eigenvalue
Ama1- Just as in the proof of theorem 5.1, this is the next smallest eigenvalue of the
problem. 0

This construction provides a straightforward proof of the following result. We will say
that the sequence {\,, : m > 1} is increasing when A, 1 > A, for all m. It is strictly
increasing when strict inequality holds here for each m.

Theorem 5.3. Assume Q, 3 satisfy (B1) and (B2). Let {\y : m > 1} be the increasing
sequence of eigenvalues defined above and {x,, : m > 1} be a corresponding family of H*-
orthonormal eigenfunctions. Then (i):  limy, o0 A\ = 00, and

(ii):  the set {xm : m > 1} is a mazimal H'- orthonormal set in Hyy(S).

Proof. Assume (i) is false, and the increasing sequence {\,} is bounded above by a
number L. The corresponding sequence of eigenfunctions is orthonormal in H&,(Q2) by
construction and is orthogonal in L?(£2) with

(5.17) Xl = (L+Xa) " 2 (1+L)

Since the sequence of eigenfunctions is orthonormal in Hy(2), it converges weakly to
0. Thus it converges strongly to 0 in L?(Q) as Rellich’s theorem holds. This contradicts
(5.17), so L must be infinite.

If the set {Xy, : m > 1} is not a maximal orthonormal set in Hgy(2), there will be a
Y € By with (¢, x,) = 0 for all m. Evaluate Q(v). This is positive, and if Ay is chosen
so that

Q¥) > (1+Au)™
then we obtain a contradiction to the definition of xjs. Thus (ii) holds. O
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The sequence {x, : m > 1} is in Hyg(A;€2), so (4.11) implies that
A |
1+ A

In view of this there is an orthonormal set {X,, : m > 1} in Hyo(A; ), with each
Xm = Cm Xm and the following holds

Xk, X)A = O, [1 +

Corollary 5.4. The set {Xm : m > 1} is a mazimal orthonormal set in Hyo(A; ).

Proof. If this set is not maximal then there is a ¢ in Hyo(A; ) which is A- orthogonal to
each element. In this case it would also be H'- orthogonal to each ¥,,. This is impossible
as these functions are maximal in Hyy (), so the result follows. O

6. THE MIXED DIVERGENCE ESTIMATE

The results of the last section enable the proof of the main inequality for irrotational
fields.

Theorem 6.1. Assume 0, % satisfy (B1) and (B2) and A\(X) is the least eigenvalue of
(5.3). Then

(6.1) Idivol® > M) || for all v € Gxo().

Equality holds here when v is a multiple of Vx1 and x1 is an eigenfunction corresponding
to /\1 (E)

Proof. Suppose v € Gyxo(f2) and Pgy is the projection defined by (4.10). Then v = Vi,
where ¢, is defined as above and is in Hyo(A;€2). Assume

()
Yy = Z Cm >~<m7
m=1

where {X,, : m > 1} is the orthonormal basis of Hyg(A;(2) defined in the last section.
From Parseval’s equality, in view of theorem 5.3 and Corollary 5.4,

o9}

(6.2) ol = > en’ [VXal® and

m=1
[e's)

(6.3) ldivol® = > cn® 1A%l

m=1
However, for each m,
(6.4) IATm]* = A2 %ml® = Am IV Xl

Substitute this in (6.2) and (6.3), then (6.1) follows. When ¢,,, = 0 for all m > 2, then
equality holds in (6.1). O
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7. VECTOR POTENTIALS AND THE CURL SUBSPACE

To describe an orthogonal decomposition of the form (4.1), the following characteriza-
tion of the orthogonal complement of Gyo(€2) will be used.

Proposition 7.1. Suppose (B1)-(B2) hold, then a field v € Hpc(Q) is L2-orthogonal to
Gxo(Q) if and only if
(7.1) dive =0 onQ and wv-v =0 onl.
Suppose v = curl A for some A € Hpc(R2), then v is L*-orthogonal to Gxo(Q), if and
only if
(7.2) ANy =0 on 3.

)

Proof. Assume v is L2-orthogonal to G(f2), then

/U-Vg@d?’x :/ (v-u)<pda—/g0divvd3x = 0.
Q o9 Q

for all ¢ € Hyo(A; Q) from the Gauss-Green theorem. There are sufficiently many ¢ to
yield (7.1). Conversely when (7.1) holds and ¢ € Hyo(A;2), then this equation shows
that v will be L?-orthogonal to Gxo(2). When v = curl A, (2.5) yields

/curlA-Vgpd?’x :/ A- (Vo Av)do /Vgp (v A A)do.
Q o9

Here ¢ is assumed to be C'- and in Hy,(A; ). The second sentence of the proposition
follows. O

There is considerable non-uniqueness in most definitions of a vector potential. The
following result specifies the class of equivalent potentials satisfying a specific boundary
condition of the form (7.2).

Proposition 7.2. Suppose (B1), (B2) hold, A € H'(Q;R®) and AAv =0 on X. Then
there is a vector field B € Hyy(S%;R?) which satisfies curl B = curl A on Q. Two fields
A, B € HL,(Q;R?) satisfy

(7.3) curl B = curlA onQ ifandonlyif B = A + Vo+h

for some @ in Hy(Q) and h € Hs(Q). Moreover there is a unique A in HL,(Q; R?) which
satisfies curl A = curl A on Q and also is solenoidal and L*-orthogonal to Hyx(S2).

Proof. Given such an A, let ¢ € Hy,(€2) be the solution of

(7.4) Ap = divA on € subject to
(7.5) ¢ =0 onY and g—‘p:A-yoni.
14

Then B := A — Vg is in H:,(Q;R?) and satisfies div B = 0 and curl B = curl A on Q
as claimed.
When A, B € HL,(S:R?), let ¢ € HLy(€2) be the solution of

(7.6) Ap = div(B—A) on subject to

(7.7) ¢ = 0 onX and g—f:()onfl.
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This system has a unique solution and then A := B — A — Vy; is in Hx(2). Thus (7.3)
holds.

Given A € H'(;R?) such that AAv =0on X, let B € H,(Q;R?) be as in the first
part of this proof. When BM, B® are two such fields then their difference must be in
Hsx(2), so the last statement holds. O

In view of this proposition define V(£2) to be the subspace of Hy,(€2; R?) of fields which
are solenoidal and Z5(Q) to be the subspace of Hi,(Q;R?) of fields which are solenoidal
and L?-orthogonal to Hx(2). Both subspaces are closed subspaces and

Ve(Q) = Zx(Q) & Hs()

where this decomposition is both L?- and DC- orthogonal. Note that from the definition
the fields in the spaces Vx(Q2), Zx(f2) satisfy the boundary conditions (2.8) in a trace
sense. Define

(7.8) Curls(Q) = {curlA: A€ H'(R?), AAv=0 on X}.

Then proposition 7.2 says there will be a unique vector potential A € Z%(Q) for each
field v € Curls(Q2). From proposition 7.1 the space Curlg(2) will be L?-orthogonal to
Gx0(Q).

8. THE MIXED Curl? EIGENPROBLEM

In this section an eigenvalue problem for the curl® operator subject to mixed normal and
tangential boundary conditions will be studied. The classical form of this eigenproblem
is to find those u such that there are non-zero vector fields A satisfying

(8.1) cur? A = puA and divA = 0 in Q,
(8.2) AAv = 0 on X, and A-v =0 on X.

A classical solution of this satisfies the following.

Proposition 8.1. Suppose (B1), (B2) hold, u # 0 and A € H'(Q;R®) is a solution of
(8.1)- (8.2) which is C* on Q. Then A is L?-orthogonal to Gxo(Q) and

(8.3) curl AAv = 0 on X.

Proof. The L*- orthogonality holds from (8.1), (8.2) and proposition 7.1. From (2.5) and
the fact that ¢ is constant on ¥,

(8.4) (Vo,curl?A) = / V- (vAcurl A) do
>

so (8.3) holds as there are enough allowable such ¢. O

The weak version of this eigenproblem is to find those values of u for which there are
non-zero solutions A € Vg(Q) of

(8.5) / (curlA-curl B — pyA-B)d®z = 0 forall B e Vx(Q).
0
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This will be called the Y-mized curl® eigenproblem on Q - and henceforth we will
concentrate on solutions of this system (8.5). When A is H?— and (8.5) holds then the
Gauss-Green theorem (2.5) shows that the eigenfields satisfy

(8.6) / B (curlAAv)do + / B - (curl’A — pA) d®x = 0 forall B e Vy(Q).
20 "

This, and the definition of Vi (2), show that (8.1) and (8.3) hold in a weak sense when
(u, A) satisfy (8.5).

Suppose C := curl A and A is an eigenfield of (8.5). Then, from (2.4) and (2.5)
respectively,

(8.7) /QC-Vgo al3x=/6Q o(C-v)do = — Vo -(AAv)do

o9
From the first part of (8.2), the last integral is zero for all ¢ € HéO(Q). Thus for all such
®;

(8.8) / o(C-v)do = 0 or curlA-v = 0 on X.
2

This and (8.6) implies that the eigenfields of this problem are such that curl A satisfies,
in a trace sense, the dual boundary conditions

(8.9) CAv =0 on % and C-v = 0Oon X.

A special role is played by the null-eigenfields of this problem, which may be described
as follows.

Proposition 8.2. Suppose (B1), (B2) hold, then 0 is an eigenvalue of (8.5) if and only
if Hx(Q) is non-zero. When 0 is an eigenvalue, the corresponding eigenspace is Hx(Q)
and is finite dimensional.

Proof. If 0 is an eigenvalue of (8.5), then a corresponding eigenfield A in Vi (2) obeys
curlA = 0. It also satisfies the other criteria to be in (). Conversely each field
in Hx(2) will be an eigenfield of (8.5) corresponding to the eigenvalue 0. The finite
dimensionality of this space follows from theorem 3.4. Alternatively this may be proved
directly as follows. Let {h(™ : m € M} be a maximal DC-orthonormal set in Hx(f).
Then Hh(m)HDC = Hh(m)H = 1 for all m € M. If M is infinite then this sequence

converges weakly to 0 in Hgy(9; R?). From Rellich’s theorem it must converge strongly to
0 in L2(€;R?). This contradicts the fact that their L2-norm is 1, so M is a finite set. [

In Auchmuty and Alexander [5], sections 15 and 16, a geometric interpretation of
this space is provided, and explicit bases are described. These constructions, and the
dimension of the space depend on the differential topology of €, ¥ and % and this is
described there.

When AU A®) are two eigenfields of (8.5) corresponding to distinct eigenvalues 1, u,
then

(8.10) /Q curl AW . curl A®) @3z = ,uj/Q

Hence AY), A®) will be both L?- and DC- orthogonal on €.

FORIC — / AG) . A®) B
Q
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In view of this, and the results described at the end of section 7, the non-zero eigenfields
of this mixed curl® eigenproblem will be the solutions in Zx () of (8.5) and this equation
need only hold for all B € Zx(Q).

The eigenfields of this problem may be found using variational principles in a similar
manner to the analysis of the mixed Laplacian eigenproblem. Consider the functional
Q; : Zx(2) — [0, 00) defined by

(8.11) Qi(4) = / A(2) diz,
Q
and the variational principle of maximizing Q; on the unit ball
(8.12) Ci = {AeZs(Q):|Allpe < 1}
(8.13) Define  1(X) = supacc, Qi(A).

The following theorem shows that the solutions of this variational principle provide the
least positive eigenvalue j1(X) and a corresponding normalized eigenfield A™M of (8.5).

Theorem 8.3. Assume Q, Y satisfy (B1) and (B2). Then there are fields =AW in C,
which mazimize Q1 on C1. These fields are solutions of (8.5) corresponding to the least
positive eigenvalue 111(X) of the X-mized curl® eigenproblem. Moreover pi(X) > 0 and

n(®) = L+mE) "

Proof. The set C); and the space Zx(f2) are closed subsets of Hi,(Q;R?) and thus of
H'(;R?). Thus C) is a weakly compact in Hy,(Q;R?), as it is convex and bounded.
The imbedding of H*(Q;R?) into L?(Q2; R?) is compact from Rellich’s theorem as (B1)
holds. So @ is weakly continuous and attains its supremum on C;. Hence there are
maximizers A of Q on C;.

To find the conditions satisfied at a maximizer, take H to be H,(Q; R*) with the DC
inner product and V to be Zx(Q2). From corollary 2.2, equation (2.16) the maximizers are
solutions of

(8.14) / (2= NA-B—AcurlA-curl B] d*z = 0.
Q

for some A > 0 and all B € Z5(Q2). If A =0, then A = 0 and this is not a maximizer.
Thus A > 0 and (8.5) holds with . = 1 (X) = (2—A)/A > 0. The relationship between
v1(X) and py(X) hold as in theorem 5.1. O

In particular this theorem shows that
(8.15) / lcurl A> dz > (%) / A* d®z  forall Ae Zg(Q).
Q Q

The number p;(X) is called the principal eigenvalue of this ¥-mixed curl® eigenproblem
and is the least non-zero eigenvalue of the problem.

Higher eigenvalues and corresponding eigenfields of this problem may also be found
using an induction procedure. Let 0 < puy < po < ... < p,, be the first m positive

eigenvalues of (8.5) and {AM), A®) A c Z:(Q) be a corresponding family of DC-



18 AUCHMUTY

orthonormal eigenfields of this problem. Consider the variational problem of maximizing
Q; as above on the closed ball

(8.16) Cim = {AeCi:(4,AY) = 0, for1<j<m}
(8.17) Define Ymt1(Z) = supaec,,, Qi(4)-

The solutions of this variational principle provide the next eigenvalue p,,,1 and a cor-
responding normalized eigenfield A™+1) of (8.5). Specifically one has,

Theorem 8.4. Assume Q,% satisfy (B1) and (B2). Then there are fields £A™+Y) in
C1m which mazimize Q1 on Cip. These functions are solutions of (8.5) corresponding to
the eigenvalue fimi1 > fym of the L-mized curl® eigenproblem. Moreover HA(mH)HDC =1

and Y1 (L) = (L4 pimr) ™

Proof. The existence of solutions follows as in theorem 8.3. The conditions satisfied at
a maximizer are also obtained as there but now take V := {B € Zx(Q) : (4,A4Y)) =
0, for 1 < 5 < m}. The G-derivative DQ;(A) = 2A so it is in V when A € C},,. Thus the
maximizers satisfy (8.14) for some A > 0 and all B € Zx(2). The theorem now follows
as previously. O

Just as before, this construction leads to the following result about the eigenvalues and
eigenfields of this problem and the construction of an orthonormal basis of the subspace
Z5 ().

Theorem 8.5. Assume 2,3 satisfy (B1) and (B2). Let {ji, : m > 1} be the increas-
ing sequence of positive eigenvalues of the L-mized curl® eigenproblem defined above and
{A™) . m > 1} be a corresponding family of DC- orthonormal eigenfields. Then

(1):  limgy, oo i = 00, and

(i3):  the set {A™ :m > 1} is a maximal DC- orthonormal set in Zx(S2).

Proof. Assume (i) is false, and the increasing sequence {u.,} is bounded above by L.
The corresponding sequence of eigenfield is orthonormal in Zx(2) by construction and is
orthogonal in L?(Q; R?) with

(8.18) A" = (14 ) 2 (A +L)

Since the sequence of eigenfields is orthonormal in Zx((2), it converges weakly to 0. Thus
it converges strongly to 0 in L?(€;R®) as Rellich’s theorem holds. L finite contradicts
(8.18), so L must be infinite.

If the set {A™ :m > 1} is not a maximal orthonormal set in Zs(f2), there will be a
B € Cy with (B,A™) . = 0 for all m. Suppose Q;(B) > 0. Choose yy so that

Qi(B) > (14 pu)™

then we have a contradiction to the definition of AM). Thus Q;(B) = 0, so B = 0 and
(ii) holds. O
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9. THE CURL PROJECTION

The results of the last two sections will now be used to describe the curl component in
the orthogonal decomposition (4.1).

Let Curls(f2) be the space defined in (7.8). From Riesz’ theorem and the discussion
of section 7, the L?- projection of Hpc(S2) onto Curls(Q2) will be defined by minimizing
|lv — curl A||” over all A € Z5(Q). Given v € Hpe(Q), consider the variational problem
of minimizing C, : Zx(€2) — R defined by

(9.1) Co(A) = /Q[|curlA(:1:)|2 — 2u(z) - curl A(z)] d*z.

The results about this minimization problem may be summarized as follows.

Theorem 9.1. Assume Q, Y. satisfy (B1) and (B2) and v € L?(;R?). Then there is a
unique minimizer A, of C, on Zx(Q). A field A € Zx(Q) minimizes C, if and only if it is
a solution of

(9.2) / (curl A—v)-curl Bd’z = 0 forall A€ Zg(9).
Q

Proof. The functional C, is convex and continuous on H'(Q;R?) and thus on Zx ().
Hence it is weakly lower semi-continuous. From (8.15) and Schwarz’ inequality, one sees
that

C(4) = /9(1/2)[|0ur114(fv)|2+u1(2) A@)P] d’z — 2]lo|| eur Al

This is coercive and strictly convex on Zx () since u1(3) > 0. Thus there is a unique
minimizer of C, on Zx(2). The extremality condition (9.2) is found by evaluating the
G-derivative of the quadratic functional C,. O

When A is smooth enough, using (2.4) with (9.2) yields

(9.3) / B-((curl A —v) Av)do + / B - (curl®’A — curlv) d®z = 0
o0

Q
for all B in Zx(Q2). Thus A, is a weak solution of the system
(9.4) curl’A = curly, divAd =0 on €
(9.5) AAv = 0 onY, A-v =0 and curlAAv = vAv onX.
Consider the linear mapping Pey : L?(; R?) — Curls(Q) defined by
(9.6) Pes v := curl 4,

Here A, will be called the ¥ — curl potential of v, Pcy is the ¥ — curl projection and
curl A, is the ¥-mixed curl component of v. This theorem can be restated as follows.

Corollary 9.2. Curls(Q) is a closed subspace of L*(; R*) and Pcx, is the projection of
L2(Q;R®) onto Curls (). When v € Hpe (), so is Pesv.

Proof. The result that Curls(f2) is a closed subspace of L?($2; R?) follows from corollary
3.3 of [3] as for each v in L2(€;R?) there is a minimizer of C,. Moreover the projection
is defined by the solution of this norm-minimization problem. When v € Hpc(2), then

curl A, is in Hpc(N2) from (9.4). O
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From these results and proposition 7.1, one sees that it is the 3 — curl projection which
will map Hpes(€2) into itself and into a subspace that is orthogonal to Gxo(£2). That is
the allowable potentials should satisfy the dual boundary conditions (8.9). Define

(9.7) Cux(Q) = Hpex(Q2) N Curlg ()

This is the ”subspace of non-harmonic curls” in Hpex(§2) and Pog maps Hpex(2) into
this subspace. The following analysis shows that P.s is a DC-orthogonal projection on
Hpes(§2).

Define Hg(curl®, Q) := {4 € Zz(Q) : curl®?A € L?(;R?)}. This is a real Hilbert space
under the inner product

(9.8) (A,B)c = / [A-B + curlA-curl B + curl’A - curl’B] d*z.
Q
Now consider the question of describing the DC-curl projection on Hpcx(€2). Define
the functional G, : Hz(curl®, Q) — [0, 00) by
(9.9) G,(A) = |jv—curl 4.

(9.10) = Cu(A) + / [[v]* 4 |divv|® + |curl®A — curlvf] dx.
Q

The solution of this problem is given by the following result.

Theorem 9.3. Assume Q, Y satisfy (B1) and (B2) and v € Hpcx (). There is a unique
minimizer A, of G, on Hg(curl®, Q) and A, minimizes C, on Zs(Q). Moreover Cuy(f)
is a closed subspace of Hpes(Q2) and Pgsv = curl A, is the DC-projection of Hpes(92)
onto Cux(€2).

Proof. Suppose A, minimizes C, on Z5(92). Then it satisfies (9.4) so curl 4, is in Hpc(92).
It satisfies the boundary conditions (2.8) from proposition 7.1) and from equation 9.5. By
inspection of (9.10), A, minimizes G, on Hg(curl?, Q) as it minimizes C, and (9.4) holds.
For each v in Hpex(€2), there is a minimizer of this problem so C'uyx(€2) is a closed subspace
of Hpex(€2) from corollary 3.3 of [3]. The operator P.sv defines the projection from Riesz
theorem as Hpcx () is a Hilbert space. O

These results show that A, is the appropriate choice of a vector potential in (4.1) so that
the decomposition is orthogonal. This may be strengthened to the following Hodge- Weyl
type decomposition theorm for the space Hpcs(S2).

Theorem 9.4. When (B1) and (B2) hold then

(9.11) Hpes(R2) = Gxo(2) ® Cus(Q) & Hx(Q)
and this decomposition is both L?- and DC- orthogonal.

Proof. If v is L?-orthogonal to Cugz(f2), then

(9.12) /Q curl A-vd’z = 0 forall A€ Zz(Q).

Use (2.5) and the definition of Z¢(€2), then this implies
(9.13) curlv = 0 onQ and vAv = 0 onX.
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When v is L2-orthogonal to Gxo(f2), then (7.1) holds. Hence the fields which are L2-
orthogonal to Gyo(2) ® Cux () are precisely the fields in Hx(2). Thus (9.11) holds in
an L?-sense. This is also a DC-orthogonal decomposition so the result follows. g

An interesting, and physically important, consequence of this definition of the vector
potentials for fields in Hpex(€2) is the following.

Theorem 9.5. Suppose (B1) and (B2) hold, and (p, A) is an eigenpair of the ¥-mized
curl? eigenproblem on Q with > 0. Then (u, curl A) is an eigenpair of the 3-mized curl®
etgenproblem on 1.

Proof. The assumption is that A € Zx(Q) is a solution of
(9.14) / (curl A-curl B — pA-B)d®x = 0 forall B € Zx(Q).

Q
from (8.5) and the comments after (8.10). Given B € Zx(f2), there is a unique D € Z5(Q)
with B = curl D. Let C := curl A, use the boundary conditions satisfied by A, B, D,
then (2.5) implies that

/A-curlD dr = / D-C dz, /C’-curlB dr = / curl D - curlC dz
Q Q Q

Q
SO
(9.15) / (curl C-curlD — puC-D)dP’z = 0 forall D€ Zz(9).
Q
Thus (p1,C) is an eigenpair of the Y- eigenproblem. O

This shows that the Y-mixed and S-mixed curl® eigenproblems have the same non-zero
eigenvalues, each of the same multiplicity. In particular u;(3) = p;(X) and the problems
are isospectral - except perhaps for the null eigenvalue. This may be stated as follows,

with ™) = curl A(™),

Theorem 9.6. Assume Q, 3 satisfy (B1) and (B2). Let {p, : m > 1} be the increasing
sequence of positive eigenvalues of the ©-mized curl® eigenproblem on Q defined above and
{A™) - m > 1} be a corresponding family of DC- orthonormal eigenfields. Then

(i):  the S-mized curl® eigenproblem on Q has precisely the same non-zero eigenvalues,

each with the same multiplicity, and
(i5):  the set {jm Y2C™ :m > 1} is a mazimal DC-orthonormal set in Zg(S2).

10. THE CURL ESTIMATE AND THE MAIN INEQUALITY

We are now in a position to prove the main inequality for fields in Hpcx(€2). First
there is a curl estimate that holds for the solenoidal fields in Cux(€2).

Theorem 10.1. Assume 2, % satisfy (B1) and (B2) and u1(X) is the principal eigenvalue
of (8.15). Then

(10.1) curlv])®* > () ||v| for all v € Cux().
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Equality holds here when v is a multiple of curl A with A an eigenfield of the ¥ -mized
curl? eigenproblem corresponding to the eigenvalue ().

Proof. If v € Cux(Q), then v = curl A, with A, € Hg(curl?®, Q). Suppose
Ay(z) = Z em A™(z)
m=1

where {A(™) : m > 1} is the orthonormal basis of Zz(Q2) defined in section 8. Then

(10.2) o> = Z Cm” ||cur1A(m)H2, and
m=1

(10.3) leutlol> = 37 ¢n? [lourl?A™)]|".
m=1

using the orthogonality of these fields. However, for each m,

(10.4) chrlQA(m)H2 = ,quHA(m)||2 = lm H(:urlA(m)H2

Substitute this in (10.2) and (10.3), then (10.1) and the criterion for equality follows. [
This result, together with theorem 9.4, leads to the specific form of the main inequality.

Theorem 10.2. Assume (B1), (B2) hold and v € Hpex(Q) is L?- orthogonal to Hx(Q).
Then the main inequality (1.1) holds with ¢ := min(\;(X), p1 (X)) > 0.

Proof. When v as in this theorem then, from theorems 4.3, 9.3 and 9.4,
v = Vg, + curl flv

with V¢, being the scalar potential defined as in section 4 and A, € Zz(Q) being the
vector potential defined as in the last section.
From the inequalities of 6.1 and 10.1,

~ 112
(105)  |ldivel® > M(E) [Veu|? and [eutlv]® > (D) chrlA,,

Add these inequalities, then since this is an L?-orthogonal decomposition,
2

o] = IVeull* + chrmu

so (1.1) holds with the given value of c. O

Since each of the inequalities (6.1) and (10.1) are equalities for specific fields in the
respective subspaces, then equality will be attained in (1.1) for a subspace of fields and
the constant c given here is best possible.

An important question for numerical analysis is whether this inequality holds when the
requirement in (B1) that the surfaces of the region be C? is replaced by a weaker regularity
condition? One might expect the characterization of the constant c¢ in theorem 10.2 holds
when the boundary is, say, Lipschitz continuous. In this paper, the C? regularity of the
boundary was explicitly used in the proof of theorem 3.2 and this result was necessary
for theorem 3.4. The question becomes whether these results can be modified to cases of
less smooth boundaries?
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