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ABSTRACT

This paper describes some properties and applications of Steklov eigenproblems

for prototypical second-order elliptic operators on bounded regions in Rn.
Results are described for Schroedinger and weighted harmonic equations. A vari-
ational description of the least eigenvalue leads to optimal L2-trace inequalities. It

is shown that the eigenfunctions provide complete orthonormal bases of certain
closed subspaces of H1ðOÞ and also of L2ð@O; dsÞ. This allows the description,
and representation, of solution operators for homogeneous elliptic equations

subject to inhomogeneous Dirichlet, Neumann or Robin boundary data. They
are also used to describe Robin to Dirichlet and Neumann to Dirichlet operators
for these equations, and to describe the spectrum of these operators. The allow-

able regions are quite general; in particular classes of bounded regions with a
finite number of disjoint Lipschitz components for the boundary are allowed.
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1. INTRODUCTION

This paper will describe some results about, and applications of, Steklov
eigenproblems for prototypical second order elliptic partial differential operators
on bounded regions in Rn. These eigenproblems are described and analyzed for
Schroedinger type operators in Secs. 3–5 and for weighted harmonic operators in
Secs. 6–9.

For both classes of eigenproblems, under mild regularity assumptions, the
existence of an unbounded, infinite, discrete spectrum is demonstrated. The least
positive eigenvalue of these problems is shown to be the optimal constant in certain
trace inequalities. Moreover a corresponding family of Steklov eigenfunctions will be
constructed which is an orthonormal basis of the subspace of H1ðOÞ orthogonal to
H1

0ðOÞ with respect to specific inner products.
These results lead to orthogonal series expansions, in terms of the Steklov

eigenfunctions, for the solutions of homogeneous elliptic equations with non-
homogeneous boundary conditions. These series are described in Secs. 9 and 10
and will be shown to converge strongly in H1ðOÞ. The expansions provide a spectral-
type representation for the solution operators of linear boundary value problems
of the form

LuðxÞ ¼ 0 in O; subject to BuðxÞ ¼ gðxÞ on @O: ð1:1Þ

Here the boundary conditions may be of Dirichlet, Robin or Neumann type. The
solution operators classically have been defined using Poisson, Robin or Neumann
boundary integral kernels as in part B of Bergman and Schiffer (1953). Here
they are shown to be strong (H1�)limits of certain finite rank boundary integral
operators. The approach is quite different to that based on the use of single and
double layer potentials as described in DiBenedetto (1995, Chap. 3), or Kress
(1989, Sec. 6.4).

These results depend on proofs that certain families of Steklov eigenfunctions
are maximal orthonormal sets in certain closed subspaces of H1ðOÞ and also in
L2ð@O;dsÞ. These completeness results are described in Theorems 5.3, 7.3, 9.4 and
10.3 and are based on variational arguments. Then elementary Hilbert space theory
is used to describe the solutions of these boundary value problems. These results
also provide spectral characterizations of the trace space H1=2ð@OÞ for the different
equations.

The methods used to obtain the results described here may be generalized in a
variety of ways. No effort has been made to describe the most general operators
to which this approach applies. We have, however, tried to identify simple boundary
regularity requirements; they are that (B1) and (B2) of section 2 hold. In particular,
the boundary is not required to be C1 so this approach applies to many regions used
in computational simulations.

Many of the results described here are related to issues of interest in the theory
of inverse problems. In particular, Sec. 11 describes results about the Robin to
Dirichlet and Neumann to Dirichlet maps. There the restrictions of the Steklov
eigenfunctions to the boundary are shown to be eigenfunctions of these operators
and the eigenvalues of these maps are related to the Steklov eigenvalues.
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2. DEFINITIONS AND NOTATION

This paper will treat issues arising in the study of boundary value problems
on regions O in Rn; n � 2. A region is a non-empty, connected, open subset of Rn.
Its closure is denoted O and its boundary is @O :¼ O n O. Points in O are denoted
by x ¼ ðx1; x2; . . . ; xnÞ and Cartesian coordinates will be used exclusively.

Further conditions on O will be required. In the following, we will use the defini-
tions and terminology of Evans and Gariepy (1992), save that s;ds will represent
Hausdorff ðn� 1Þ-dimensional measure and integration with respect to this measure,
respectively. This measure is called surface area and our basic assumption will be:

(B1). O is a bounded region in Rn and its boundary @O is the union of a finite
number of disjoint closed Lipschitz surfaces; each surface having finite surface area.

When this holds there is an outward unit normal n defined at s a:e: point
of @O. The real Lebesgue spaces LpðOÞ and Lpð@O;dsÞ; 1 � p � 1 will be defined
in the standard manner and have the usual p-norm denoted by uk kp and uk kp;@O,
respectively. The L2-inner products are denoted

hu; vi :¼
Z
O

uðxÞvðxÞdx and hu; vi@ :¼
Z
@O

uv ds:

All functions in this paper will take values in R :¼ ½�1;1� and derivatives should
be taken in a weak sense. A real sequence fxm : m � 1g is said to be (strictly) increas-
ing if xmþ1ð>Þ � xm for all m. Similarly a function u is said to be (strictly) positive on
a set E, if uðxÞ � ð>Þ0 on E. The gradient of a function u will be denoted Hu.

Let H1ðOÞ be the usual real Sobolev space of functions on O. It is a real Hilbert
space under the standard H1-inner product

½u; v�1 :¼
Z
O
½uðxÞ � vðxÞ þ HuðxÞ � HvðxÞ� dx: ð2:1Þ

The corresponding norm will be denoted by uk k1;2
The region O is said to satisfy Rellich’s theorem provided the imbedding of

H1ðOÞ into LpðOÞ is compact for 1 � p < pS where pSðnÞ :¼ 2n=ðn� 2Þ when
n � 3, or pSð2Þ ¼ 1 when n ¼ 2.

There are a number of different criteria on O and @O that imply this result.
When (B1) holds it is Theorem 1 in Sec. 4.6 of Evans and Gariepy (1992). See also
Amick (1973). DiBenedetto (2001), in Theorem 14.1 of Chap. 9 shows that the result
holds when O is bounded and satisfies a ‘‘cone property.’’ Adams and Fournier give
a thorough treatment of conditions for this result in Chap. 6 of Adams and Fournier
(2003) and show that it also holds for some classes of unbounded regions.

When (B1) holds and u 2 W1;1ðOÞ then the trace of u on @O is well-defined and
is a Lebesgue integrable function with respect to s, see Evans and Gariepy (1992),
Sec. 4.2 for details. The region O is said to satisfy a compact trace theorem provided
the trace mapping G : H1ðOÞ ! L2ð@O;dsÞ is compact. The trace map is the linear
extension of the map restricting Lipschitz continuous functions on O to @O. Some-
times we will just use u in place of Gu when considering the trace of a function on @O.
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Evans and Gariepy (1992, Sec. 4.3), shows that G is continuous when @O satisfies
(B1). Theorem 1.5.1.10 of Grisvard (1985) proves an inequality that implies the
compact trace theorem when @O satisfies (B1). This inequality is also proved in
DiBenedetto (2001, Chap. 9, Sec. 18) under stronger regularity conditions on the
boundary. Most descriptions of trace theorems in the current literature involve the
space H1=2ð@OÞ but here we shall only use a simpler analysis involving Lebesgue spaces.

In general, we shall require that the region satisfy

(B2). O and @O satisfy (B1), the Rellich theorem and the compact trace theorem.

In this paper, we shall use various standard results from the calculus of varia-
tions and convex analysis. Background material on such methods may be found in
Blanchard and Brüning (1992) or Zeidler (1985), both of which have discussions
of the variational principles for the Dirichlet eigenvalues and eigenfunctions of sec-
ond order elliptic operators. The variational principles used here are variants of the
principles described there and are analogous to those for the Laplacian described in
Sec. 5 of Auchmuty (2004). Some quite different unconstrained variational principles
for eigenvalue problems are described in Auchmuty (2001).

In this paper, all the variational principles, and functionals will be defined on
(closed convex subsets of) H1ðOÞ. When F : H1ðOÞ ! ð�1;1� is a functional, then
F is said to be G-differentiable at a point u 2 H1ðOÞ if there is a F0ðuÞ such that

lim
t!0

t�1 ½Fðuþ tvÞ �FðuÞ� ¼ F0ðuÞðvÞ for all v 2 H1ðOÞ;

with F0ðuÞ a continuous linear functional on H1ðOÞ. In this case, F0ðuÞ is called the
G-derivative of F at u.

3. THE SCHROEDINGER–STEKLOV EIGENPROBLEM

Assume O is a region inRn which satisfies (B1). The classical form of the Steklov
eigenproblem for a Schroedinger-type operator is to find those values of m for which
there is a non-trivial classical solution ûu of the system

LuðxÞ :¼ cðxÞuðxÞ � DuðxÞ ¼ 0 on O ð3:1Þ

subject to
@u

@n
ðxÞ ¼ mrðxÞuðxÞ on @O ð3:2Þ

The functions c; r should satisfy

(A1). c is positive on O, in LpðOÞ for p � n=2 when n � 3; ðp > 1 when n ¼ 2Þ andR
O c dx > 0.

(A2). r is in L1ð@O;dsÞ, positive on @O, and
Z
@O

rds ¼ 1: ð3:3Þ

324 Auchmuty

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

120039655_NFA25_03&04_R2_052504



The weak form of (3.1)–(3.2) is to find the real values of m such that there is a
non-zero solution u in H1ðOÞ of

Z
O
½Hu � Hvþ cuv� dx� m

Z
@O

ruv ds ¼ 0 for all v 2 H1ðOÞ: ð3:4Þ

This will be called the Steklov eigenproblem for ðL; rÞ.
There is some literature on problems of this type; see Bandle (1980, Chap. 3) for

instance. She describes a standard variational principle of Rayleigh type for the first
eigenvalue of this problem. From (3.4) with v ¼ u, one sees that any eigenvalue must
be positive. Here we shall describe a different variational principle for the least
positive eigenvalue and corresponding eigenfunction of (3.4).

Let K be the subset of H1ðOÞ of functions satisfying

DcðuÞ :¼
Z
O
½jHuj2 þ cu2 �dx � 1 ð3:5Þ

Define B : H1ðOÞ ! ½0;1Þ and h:; :ir by

BðuÞ :¼
Z
@O

ru2 ds and hu; vir :¼
Z
@O

ruv ds: ð3:6Þ

Consider the variational principle ðS1Þ of maximizing B on K and define

b1 :¼ sup
u2K

BðuÞ: ð3:7Þ

We shall show that the maximizer u1 of this problem is an eigenfunction of the
Steklov problem (3.4) corresponding to the least eigenvalue m1 and that b1 ¼ m�1

1 .
To do this we first need some technical results.

Theorem 3.1. Assume that O; @O; c; r satisfy ðB2Þ, ðA1Þ and ðA2Þ. Then B and Dc

are convex, continuous and G-differentiable on H1ðOÞ with

hDc
0ðuÞ; vi ¼ 2

Z
O
½Hu � Hvþ cuv �dx; ð3:8Þ

and

hB0ðuÞ; vi ¼ 2

Z
@O

ruv ds for all u; v 2 H1ðOÞ: ð3:9Þ

Moreover B is also weakly continuous on H1ðOÞ.

Proof. When u; v are in H1ðOÞ and n � 3 then from the Sobolev theorem, u2; v2 will
be in LqðOÞ for 1 � q � n=ðn� 2Þ. Holder’s inequality yields that

Z
O
c ðu2 � v2Þdx

����
���� � ck kp u2 � v2

�� ��
p0
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where p and p0 are conjugate indices. When c satisfies (A1), this implies that Dc is
continuous. This proof also holds when n ¼ 2.

Suppose that fum : m � 1g converges weakly to u in H1ðOÞ. The compact trace
theorem implies that Gum converges strongly to Gu in L2ð@O;dsÞ. Apply Holder’s
inequality then we see that B is weakly continuous on H1ðOÞ when r satisfies (A2).

The proofs that the G-derivatives B0;D0
c exist and are given by (3.8)–(3.9) are

straightforward. Since these functionals are positive, quadratic and G-differentiable
on H1ðOÞ, they are convex. &

The following result is needed to prove that K is bounded in H1ðOÞ.

Theorem 3.2. Assume that O; @O; c satisfy ðB2Þ and ðA1Þ. Then there is an a > 0
such that

DcðuÞ � a
Z
O
u2 dx for all u 2 H1ðOÞ: ð3:10Þ

Proof. To prove this inequality consider the variational problem of minimizing
DcðuÞ on the subset S of H1ðOÞ of functions satisfying uk k2¼ 1.

Let fum : m � 1g be a minimizing sequence for this problem and define

a :¼ inf
u2S

DcðuÞ

For all sufficiently large m, umk k21;2 < aþ 2, so this sequence is bounded in H1ðOÞ.
Thus it has a weakly convergent subsequence fumj

: j � 1g which converges weakly
to a limit ûu in H1ðOÞ. From Rellich’s theorem this subsequence converges strongly to
ûu in L2ðOÞ so ûu is in S. Thus DcðûuÞ ¼ a as the functional is weakly l.s.c.

If a ¼ 0, then Hûu � 0 on O so ûu must be constant as O is connected. In this case,
the assumption (A1) on c provides a contradiction, so a > 0 as claimed. The inequal-
ity (3.10) now follows for all u in H1ðOÞ by homogeniety. &

When (B2) and (A1) hold, we will find it convenient to use the weighted inner
product

½u; v�c :¼
Z
O
½Hu � Hvþ cuv� dx: ð3:11Þ

and the associated norm uk kc. The preceding theorem then yields

Corollary 3.3. Assume (A1) and (B2) hold, then �k kc is an equivalent norm on
H1ðOÞ and K is a bounded closed convex subset of H1ðOÞ.

Proof. There is a C1 such that uk k2c � C1 uk k21;2 since Dc is continuous and
quadratic on H1ðOÞ.

Conversely, from (3.10), we have

uk k21;2� ð1þ a�1Þ uk k2c
Thus the two inner products are equivalent and K has the claimed properties. &
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This result enables us to prove the following existence result for solutions of the
variational problem ðS1Þ.

Theorem 3.4. Assume that O; @O; c; r satisfy (B2), (A1) and (A2). Then b1 is
finite and there are maximizers �u1 of B on K. These maximizers satisfy
u1k kc ¼ 1 and (3.4). The corresponding eigenvalue m1 is the least eigenvalue of

(3.4) and b1 ¼ m�1
1 .

Proof. From the results of Corollary 3.3, K is weakly compact in H1ðOÞ. Since B is
weakly continuous, it attains its supremum on K at a point u1 in K and this supre-
mum is finite. If u1k kc < 1 then there is a k > 1 such that ku1 is in K and then
Bðku1Þ ¼ k2Bðu1Þ > Bðu1Þ. This contradicts the maximality of u1 so we must have
u1k kc ¼ 1 .

A Lagrangian functional for the problem ðS1Þ is given by L : H1ðOÞ
� ½0;1Þ ! R defined by

Lðu; lÞ :¼ l
Z
O
½jHuj2 þ cu2 �dx� 1

� �
�

Z
@O

ru2 d s: ð3:12Þ

The problem of maximizing B on K is equivalent to finding an inf-sup point of L on
its domain. Any such maximizer will be a critical point of Lð�; lÞ on H1ðOÞ so it is a
solution of

l
Z
O
½Hu � Hvþ cuv� dx �

Z
@O

ruv ds ¼ 0 for all v 2 H1ðOÞ: ð3:13Þ

When l > 0 this has the form (3.4) with m ¼ l�1. If l ¼ 0, then (3.13) implies that the
maximum value is zero which is not true. Thus (3.4) holds at the maximizer.

If u1 is a maximizer, then the corresponding eigenvalue m1 in (3.4) satisfies

u1k k2c¼ 1 ¼ mBðu1Þ

upon putting u ¼ v ¼ u1. Hence b1 ¼ m�1
1 .

If m1 is not the least positive eigenvalue of (3.4), there will be a nonzero ~uu in
H1ðOÞ satisfying (3.4) with ~mm < m1. Normalize it to have c-norm 1. Then (3.4) implies
that ~mm satisfies

~mmBð~uuÞ ¼ 1:

Hence Bð~uuÞ > b1 which is impossible so m1 is minimal. &

Corollary 3.5. Assume O; @O; c; r satisfy (B2), (A1) and (A2). Then, for all
u 2 H1ðOÞ,

Z
O
½jHuj2 þ c u2 �dx � m1

Z
@O

ru2 ds; ð3:14Þ

where m1 > 0 is the least Steklov eigenvalue of (3.4). If equality holds here then u is
a multiple of an eigenfunction of (3.4) corresponding to m1.
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Proof. The inequality holds if u � 0. Otherwise let v :¼ u= uk kc. Then v 2 K and
BðvÞ � b1. Homogeniety of these functionals then yields (3.14). &

This inequality (3.14) is the H1-trace inequality for the operator L. The case
cðxÞ � 1, is discussed in Horgan (1979) where some lower bounds for m1 on 1- and
2-d regions are found. The choice uðxÞ � 1 here yields an upper bound on the first
Steklov eigenvalue:

m1 �
Z
O
cðxÞdx:

Note that the requirements (A2) for r permit the choice rðxÞ :¼ cwSðxÞ where S is
any s-measurable subset of @O; wS is the characteristic function of S and c is chosen
to normalize r. Then (3.14) provides an upper bound on

Z
S
u2 ds in terms of the c-norm of u on O:

4. VARIATIONAL PRINCIPLES FOR SUCCESSIVE
STEKLOV EIGENVALUES

Given the first J Steklov eigenvalues and corresponding c-orthonormal eigen-
functions of ðL; rÞ we shall now describe how to find the next eigenvalue mJþ1 and
a corresponding normalized eigenfunction. Assume that the first J eigenvalues are
0 < m1 � m2 � � � � � mJ and that fu1; u2; . . . ; uJg is a corresponding family of
c-orthonormal eigenfunctions of (3.4). This implies that

hGuj;Gukir ¼ m�1
j djk ð4:1Þ

To find mJþ1, let

KJ :¼ f u 2 K : hGu;Gujir ¼ 0 for 1 � j � Jg ð4:2Þ

Consider the variational problem ðSJþ1Þ of maximizing B on KJ and define

bJþ1 :¼ sup
u2KJ

BðuÞ: ð4:3Þ

Theorem 4.1. Assume that O; @O; c; r satisfy ðB2Þ, ðA1Þ and ðA2Þ. Then KJ is a
bounded closed convex set in H1ðOÞ, bJþ1 is finite and there are maximizers
�uJþ1 of B on K. These maximizers satisfy uJþ1k kc ¼ mJþ1 GuJþ1k k2r ¼ 1, (3.4) with
mJþ1 :¼ b�1

Jþ1 and

½uJþ1; uj�c ¼ hGuJþ1;Gujir ¼ 0 for 1 � j � J : ð4:4Þ

Moreover mJþ1 is the smallest eigenvalue of this problem greater than or equal to mJ .
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Proof. The linear functionals bjðuÞ :¼ hGu;Gujir are continuous on H1ðOÞ since
(A2) and the trace theorem hold. Hence KJ is a bounded closed convex subset, as
K is. Thus KJ is weakly compact in H1ðOÞ, so B has a finite maximum on K and
attains this maximum on K. By symmetry of the functionals, if uJþ1 is a maximizer
so is �uJþ1.

The fact that uJþ1k kc ¼ 1 holds just as in the proof of Theorem 3.4. Hence if
(3.4) holds then mJþ1 � bJþ1 ¼ 1. The proof that (3.4) holds is described below. When
it holds substitute uj for v and uJþ1 for u, then the definition of KJ implies (4.4). The
proof that mJþ1 is the smallest eigenvalue greater than or equal to mJ is the same as
the last part of the proof of Theorem 3.4. &

To complete the above proof, it is necessary to show that the maximizers satisfy
(3.4). This may be done using a multiplier type argument similar to that of the proof
of Theorem 3.4. A more informative proof, using elementary ideas from convex
analysis is as follows.

When C is a closed convex set in a real Hilbert space H, let IC : H ! ½0;1� be
the indicator functional of C defined by ICðuÞ :¼ 0 for u 2 C, and ICðuÞ :¼ 1 when
u 62C.

When C is the closed unit ball of radius 1 in a closed subspace V of H, then
its subdifferential is given, when u 2 C, by @ICðuÞ ¼ V? when uk k < 1 and
@ICðuÞ ¼ fluþ w : l � 0 & w 2 V?g when uk k ¼ 1. Here V? is the orthogonal
complement of V in H. The proof of this a nice exercise using the sharp form of
Schwarz’ inequality.

The extremality result that will be used is the following.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H and
F : H ! R be a G-differentiable functional on H. If ûu maximizes F on C, then
ûu satisfies

DFðuÞ 2 @ICðuÞ ð4:5Þ

When C is a closed ball, centered at the origin, in a closed subspace V of H, and ûu

maximizes F on C, then ûu satisfies

½DFðuÞ;h� ¼ ½luþ w;h� for some l � 0; w 2 V? and all h 2 H: ð4:6Þ

This result is Theorem 2.1. In Auchmuty (2004) and the proof is straightforward.
For the problem ðSJþ1Þ take KJ for C, B for F and H1ðOÞ for H. Then the extrem-
ality condition satisfied at a maximizer of B on KJ is that uJþ1 satisfies

hu; vir ¼ ½luþ w; v�c for all v 2 H1ðOÞ ð4:7Þ

where l � 0 and w is in the subspace spanned by fu1; u2; . . . ; uJg. Substitute uj for v
here then, since uJþ1 is in KJ , one finds that

½w; uj�c ¼ 0 for each 1 � j � J
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so w ¼ 0. If l ¼ 0, then BðuJþ1Þ ¼ 0, so uJþ1 is not a maximizer. Hence l > 0, or
(3.4) holds with m ¼ l�1.

This process may be iterated to produce a countable increasing sequence
fmj : j � 1g of Steklov eigenvalues for ðL; rÞ. These eigenvalues have the following
property.

Theorem 4.3. Assume that O; @O; c; r satisfy ðB2Þ, ðA1Þ and ðA2Þ. Each eigen-
value mj of ðL; rÞ has finite multiplicity and mj ! 1 as j ! 1.

Proof. Suppose the sequence is bounded above by a finite m̂m. The corresponding
sequence of eigenfunctions is an c-orthonormal set in H1ðOÞ. Hence it converges
weakly to zero. The traces fGuj : j � 1g of these functions will converge strongly
to 0 in L2ð@O;dsÞ as G is compact. Then (A2) implies that BðujÞ converges to zero
as j ! 1. However (4.1) implies that

BðujÞ � m̂m�1 > 0 for all j � 1:

This contradiction implies there is no such upper bound m̂m and the theorem
follows. &

5. ORTHOGONAL TRACE SPACES FOR H1(O)

In this section, we shall describe a c-orthogonal decomposition of H1ðOÞ and
show that the Steklov eigenfunctions for ðL; rÞ will be a basis of the c-orthogonal
complement of H1

0ðOÞ. Throughout this section, O will be assumed to satisfy (B2).
Let C1

cðOÞ be the set of all real-valued functions on O which are C1 on O and
have compact support. Let H1

0ðOÞ be the closure of C1
cðOÞ in the H1-norm.

A function u 2 H1ðOÞ is said to be a H1-weak solution of

LuðxÞ :¼ cðxÞuðxÞ � DuðxÞ ¼ 0 on O ð5:1Þ

whenever

½u;j�c :¼
Z
O
½ cujþ Hu � Hj � dx ¼ 0 ð5:2Þ

for all j 2 C1
cðOÞ. That is, u is H1-weak solution of (5.1) if and only if u is c-ortho-

gonal to C1
cðOÞ. Define W to be the subspace of H1ðOÞ which is c-orthogonal to

H1
0ðOÞ, then the following lemma follows from the definition of H1

0ðOÞ

Lemma 5.1. Assume O; @O; c satisfy (B2) and (A1) and W as above. A function
u 2 H1ðOÞ is a H1-weak solution of (5.1) if and only if u 2 W .

The subspace H1
0ðOÞ may be characterized as the null space of the trace operator

G defined in Sec. 2. When the following condition holds, this may be expressed in
terms of B.
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(A3). r satisfies (A2) and is strictly positive s a.e. on @O.

Proposition 5.2. Assume O; @O; c satisfy (B2) and (A1) and r satisfies (A3). Then
u 2 H1ðOÞ and BðuÞ ¼ 0 if and only if u 2 H1

0ðOÞ.

Proof. When u 2 H1ðOÞ and BðuÞ ¼ 0 then Gu ¼ 0 in L2ð@O; rdsÞ and thus it
is 0 s a:e: on O as (A3) holds. From Corollary 1.5.1.6 of Grisvard (1985), this
implies that u 2 H1

0ðOÞ.
Conversely when u 2 H1

0ðOÞ, there is a sequence fum : m � 1g 	 C1
cðOÞ such that

um ! u in the c-norm. Since B is continuous and BðumÞ ¼ 0 for all m, then
BðuÞ ¼ 0. &

These results may be written as

H1ðOÞ ¼ H1
0ðOÞ 
c W or H1ðOÞ ¼ ker G
c ker L:

Here 
c indicates a c-orthogonal direct sum. In many treatments of elliptic
boundary value problems the closed subspace W is identified with the fractional
Hilbert space H1=2ð@OÞ. Here we shall characterize it in terms of the coefficients in
expansions involving normalized Steklov eigenfunctions.

Theorem 5.3. Assume O; @O; c satisfy ðB2Þ and ðA1Þ, r satisfies ðA3Þ. The
sequence fuj : j � 1g of Steklov eigenfunctions for ðL; rÞ is a maximal c-ortho-
normal subset of W.

Proof. Each uj is in W as the choice v 2 C1
cðOÞ in (3.5) yields that (5.2) holds. They

are c-orthonormal from Theorem 4.1. If the sequence defined in Sec. 4 is not
maximal then there is a w 2 W with wk kc ¼ 1 and ½w; uj�c ¼ 0 for all j � 1.

If BðwÞ > 0, then there will be a J such that BðwÞ > bJþ1 from Theorem 4.3.
This contradicts the definition of uJþ1 as w will be in KJ . If BðwÞ ¼ 0, then
Proposition 5.2 implies w ¼ 0, which contradicts the definition of w. Hence the
theorem follows. &

This result may be interpreted as saying that W is the closed subspace of H1ðOÞ
with the Schroedinger Steklov eigenfunctions fuj : j � 1g as a c-orthonormal basis.
Then Parseval’s theorem for orthogonal expansions in a real Hilbert space yields
that each function u in W has a unique representation of the form

u ¼
X1
j¼1

cj uj with cj :¼ ½u; uj�c and uk k2c ¼
X1
j¼1

jcjj2: ð5:3Þ

The trace of such a function on @O is given by

Gu ¼
X1
j¼1

cj Guj with Guk k2r ¼
X1
j¼1

m�1
j jcjj2: ð5:4Þ
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This follows from the formulae in Theorem 4.1 for Guk kr. In particular, the space
W is precisely the space of all functions on O with expansions of the form (5.3)
and for which the last sum in (5.3) is finite. The trace of such functions on @O will
be the set of all functions of the form (5.4) for which the last sum in (5.3) is finite.
Such traces will be in the weighted space L2ð@O; rdsÞ and the trace operator
G : H1ðOÞ ! L2ð@O; rdsÞ will be a compact linear map with operator norm
Gk k ¼ m�1=2

1 .
Let wJ :¼

PJ

j¼1 cj uj be the Jth partial sum of the Steklov expansion (5.3) and

GJ : H
1ðOÞ ! L2ð@O; rdsÞ be the corresponding partial trace defined by

GJu :¼ GwJ : ð5:5Þ

Then

ðG� GJÞuk kr ¼ m�1=2
Jþ1 uk kc ð5:6Þ

so these partial Steklov expansions provide very good approximations for the trace

of an H1-function in L2ð@O; rdsÞ.

6. THE A-HARMONIC STEKLOV EIGENPROBLEM

The A-harmonic Steklov eigenproblem is that of finding non-trivial solutions of
the system

HðAðxÞHsÞ ¼ 0 on O subject to ð6:1Þ

ðAðxÞHs Þ � n ¼ dru on @O: ð6:2Þ

The n� n matrix valued function AðxÞ :¼ ðajkðxÞÞ will be assumed to satisfy the
following conditions:

(A4). AðxÞ is a real symmetric matrix whose entries are continuous on O and there
exist constants a1 � a0 > 0 such that

a0jxj2 � ðAðxÞxÞ � x � a1jxj2 for all x 2 O; x 2 Rn: ð6:3Þ
The weak form of (6.1)–(6.2) is to find non-trivial ðd; sÞ in R� H1ðOÞ satisfying
Z
O
ðAðxÞHsðxÞÞ � HvðxÞ dx� d

Z
@O

rðxÞsðxÞvðxÞds ¼ 0 ð6:4Þ

for all v 2 H1ðOÞ. This will be called the A-harmonic Steklov eigenproblem with
weight r on @O. When AðxÞ � In, Eq. (6.1) is Laplace’s equation and then (6.4) will
be called the harmonic Steklov eigenproblem.

The harmonic version of this problem has been studied for a long time, espe-
cially as it has been arises as a model for the sloshing of a perfect fluid in a tank.
See Fox and Kuttler (1983) or McIver (1989) for treatments of this problem.
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Whenever O obeys (B1), then d0 ¼ 0 is a simple eigenvalue of (6.4) with the
associated eigenfunction s0ðxÞ � 1. Upon substituting v ¼ s in (6.2), one sees that,
provided (A2) and (A4) hold, the A-harmonic Steklov eigenvalues are positive.

In this section, a variational problem for the first strictly positive eigenvalue of
(6.4) will be described and the associated trace inequality derived.

Consider the bilinear and quadratic forms on H1ðOÞ defined respectively by

Aðu; vÞ :¼
Z
O
ðAðxÞHuðxÞÞ � HvðxÞ dxþ

Z
@O

rðxÞuðxÞvðxÞds; ð6:5Þ

A0ðuÞ :¼
Z
O
ðAðxÞHuðxÞÞ � HuðxÞdx: ð6:6Þ

When r;A satisfy (A2) and (A4), A is an inner product on H1ðOÞ and the associated
norm is denoted uk kA. The following provides some basic results about these func-
tionals and the inequality will enable us to show that the A-norm and the standard
norm on H1ðOÞ are equivalent.

Theorem 6.1. Assume that O; @O; r; A satisfy (B2), (A2) and (A4). Then A0 is
convex, continuous and G-differentiable on H1ðOÞ with

A0
0ðuÞðvÞ ¼ 2

Z
O
ðAHuÞ � Hv dx; for all u; v 2 H1ðOÞ: ð6:7Þ

There is a constant a0 > 0 such that

uk k2A :¼
Z
O
ðAHuÞ � Hu dxþ

Z
@O

ru2 ds � a0

Z
O
u2 dx for all u 2 H1ðOÞ:

ð6:8Þ

Proof. The assumptions (A4) are sufficient to prove the first sentence using
straightforward arguments.

To prove the inequality consider the variational problem of minimizing uk k2A on
the subset S of H1ðOÞ of functions satisfying uk k2¼ 1. Define

a0 :¼ inf
u2S

uk k2A:

The theorem will hold provided we can show that a0 > 0.
Let fum : m � 1g be a minimizing sequence for this variational problem. Such a

sequence is bounded in H1ðOÞ since (6.3) holds. Thus it has a weakly convergent sub-
sequence with a weak limit ûu. ûu is in S from Rellich’s theorem and the functional is
weakly l.s.c. on S, so ûuk k2A ¼ a0. Suppose a0 ¼ 0 then ûu is constant on O and
BðûuÞ ¼ 0. This implies that ûu � 0 so it will not be in S. This contradiction implies
that a0 > 0 and the inequality (6.8) follows by homogeniety. &
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It is worth noting that, the extremal conditions for the variational problem
described in the proof, imply that the constant a0 above is the least eigenvalue of
the problem

�HðAHuÞ ¼ au on O and subject to ðAHuÞ � n þ ru ¼ 0 on @O: ð6:9Þ

The weak form of this is to find non-trivial ða; uÞ in R� H1ðOÞ satisfying
Z
O
½ðAHuÞ � Hv� auv �dxþ

Z
@O

ruv ds ¼ 0 for all v 2 H1ðOÞ: ð6:10Þ

This shows that the least eigenvalue of (6.9) is the optimal choice of a0 in (6.8) and
that equality holds here for corresponding eigenfunctions of (6.9).

Corollary 6.2. Assume (A2), (A4) and (B2) hold, then �k kA and the standard norm
on H1ðOÞ are equivalent.

Proof. From (A2) and Holder’s inequality,

jBðuÞj � rk k1 Guk k22;@O � C rk k1 uk k21;2

as G is continuous. Substitute in the definition of the norm then

uk k2A � ða1 þ C rk k1Þ uk k21;2: ð6:11Þ

Conversely, use (A4) and the inequality (6.8) of Theorem 6.1 to obtain

uk k21;2 � ða0�1 þ a0�1Þ uk k2A

These two inequalities show that the norms are equivalent on H1ðOÞ. &

With this result, a variational principle for the least non-zero eigenvalue of the
harmonic Steklov eigenproblem may be described.

Define BA to be the unit ball of H1ðOÞ in the A-norm. It is the subset of functions
in H1ðOÞ satisfying

Z
O
ðAHuÞ � Hu dxþ

Z
@O

ru2 ds � 1: ð6:12Þ

Let B1A be the subset of BA of functions which also satisfy

½u; s0�A ¼
Z
@O

rGu ds ¼ 0: ð6:13Þ

Here s0ðxÞ � 1 on O so B1A will also be a bounded closed convex subset of H1ðOÞ.
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Consider the variational principle ðSH1Þ of maximizing B on B1A and define

g1ðr;AÞ :¼ sup
u2B1A

BðuÞ: ð6:14Þ

The next theorem shows that the maximizer s1 of this problem is an eigenfunction of
the harmonic Steklov problem (6.14) corresponding to the least non-zero eigenvalue
d1 and that g1 and d1 are related in a simple way.

Theorem 6.3. Assume that O; @O; r; A satisfy (B2), (A2) and (A4). Then d1 is
finite and there are maximizers �s1 of B on B1A. These maximizers satisfy
s1k kA ¼ 1 and (6.4). The corresponding eigenvalue d1 is the least non-zero eigen-

value of (6.4) and g1 ¼ ð1þ d1Þ�1.

Proof. The existence argument is the same as that of Theorem 3.4 with B1A in
place of K and the A-norm in place of the c-norm. The equations satisfied at the
maximizers can be found from Theorem 4.2.

Let V1 be the subspace of H
1ðOÞ of all functions that satisfy (6.13) and use B in

place of F. Then (4.6) says that s1 satisfiesZ
@O

rsv ds ¼ Aðlsþ w; vÞ for all v 2 H1ðOÞ ð6:15Þ

where l � 0 and w is a multiple of s0ðxÞ. In terms of integrals, this is

ð1� lÞ
Z
@O

rsv ds� l
Z
O
ðAHsÞ � Hv dx ¼ m

Z
@O

rv ds ð6:16Þ

for all v 2 H1ðOÞ, some m in R and some l � 0. Put s ¼ s1; v � 1 here, then m ¼ 0.
Put s ¼ v ¼ s1 here, then Bðs1Þ ¼ l, so l ¼ g1 > 0. Thus the maximizers satisfy
(6.4) with d ¼ ð1� g1Þ=g1. This proves that s1 is an eigenfunction of the harmonic
Steklov problem with d1 as stated in the theorem. If d1 is not the minimal non-zero
eigenvalue, one can show that g1 is not the supremum of this problem. &

This result yields a different trace inequality for H1-functions. Let H1
@ðOÞ be the

subspace of functions in H1ðOÞ which satisfy (6.13). Given u 2 H1ðOÞ, define

�uu@ :¼
Z
@O

rGu ds and MuðxÞ :¼ uðxÞ � �uu@: ð6:17Þ

Then Mu 2 H1
@ðOÞ.

Corollary 6.4. Assume O; @O; r; A satisfy (B2), (A2) and (A4) and d1 as above.
Then, for all u 2 H1

@ðOÞ,Z
O
ðAHuÞ � Hu dx � d1

Z
@O

r jGuj2 ds: ð6:18Þ

Proof. This follows from (6.14) by homogeniety of the functional and the
constraint and uses the expression in Theorem 6.3 for g1. &
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Note that this inequality holds for all u 2 H1ðOÞ with Gu on the right hand side
replaced by GMu.

When AðxÞ � In, this inequality has been studied by a number of authors includ-
ing Kuttler and Sigillito (1968), Payne (1970) and Wheeler and Horgan (1976). Their
interest centered on finding lower bounds for d1 in terms of geometrical quantities of
O and @O.

7. THE SUBSPACE OF A-HARMONIC FUNCTIONS

In this section, results analogous to those of Secs. 4 and 5 will be described for
the A-harmonic Steklov eigenproblem and an orthonormal basis of the subspace of
A-harmonic functions on O will be described.

Successive A-harmonic Steklov eigenvalues and eigenfunctions may be found
using a variational characterization similar to that for the Schroedinger type opera-
tors in Sec. 4. Assume we know the first J non-zero A-harmonic Steklov eigenvalues
0 ¼ d0 < d1 � � � � � dJ and a corresponding family fs0; s1; . . . ; sJg of A-orthonormal
eigenfunctions of (6.4). From (6.4), they satisfy

hGsj;Gskir ¼ ð1þ djÞ�1 djk for 1 � j; k � J : ð7:1Þ

To find dJþ1, define

BJA :¼ f u 2 BA : hGu;Gsjir ¼ 0 for 0 � j � Jg: ð7:2Þ

Consider the variational problem ðSHJþ1Þ of maximizing B on BJA and define

gJþ1 :¼ sup
u2BJA

BðuÞ: ð7:3Þ

The following theorem describes the essential properties of this variational problem.

Theorem 7.1. Assume that O; @O; r; A satisfy (B2), (A2) and (A4). Then BJA is a
bounded closed convex set in H1ðOÞ, gJþ1 is finite and there are maximizers �sJþ1

of B on BJA. These maximizers satisfy sJþ1k kA ¼ 1, (6.4) with gJþ1 :¼
ð1þ dJþ1Þ�1 and

AðsJþ1; sjÞ ¼ hGsJþ1;Gsjir ¼ 0 for 0 � j � J : ð7:4Þ

Moreover dJþ1 is the smallest eigenvalue of this problem greater than or equal to dJ .

Proof. The proof of existence is similar to that of Theorem 4.1. The fact that the
maximizers are solutions of (6.4) with dJþ1 :¼ g�1

Jþ1 � 1 follows in a similar manner
to the proof of Theorem 6.3 with a subspace VJ in place of V1. The minimality of
dJþ1 is a consequence of the maximality of gJþ1. &
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This process may be iterated to produce a countable increasing sequence
fdj : j � 1g of harmonic Steklov eigenvalues. These eigenvalues have the following
property – whose proof is similar to that of Theorem 4.3.

Theorem 7.2. Assume that O; @O; r; A satisfy (B2), (A2) and (A4). Each
A-harmonic Steklov eigenvalue dj has finite multiplicity and dj ! 1 as j ! 1.

A function u 2 H1ðOÞ is said to be a A-harmonic on O provided

Z
O

ðAHuÞ � Hjdx ¼ 0 for all j 2 C1
cðOÞ: ð7:5Þ

This is a distributional version of Eq. (6.1).
Define HAðOÞ to be the subspace of H1ðOÞ which is A-orthogonal to H1

0ðOÞ
then, just as in Sec. 5, the density of C1

cðOÞ in H1
0ðOÞ implies that there is an decom-

position

H1ðOÞ ¼ H1
0ðOÞ 
A HAðOÞ:

with the subspaces here being A-orthogonal.
The following result shows that the family of A-orthonormal harmonic Steklov

eigenfunctions obtained above is a basis of the space HAðOÞ of all A-harmonic func-
tions onO. It is proved using exactly the same argument as in the proof of Theorem 5.3.

Theorem 7.3. Assume O; @O; r; A satisfy (B2), (A3) and (A4). Then the sequence
of A-harmonic Steklov eigenfunctions fsj : j � 0g is a maximal A-orthonormal
subset of HAðOÞ.

8. EXAMPLES OF HARMONIC STEKLOV SPECTRA

It is of interest to describe the harmonic eigenvalues and eigenfunctions for some
standard regions in Rn. Suppose that the matrix AðxÞ � In and that rðxÞ � r1 on @O
where the constant r1 is normalized so that (3.3) holds.

In the case n ¼ 2 and O is the unit disc, then r1 ¼ 1=2p and the harmonic
Steklov eigenfunctions are given by s0 as before and, in polar coordinates x ¼ ðr; yÞ,

s2k�1ðxÞ :¼ rk sin ky; s2kðxÞ :¼ rk cos ky; for k � 1; ð8:1Þ
d2k�1 ¼ d2k ¼ k when k � 1: ð8:2Þ

Similarly when n ¼ 3 and O is the unit sphere, then r1 ¼ 1=4p and the harmonic
Steklov eigenfunctions will be s0 � 1 and, in spherical polar coordinates
x ¼ ðr; y;fÞ, with y being the azimuthal angle,

sklðxÞ :¼ rkYklðy;fÞ for k � 1; �k � l � k: ð8:3Þ

Steklov Eigenproblems and Representation of Solutions 337

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

120039655_NFA25_03&04_R2_052504



Here Yklðy;fÞ is the ðk; l; Þth spherical harmonic given by

Yk0ðy;fÞ :¼ PkðcosfÞ; when l ¼ 0; ð8:4Þ
Yklðy;fÞ :¼ Pk

lðcosfÞ cos ly; when 1 � l � k; ð8:5Þ
Yklðy;fÞ :¼ Pk

lðcosfÞ sin ly; when � k � l � �1: ð8:6Þ

The Steklov eigenvalues will again be fk : k � 0g and the eigenvalue k has multipli-
city ð2kþ 1Þ. For a general theory of these issues, see Groemer (1996).

9. STEKLOV SERIES REPRESENTATIONS OF
A-HARMONIC FUNCTIONS

In this section, the preceding results will be used to describe Steklov spectral
representations of the solutions of Eq. (6.1) subject to various boundary conditions.

First consider the Dirichlet problem for this equation and assume the region O
satisfies (B2). That is, consider the problem of finding a solution ûu of (7.5) which is in
H1ðOÞ and such that Gu ¼ g 2 L2ð@O;dsÞ. Any such solution will be in HAðOÞ.
From Theorem 7.3, the fact that fsj : j � 0g is an A-orthonormal basis of HAðOÞ
implies that

ûuðxÞ ¼
X1
j¼0

cj sjðxÞ with cj :¼ Aðûu; sjÞ: ð9:1Þ

Since G : H1ðOÞ ! L2ð@O;dsÞ is compact, the trace of ûu on @O will be

GûuðxÞ ¼
X1
j¼0

cj GsjðxÞ ð9:2Þ

Multiply this by rGsk and integrate over @O, then the Dirichlet boundary data yields

ck ¼ ð1þ dkÞ hg;Gskir for k � 0: ð9:3Þ

That is, the solution of this Dirichlet problem is given by the series in (9.1) with the
coefficients defined by (9.3).

Parseval’s theorem then yields that

uk k2A ¼
X1
k¼0

c2k ¼
X1
k¼0

ð1þ dkÞ2 jhg;Gskirj2: ð9:4Þ

This shows that this Dirichlet problem has a H1-solution if and only if g satisfies

X1
k¼0

ð1þ dkÞ2 jhg;Gskirj2 < 1 ð9:5Þ

338 Auchmuty

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

120039655_NFA25_03&04_R2_052504



This is a spectral form of the usual criterion that g 2 H1=2ð@OÞ and the above results
may be summarized as follows.

Theorem 9.1. Assume O; @O; r; A satisfy (B2), (A3) and (A4), fdj : j � 0g is the
set of A-harmonic Steklov eigenvalues for O and fsj : j � 0g is a corresponding
sequence of orthonormal A-harmonic Steklov eigenfunctions. Then there is a solu-
tion ûu in H1ðOÞ of the Dirichlet problem for (6.1) if and only if g satisfies (9.5).
In this case, the solution can be represented in the form (9.1)–(9.3) and the series
converges strongly in the H1-norm.

Let ûuM be the Mth partial sum of the series in (9.1) then, from (9.3), one has

ûuMðxÞ ¼
Z
@O

PMðx; yÞgðyÞrðyÞdsðyÞ ð9:6Þ

with

PMðx; yÞ :¼
XM
k¼0

ð1þ dkÞskðxÞGskðyÞ: ð9:7Þ

This provides a finite rank approximation to the solution of the problem in terms of
an integral operator. These partial sums converge strongly to ûu when g satisfies (9.5).

When AðxÞ � In on O and rðxÞ is constant on @O, this result may be interpreted
as a representation of the Poisson kernel for the Laplacian on the region O. This
Poisson kernel may be regarded as the integral kernel associated with the limit as
M ! 1 in (9.6)–(9.7).

This methodology may be used to obtain similar representations of H1-solutions
of Eq. (6.1) for general Robin, or Neumann, boundary data. Suppose now that the
boundary condition is

ð1� tÞðAHuÞ � nðxÞ þ trðxÞuðxÞ ¼ gðxÞ on @O; 0 � t < 1: ð9:8Þ

A function ûu in H1ðOÞ is defined to be an H1-solution of Eq. (6.1) subject to (9.8)
provided

Z
O
ðAHuÞ � Hv dxþ ð1� tÞ�1

Z
@O

ðtru� gÞv ds ¼ 0 for all v 2 H1ðOÞ: ð9:9Þ

These weak solutions may be described using a variational principle. Consider the
functional D : H1ðOÞ � ½0; 1Þ ! R defined by

Dðu; tÞ :¼
Z
O
ðAHuÞ � Hu dxþ ð1� tÞ�1

Z
@O

ðtru� 2gÞu ds: ð9:10Þ

The variational problem is to minimize Dð�; tÞ on H1ðOÞ and to find

bðtÞ :¼ inf
u2H1ðOÞ

Dðu; tÞ: ð9:11Þ
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This is a standard variational problem and the essential results for the Robin
problem ð0 < t < 1Þ may be summarized as follows.

Theorem 9.2. Assume O; @O; r; A satisfy (B2), (A2) and (A4), g is in L2ð@O;dsÞ
and 0 < t < 1. Then there is a unique minimizer ûu of Dð�; tÞ on H1ðOÞ and it is the
unique H1-solution of (9.9). Moreover there is a positive Cðt;OÞ such that

ûuk k1;2 � Cðt;OÞ gk k2;@O: ð9:12Þ

Proof. The functional Dð�; tÞ is convex and continuous on H1ðOÞ, so it is weakly
l.s.c. From (A4) and Theorem 6.1, there is a constant a1ðtÞ > 0 such that

Dðu; tÞ � a0

2
Huk k22 þ a1ðtÞ uk k22 � 2ð1� tÞ�1

gk k2;@O uk k2;@O
� a2 uk k21;2 � C1ðtÞ gk k2;@O uk k1;2

upon using the definition of the H1ðOÞ-norm and the trace theorem for u. This
implies that Dð�; tÞ is coercive and strictly convex on H1ðOÞ, so it attains its infimum
on H1ðOÞ and this minimizer is unique. From the definition, bðtÞ � 0, so the last
inequality implies that (9.12) holds with Cðt;OÞ � C1ðtÞ=a2. &

This solution will have a representation of the form (9.1) as (9.9) implies that ûu is
in HAðOÞ. Put v ¼ sk in (9.9) and use the properties of the eigenfunctions to deduce
that

ck ¼ ð1þ dkÞ hg;Gski@
ð1� tÞdk þ t

for k � 0: ð9:13Þ

Thus the unique solution described in Theorem 9.2, has the representation

ûuðxÞ ¼
X1
k¼0

ð1þ dkÞ hg;Gski@
ð1� tÞdk þ t

skðxÞ ð9:14Þ

when g 2 L2ð@O;dsÞ and 0 < t < 1. The partial sums of this series converge strongly
to ûu in H1ðOÞ as the fsk : k � 0g constitute an orthonormal basis of HAðOÞ from
Theorem 7.3. Again these partial sums may be written in terms of a boundary integral
operator which is a sum involving the Steklov eigenvalues and eigenfunctions.
Namely

ûuMðxÞ ¼ RMðtÞ gðxÞ :¼
Z
@O

RMðx; y; tÞgðyÞrðyÞdsðyÞ ð9:15Þ

with

RMðx; y; tÞ :¼
XM
k¼0

ð1þ dkÞ
ð1� tÞdk þ t

skðxÞGskðyÞ: ð9:16Þ
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The estimate (9.12) shows that the solution operator RðtÞ will be a bounded linear
map of L2ð@O;dsÞ into H1ðOÞ and the integral operators RMðtÞ defined above
converge strongly to RðtÞ as M ! 1.

The Neumann problem corresponds to taking t ¼ 0 in (9.8)–(9.10). In this case,
bð0Þ defined by (9.11) need not be finite and (9.9) need not have a solution. Put
vðxÞ � 1 on O and substitute, then a necessary condition for (9.9) to have a solution
is that

Z
@O

g ds ¼ 0: ð9:17Þ

The following result shows that this condition is also sufficent when g 2 L2ð@O;dsÞ.

Theorem 9.3. Assume O; @O; r; A satisfy (B2), (A2) and (A4) and g is in
L2ð@O;dsÞ. Then bð0Þ is finite if and only if (9.17) holds. In this case, there is a
unique minimizer ûu of Dð�; 0Þ in H1

@ðOÞ and there is a 1-parameter family of
H1-solutions of (9.9) given by u :¼ ûuþ ks0ðxÞ where k is any constant.

Proof. From (9.10),

Dðu; 0Þ ¼
Z
O
ðAHuÞ � Hu dx� 2

Z
@O

gu ds: ð9:18Þ

If (9.17) does not hold take uðxÞ � t. Let jtj ! 1, then one sees that bð0Þ ¼ �1.
Suppose it does hold, and use the decomposition of (6.17). Then Dðu; 0Þ ¼ Dðv; 0Þ
where v :¼ Mu 2 H1

@ðOÞ. The functional Dð�; 0Þ is strictly convex, continuous and
coercive on H1

@ðOÞ, upon using Theorem 6.1 and Corollary 6.4. Hence a unique
minimizer exists on this subspace. The theorem then follows. &

This solution will have a representation of the form (9.1) with c0 ¼ 0. Substitut-
ing this in (9.9) with t ¼ 0; v ¼ sk and using the properties of the functions sk leads to

ck ¼ ð1þ dkÞdk�1

Z
@O

gðGskÞds: ð9:19Þ

Thus the unique solution ûu 2 H1
@ðOÞ of the Neumann problem for (6.1) is given by

ûuðxÞ ¼
X1
k¼1

ð1þ dkÞdk�1hg;Gski@ skðxÞ ð9:20Þ

when g 2 L2ð@O;dsÞ. The partial sums of this series converge strongly to ûu in H1ðOÞ;
they are given by

ûuMðxÞ ¼
Z
@O

NMðx; yÞgðyÞrðyÞdsðyÞ ð9:21Þ
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with

NMðx; yÞ :¼
XM
k¼1

ð1þ dkÞd�1
k skðxÞGskðyÞ: ð9:22Þ

Thus the solution operator for this problem can be regarded as the strong limit of the
family of integral operators defined by (9.21)–(9.22) and (9.20) provides a representa-
tion result.

These results may well be compared to those obtained using the theory of single
and double layer potentials described, for example, in DiBenedetto (1995, Chap. 3),
or Kress (1989, Sec. 6.4).

This result enables us to show that the traces of the A-harmonic Steklov eigen-
functions when r is constant on @O will be a basis of the space L2ð@O;dsÞ. First let ~ss
be the probability measure associated with the surface area measure on @O. That is,

~ssðEÞ :¼ sðEÞ=sð@OÞ
for all Borel measurable subsets E of @O. This corresponds to taking the density
function r1ðxÞ � 1=sð@OÞ on @O.

Let f~ddj : j � 0g be the set of A-harmonic Steklov eigenvalues for O; r1 and
f~sjsj : j � 0g is a corresponding sequence of orthonormal A-harmonic Steklov eigen-
functions.

Define z0ðxÞ � 1 and

zjðxÞ :¼ ~dd1=2j G~sjsjðxÞ for x 2 @O; j � 1: ð9:23Þ

Theorem 9.4. Assume O; @O; r; A satisfy (B2), (A3) and (A4). Then the sequence
fzj : j � 0g defined as above is a maximal orthonormal set in L2ð@O;d~ssÞ

Proof. From Theorem 4.1, this family is orthonormal. Suppose it is not maximal
and there is a function g 2 L2ð@O;d~ssÞ with g 6� 0 and hg; zji@ ¼ 0 for all j � 0. Then
(9.17) holds, so there will be a unique solution ûu 2 H1

@ðOÞ of the Neumann case of
(9.9). This solution is given by (9.20), so it will be identically zero. This contradicts
the assumption that g is non-zero so the sequence must be maximal. &

This leads to a different characterization of the space H1=2ð@OÞ in terms of this
orthonormal basis. Suppose g 2 L2ð@O;d~ssÞ, then g has the representation

gðxÞ ¼ g0 þ
X1
j¼1

gj zjðxÞ with gj :¼ hg; zji@: ð9:24Þ

This will be called the Fourier–Steklov expansion of g on @O. From Eq. (9.23),

gj ¼ ~dd1=2j hg;G~sjsji@ for j � 1 ð9:25Þ

in terms of the Steklov eigenvalues and eigenfunctions of (6.1)–(6.2) and with r1 in
place of r. This leads to the following criterion for the H1-solvability of the Dirichlet
problem for (7.5).
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Corollary 9.5. Assume O; @O; r; A satisfy (B2), (A3) and (A4), gj; ~ddj are defined
as above. The Dirichlet problem for (7.5) subject to u ¼ g on @O has a solution in
H1ðOÞ if and only if

X1
j¼1

~ddj g2j < 1: ð9:26Þ

Proof. Substitute (9.24) and (9.25) in (9.2) and (9.5). Then the Dirichlet problem
will have an H1-solution if and only if

X1
j¼1

ð1þ ~ddjÞ2~dd�1
j g2j < 1

This condition is equivalent to (9.26) as the ~ddj does not remain small as j increases.
&

This result may also be regarded as a characterization of H1=2ð@OÞ as a subspace
of L2ð@O;d~ssÞ. This characteization could be used as a definition of the space
H1=2ð@OÞ. This definition has the advantage that we only require weak regularity
conditions (Lipschitzness) for the boundary in this construction.

It should be noted that these Robin and Neumann problems will have H1-
solutions when the boundary data g 2 H�1=2ð@OÞ. This space contains Lqð@O;dsÞ
for qT � q < 2 where qT ¼ 2ðn� 1Þ=ðn� 2Þ when n � 3 and for 1 < q < 2 when
n ¼ 2. This is proved using a stronger version of the trace theorem and requires a
more careful analysis of the variational principles for the solution. In these cases
the Steklov series representations of the solutions (9.14) and (9.20) remain valid.

10. STEKLOV SERIES REPRESENTATIONS OF SOLUTIONS OF
SCHROEDINGER’S EQUATION

Here the problem of representing the solutions of the homogeneous Schroedinger
equation (5.2) subject to various boundary conditions will be treated.

First consider the case of prescribed Robin ð0 < t < 1Þ, or Neumann ðt ¼ 0Þ
boundary conditions of the form

ð1� tÞ @u
@n

ðxÞ þ trðxÞuðxÞ ¼ gðxÞ on @O; 0 � t < 1: ð10:1Þ

Here g is given and will be assumed to be in L2ð@O;dsÞ – though this can be relaxed
as described at the end of the preceding section.

The weak form of this problem is to find ûu 2 H1ðOÞ satisfying
Z
O
½Hu � Hvþ c uv�dxþ ð1� tÞ�1

Z
@O

ðtru� gÞ v ds ¼ 0 for all v 2 H1ðOÞ:
ð10:2Þ
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There is a variational principle for this problem. Consider the problem of
minimizing the functional F : H1ðOÞ � ½0; 1Þ ! R defined by

Fðu; tÞ :¼
Z
O
½jHuj2 þ c u2�dxþ ð1� tÞ�1

Z
@O

ðtru� 2gÞu ds: ð10:3Þ

Theorem 10.1. Assume O; @O; c; r satisfy (B2), (A1) and (A2), g is in L2ð@O;dsÞ
and 0 � t < 1. Then there is a unique minimizer ûu of Fð�; tÞ on H1ðOÞ, it is the
unique H1-solution of (10.2) and is in the subspace W defined in Sec. 5. Moreover
there is a positive Cðt;OÞ such that

ûuk k1;2 � Cðt;OÞ gk k2;@O: ð10:4Þ

Proof. The functional Fð�; tÞ is convex and continuous on H1ðOÞ from
Theorem 3.1. It is coercive and strictly convex from Theorems 3.1 and 3.2 and
standard inequalities. Hence this problem has a unique minimizer. The formulae
for the G-derivatives in Theorem 3.1 imply that Fð�; tÞ is G-differentiable on
H1ðOÞ and the minimizer satisfies (10.2). Choosing v to have compact support
implies that ûu is in W . The last inequality is proved as in Theorem 9.2. &

Since this solution is in the subspaceW of H1ðOÞ, Theorem 5.3 implies that it has
an expansion in Steklov eigenfunctions of the form

ûuðxÞ ¼
X1
j¼1

cj ujðxÞ with cj :¼ ½ûu; uj�c: ð10:5Þ

Substitute uj for v in (10.2), to see that

cj ¼
mj hg;Guji@
ð1� tÞmj þ t

for j � 1: ð10:6Þ

Hence the unique solution ûu of (10.2) has the Steklov series representation

ûuðxÞ ¼
X1
j¼1

mj hg;Guji@
ð1� tÞmj þ t

ujðxÞ; ð10:7Þ

for 0 � t < 1. In particular, the solution of the Neumann problem is given by

ûuðxÞ ¼
X1
j¼1

hg;Guji@ ujðxÞ: ð10:8Þ

Moreover the partial sums of this series converge strongly to ûu in H1ðOÞ as the fujg
are an orthonormal basis of W . These partial sums are given by

ûuMðxÞ ¼
Z
@O

GMðx; y; tÞgðyÞdsðyÞ ð10:9Þ
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with

GMðx; y; tÞ :¼
XM
j¼1

mj ujðxÞ
ð1� tÞmj þ t

GujðyÞ: ð10:10Þ

These problems were treated extensively in Part B of Bergman and Schiffer (1953)
using a variety of classical methods and restricted to n ¼ 2. The kernel function
defined there by Eq. 2.6, p. 281 is the same operator as in (10.8) – but without
requiring the functions in their expansion to be Steklov eigenfunctions.

The Dirichlet problem for (5.2) may be regarded as the limit t ! 1� of the above
problem with r1 as in the previous Sec. 9 in place of r. It need not have an H1-
solution for each g 2 L2ð@O;dsÞ. If Eq. (5.2) has an H1-solution of the form
(10.5), then the boundary condition Gu ¼ g implies that

cj ¼ mj hg;Gujir1 for j � 1: ð10:11Þ

Thus Parseval’s theorem yields that

uk k2c :¼
Z
O
½jHuj2 þ cu2�dx ¼

X1
j¼1

m2j jhg;Gujir1 j
2: ð10:12Þ

Thus the Dirichlet problem has an H1-solution if and only if this last sum is finite.
This is a spectral form of the usual criterion that g 2 H1=2ðOÞ and the above results
may be summarized as follows.

Theorem 10.2. Assume O; @O; c; r satisfy (B2), (A1) and (A3), fmj : j � 1g is the
set of Steklov eigenvalues for ðL; rÞ and fuj : j � 1g is a corresponding sequence of
orthonormal Steklov eigenfunctions. Then there is a solution ûu in H1ðOÞ of the
Dirichlet problem for (5.2) if and only if the sum on the right hand side of
(10.12) is finite. In this case the solution can be represented in the form (10.5) with
coefficients given by (10.11) and the series converges strongly in the H1-norm.

This result shows when the solution is in H1ðOÞ it may be approximated by
formulae of the form (10.9)–(10.10) with t ¼ 1, and r1ds in place of ds. It also
allows the proof of the completeness of the traces of the Steklov eigenfunctions
in L2ð@O;dsÞ.

Let f~mmj : j � 1g be the set of Steklov eigenvalues for ðL; r1Þ and f ~ujuj : j � 1g is a
corresponding sequence of orthonormal Steklov eigenfunctions. Define

zjðxÞ :¼
ffiffiffi
~mm

p
G ~ujujðxÞ for x 2 @O; j � 1: ð10:13Þ

Theorem 10.3. Assume O; @O; r1; c satisfy (B2), (A1) and (A3). Then the sequence
fzj : j � 1g defined as above is a maximal orthonormal set in L2ð@O;d~ssÞ

Proof. From Theorem 5.3, this family is orthonormal. Suppose it is not maximal
and there is a function g 2 $L2ð@O;d~ssÞ with g 6� 0 and hg; zji@ ¼ 0 for all j � 1.

Steklov Eigenproblems and Representation of Solutions 345

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

120039655_NFA25_03&04_R2_052504



Then there will be a unique solution ûu 2 H1ðOÞ of the Neumann case of (10.2). This
solution is given by (10.7), so it is identically zero. This contradicts the assumption
that g is non-zero so the sequence must be maximal. &

11. NEUMANN TO DIRICHLET MAPS AND
ROBIN TO DIRICHLET MAPS

The Steklov series representations of the solutions of the boundary value
problems described in the last two sections permits us to compare the solutions of
an equation subject to different boundary conditions. In particular it allows a spec-
tral representation of the Neumann to Dirichlet (NtD) map and its inverse, the
Dirichlet to Neumann (DtN), map. For an introduction to this theory, see Sylvester
and Uhlmann (1990). Similar constructions may also be studied with Robin bound-
ary data substituted for either the Dirichlet or Neumann data.

First consider the case of the Schroedinger Steklov problem for ðL; r1Þ. The
solution of the Neumann problem (10.2) with t ¼ 0 is given by Eq. (10.8), which
may be written

ûuðxÞ :¼ NgðxÞ :¼
X1
j¼1

~mm�1=2
j hg; zji@ ujðxÞ; ð11:1Þ

where zj is defined by (10.13). Thus NzkðxÞ ¼ ~mm�1=2
k ukðxÞ for x 2 O and the trace of

this function on @O is given by

GNzkðxÞ ¼ ~mm�1
k zkðxÞ for k � 1: ð11:2Þ

The operator GN is the NtD map and this shows that the restrictions to the bound-
ary of the Steklov eigenfunctions for ðL; r1Þ are the eigenfunctions of this map
corresponding to the eigenvalues ~mm�1

k . In particular, this shows that the operator is

a compact linear map of L2ð@O;d~ssÞ to itself.
The Dirichlet to Neumann map is the inverse of this map and will be a closed,

unbounded linear map of L2ð@O;d~ssÞ to itself.
This also permits the description of a general Robin to Dirichlet (RtD) map. The

H1-solution of a Schroedinger equation subject to the Robin conditions (10.1) is
given by Eq. (10.7)

ûuðxÞ ¼ RðtÞgðxÞ :¼
X1
j¼1

m1=2j hg; zji@
ð1� tÞmj þ t

ujðxÞ: ð11:3Þ

The RtD map will be the operator GRðtÞ and this is a continuous linear map of
L2ð@O;d~ssÞ to itself with

GRðtÞzkðxÞ ¼ ½ð1� tÞ~mmk þ t��1
zkðxÞ for k � 1: ð11:4Þ
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This and Theorem 4.3 imply that GRðtÞ is actually a compact linear map of
L2ð@O;d~ssÞ to itself, and provides a simple spectral representation in terms of the
Steklov eigenfunctions.

A similar analysis holds for the A-harmonic equation. The H1-solution of (6.1)
subject to the Robin boundary condition (9.8) is given by (9.14) so its trace on @O
may be written

GûuðxÞ ¼ GRðtÞgðxÞ :¼ �gg@=tþ
X1
k¼1

ð1þ d�1
k Þ hg; zki@

ð1� tÞdk þ t
zkðxÞ ð11:5Þ

The zk here are defined by (9.23). In particular, this shows that the zk are eigen-
functions of the RtD operator with

GRðtÞzkðxÞ ¼ 1þ d�1
k

ð1� tÞdk þ t
zkðxÞ for k � 1: ð11:6Þ

GRðtÞz0ðxÞ ¼ t�1 z0ðxÞ ð11:7Þ

This and Theorem 7.2 shows that GRðtÞ is a compact linear map of L2ð@O;d~ssÞ to
itself with a simple spectral representation in terms of the Steklov eigenfunctions
when 0 < t < 1.

The Neumann to Dirichlet case corresponds to the case t ¼ 0 and then the com-
patibility condition (9.17) is required. Let L2

mð@O;d~ssÞ be the codimension 1 subspace
of L2ð@O;d~ssÞ of functions on the surface whose surface integral is 0. The NtD
operator GN will be a compact linear transformation of L2

mð@O;d~ssÞ to itself with
the zk; k � 1 defined by (9.23) as eigenfunctions and

GNzkðxÞ ¼ d�2
k ð1þ dkÞ zkðxÞ for k � 1: ð11:8Þ

It may be observed that the results of this section do not require that the boundary
@O be a (union of) C1-manifold(s); our requirements are just that (B1) and (B2) hold.
Hence these results apply to polygonal regions in 2 dimensions and to polyhedral
regions in R3.
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