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ABSTRACT

This paper describes some properties and applications of Steklov eigenproblems
for prototypical second-order elliptic operators on bounded regions in R”".
Results are described for Schroedinger and weighted harmonic equations. A vari-
ational description of the least eigenvalue leads to optimal L2-trace inequalities. It
is shown that the eigenfunctions provide complete orthonormal bases of certain
closed subspaces of H'(Q) and also of L?(0Q, da). This allows the description,
and representation, of solution operators for homogeneous elliptic equations
subject to inhomogeneous Dirichlet, Neumann or Robin boundary data. They
are also used to describe Robin to Dirichlet and Neumann to Dirichlet operators
for these equations, and to describe the spectrum of these operators. The allow-
able regions are quite general; in particular classes of bounded regions with a
finite number of disjoint Lipschitz components for the boundary are allowed.
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1. INTRODUCTION

This paper will describe some results about, and applications of, Steklov
eigenproblems for prototypical second order elliptic partial differential operators
on bounded regions in IR". These eigenproblems are described and analyzed for
Schroedinger type operators in Secs. 3-5 and for weighted harmonic operators in
Secs. 6-9.

For both classes of eigenproblems, under mild regularity assumptions, the
existence of an unbounded, infinite, discrete spectrum is demonstrated. The least
positive eigenvalue of these problems is shown to be the optimal constant in certain
trace inequalities. Moreover a corresponding family of Steklov eigenfunctions will be
constructed which is an orthonormal basis of the subspace of H!(Q) orthogonal to
H{(Q) with respect to specific inner products.

These results lead to orthogonal series expansions, in terms of the Steklov
eigenfunctions, for the solutions of homogeneous elliptic equations with non-
homogeneous boundary conditions. These series are described in Secs. 9 and 10
and will be shown to converge strongly in H'(Q). The expansions provide a spectral-
type representation for the solution operators of linear boundary value problems
of the form

Lu(x) =0 in Q, subject to Bu(x) =g(x) on 0Q. (L.1)

Here the boundary conditions may be of Dirichlet, Robin or Neumann type. The
solution operators classically have been defined using Poisson, Robin or Neumann
boundary integral kernels as in part B of Bergman and Schiffer (1953). Here
they are shown to be strong (H'—)limits of certain finite rank boundary integral
operators. The approach is quite different to that based on the use of single and
double layer potentials as described in DiBenedetto (1995, Chap. 3), or Kress
(1989, Sec. 6.4).

These results depend on proofs that certain families of Steklov eigenfunctions
are maximal orthonormal sets in certain closed subspaces of H!'(Q) and also in
L?(0Q, do). These completeness results are described in Theorems 5.3, 7.3, 9.4 and
10.3 and are based on variational arguments. Then elementary Hilbert space theory
is used to describe the solutions of these boundary value problems. These results
also provide spectral characterizations of the trace space H'/?>(9Q) for the different
equations.

The methods used to obtain the results described here may be generalized in a
variety of ways. No effort has been made to describe the most general operators
to which this approach applies. We have, however, tried to identify simple boundary
regularity requirements; they are that (B1) and (B2) of section 2 hold. In particular,
the boundary is not required to be C! so this approach applies to many regions used
in computational simulations.

Many of the results described here are related to issues of interest in the theory
of inverse problems. In particular, Sec. 11 describes results about the Robin to
Dirichlet and Neumann to Dirichlet maps. There the restrictions of the Steklov
eigenfunctions to the boundary are shown to be eigenfunctions of these operators
and the eigenvalues of these maps are related to the Steklov eigenvalues.
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2. DEFINITIONS AND NOTATION

This paper will treat issues arising in the study of boundary value problems
on regions Q in IR” n > 2. A region is a non-empty, connected, open subset of R".
Its closure is denoted Q and its boundary is 0Q := Q \ Q. Points in Q are denoted
by x = (x1, x2,...,x,) and Cartesian coordinates will be used exclusively.

Further conditions on Q will be required. In the following, we will use the defini-
tions and terminology of Evans and Gariepy (1992), save that o, do will represent
Hausdorff (n — 1)-dimensional measure and integration with respect to this measure,
respectively. This measure is called surface area and our basic assumption will be:

(B1). Q is a bounded region in IR" and its boundary 0Q is the union of a finite
number of disjoint closed Lipschitz surfaces; each surface having finite surface area.

When this holds there is an outward unit normal v defined at ¢ a.e. point
of 9Q. The real Lebesgue spaces L?(Q) and L?(0Q,da),1 < p < oo will be defined
in the standard manner and have the usual p-norm denoted by |[lul|, and [jul], 5o
respectively. The L?-inner products are denoted

(u, v) ::/Q u(x)v(x)dx and (u,v),:= /ag uvdo.

All functions in this paper will take values in R := [—o0, 00] and derivatives should
be taken in a weak sense. A real sequence {x,, : m > 1} is said to be (strictly) increas-
ing if x,,+1(>) > x,, for all m. Similarly a function u is said to be (strictly) positive on
a set E, if u(x) > (>)0 on E. The gradient of a function u will be denoted Vu.

Let H'(Q) be the usual real Sobolev space of functions on Q. It is a real Hilbert
space under the standard H'-inner product

0], = /Q () - v(x) + Va(x) - Vo(x)] dx. .1

The corresponding norm will be denoted by ||u]|, ,

The region Q is said to satisfy Rellich’s theorem provided the imbedding of
H'(Q) into LP(Q) is compact for 1< p < ps where ps(n):=2n/(n—2) when
n >3, or ps(2) = oo when n = 2.

There are a number of different criteria on Q and 0Q that imply this result.
When (B1) holds it is Theorem 1 in Sec. 4.6 of Evans and Gariepy (1992). See also
Amick (1973). DiBenedetto (2001), in Theorem 14.1 of Chap. 9 shows that the result
holds when Q is bounded and satisfies a “cone property.”” Adams and Fournier give
a thorough treatment of conditions for this result in Chap. 6 of Adams and Fournier
(2003) and show that it also holds for some classes of unbounded regions.

When (B1) holds and u € W'!(Q) then the trace of u on 9Q is well-defined and
is a Lebesgue integrable function with respect to o, see Evans and Gariepy (1992),
Sec. 4.2 for details. The region Q is said to satisfy a compact trace theorem provided
the trace mapping I' : H'(Q) — L?(0Q, do) is compact. The trace map is the linear
extension of the map restricting Lipschitz continuous functions on Q to Q. Some-
times we will just use u in place of I'u when considering the trace of a function on 9Q.
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Evans and Gariepy (1992, Sec. 4.3), shows that I" is continuous when 0€Q satisfies
(B1). Theorem 1.5.1.10 of Grisvard (1985) proves an inequality that implies the
compact trace theorem when 0Q satisfies (B1l). This inequality is also proved in
DiBenedetto (2001, Chap. 9, Sec. 18) under stronger regularity conditions on the
boundary. Most descriptions of trace theorems in the current literature involve the
space H'/?(0Q) but here we shall only use a simpler analysis involving Lebesgue spaces.

In general, we shall require that the region satisfy

(B2). Q and 0Q satisfy (B1), the Rellich theorem and the compact trace theorem.

In this paper, we shall use various standard results from the calculus of varia-
tions and convex analysis. Background material on such methods may be found in
Blanchard and Briining (1992) or Zeidler (1985), both of which have discussions
of the variational principles for the Dirichlet eigenvalues and eigenfunctions of sec-
ond order elliptic operators. The variational principles used here are variants of the
principles described there and are analogous to those for the Laplacian described in
Sec. 5 of Auchmuty (2004). Some quite different unconstrained variational principles
for eigenvalue problems are described in Auchmuty (2001).

In this paper, all the variational principles, and functionals will be defined on
(closed convex subsets of) H'(Q). When % : H'(Q) — (—o0, oc] is a functional, then
F is said to be G-differentiable at a point u € H'(Q) if there is a %’ (u) such that

lim ' [F (u+ ) — F(u)] = F'(u)(v) forall ve H(Q),

t—0

with #'(u) a continuous linear functional on H'(Q). In this case, #'(u) is called the
G-derivative of # at u.

3. THE SCHROEDINGER-STEKLOV EIGENPROBLEM

Assume Q is a region in R” which satisfies (B1). The classical form of the Steklov
eigenproblem for a Schroedinger-type operator is to find those values of u for which
there is a non-trivial classical solution # of the system

Lu(x) := c¢(x)u(x) — Au(x) =0 on Q (3.1
subject to %(x) = up(x)u(x) on 0Q (3.2)

The functions c, p should satisfy

(A1). cis positive on Q, in L?(Q) for p > n/2 when n > 3,(p > | when n = 2) and
Jo ¢dx>0.

(A2). pisin L>(0Q,do), positive on 0Q, and

/ag pdo=1. (3.3)
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The weak form of (3.1)—«(3.2) is to find the real values of u such that there is a
non-zero solution u in H'(Q) of

/[Vu~Vv+cuv] dx—,u/ puvds =0 for all v € H'(Q). (3.4)
Q o0

This will be called the Steklov eigenproblem for (L, p).

There is some literature on problems of this type; see Bandle (1980, Chap. 3) for
instance. She describes a standard variational principle of Rayleigh type for the first
eigenvalue of this problem. From (3.4) with v = u, one sees that any eigenvalue must
be positive. Here we shall describe a different variational principle for the least
positive eigenvalue and corresponding eigenfunction of (3.4).

Let K be the subset of H!(Q) of functions satisfying

Do) = / (Vul + ad]dx < 1 (3.5)
0
Define 4 : H'(Q) — [0,00) and (,,.), by
B(u) := /ag pu*do and (u, V), = /m puvdo. (3.6)

Consider the variational principle (%|) of maximizing 4 on K and define

By == sup #(u). (3.7)
uck
We shall show that the maximizer u; of this problem is an eigenfunction of the
Steklov problem (3.4) corresponding to the least eigenvalue p; and that f; = ;.
To do this we first need some technical results.

Theorem 3.1. Assume that Q,0Q, ¢, p satisfy (B2), (Al) and (A2). Then # and D,
are convex, continuous and G-differentiable on H'(Q) with

(2. (u),v) =2 / [Vu - Vv + cuv] dx, (3.8)
)
and
(B (u),v) =2 / puvda  for all u,v € H'(Q). (3.9)
a0

Moreover A is also weakly continuous on H'(Q).

Proof. When u, v are in H'(Q) and n > 3 then from the Sobolev theorem, u2, v* will
be in L4(Q) for 1 < g < n/(n — 2). Holder’s inequality yields that

/Q c(u* —v?)dx

2

< lell, [lu? = 2?[],,

.
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where p and p’ are conjugate indices. When c satisfies (A1), this implies that 2, is
continuous. This proof also holds when n = 2.

Suppose that {u,, : m > 1} converges weakly to u in H'(Q). The compact trace
theorem implies that I'u,, converges strongly to T'u in L?(0Q, ds). Apply Holder’s
inequality then we see that Z is weakly continuous on H'(Q) when p satisfies (A2).

The proofs that the G-derivatives %', 7. exist and are given by (3.8)—(3.9) are
straightforward. Since these functionals are positive, quadratic and G-differentiable
on H'(Q), they are convex. O

The following result is needed to prove that K is bounded in H'(Q).

Theorem 3.2. Assume that Q, 0Q, ¢ satisfy (B2) and (Al). Then there is an o > 0
such that

D(u) > oc/ wdx  for all u e H'(Q). (3.10)
Q

Proof. To prove this inequality consider the variational problem of minimizing
9.(u) on the subset S of H'(Q) of functions satisfying |ju[|,= 1.

Let {u,, : m > 1} be a minimizing sequence for this problem and define

— 1 ay)

o= 1ur€11S‘ ZD.(u)
For all sufficiently large m, um||f , < o+ 2, so this sequence is bounded in H'(Q).
Thus it has a weakly convergent shbsequence {tm, : j > 1} which converges weakly
to a limit # in H'(Q). From Rellich’s theorem this subsequence converges strongly to
#tin L*(Q) so i is in S. Thus Z.(i) = o as the functional is weakly 1.s.c.

If « = 0, then Vit = 0 on Q so # must be constant as Q is connected. In this case,
the assumption (A1) on ¢ provides a contradiction, so o > 0 as claimed. The inequal-
ity (3.10) now follows for all u in H'(Q) by homogeniety. ]

When (B2) and (A1) hold, we will find it convenient to use the weighted inner
product

[u,v], = / [Vu - Vv + cuv] dx. (3.11)
Q
and the associated norm ||u||.. The preceding theorem then yields

Corollary 3.3. Assume (Al) and (B2) hold, then | -||, is an equivalent norm on
H'(Q) and K is a bounded closed convex subset of H'(Q).

Proof. There is a C; such that Hu||§ < C ||u||i2 since &, is continuous and
quadratic on H'(Q).
Conversely, from (3.10), we have

2 - 2
leel[f o< (e ) [full?

Thus the two inner products are equivalent and K has the claimed properties. []
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This result enables us to prove the following existence result for solutions of the
variational problem (%1).

Theorem 3.4. Assume that Q, 0Q, c, p satisfy (B2), (Al) and (A2). Then f; is
finite and there are maximizers F+u; of # on K. These maximizers satisfy
lluill, =1 and (3.4). The corresponding eigenvalue p is the least eigenvalue of
(3.4) and B, = u; L.

Proof. From the results of Corollary 3.3, K is weakly compact in H'(Q). Since 4 is
weakly continuous, it attains its supremum on K at a point u; in K and this supre-
mum is finite. If |||, < 1 then there is a k > 1 such that ku; is in K and then
B(ku) = k>B(uy) > A(uy). This contradicts the maximality of u; so we must have
=1

A Lagrangian functional for the problem (&) is given by % :H!'(Q)
x [0,00) — IR defined by

L(u,l) = /1[/9 (IVul* 4 cu?] dx — 1} - /{)9 pu*dao. (3.12)

The problem of maximizing # on K is equivalent to finding an inf-sup point of L on
its domain. Any such maximizer will be a critical point of L(-, 1) on H'(Q) so it is a
solution of

/l/[Vu-Vv—&—cuv] dx —/ puvds =0 for all v € H'(Q). (3.13)
Q a0

When / > 0 this has the form (3.4) with u = A~'. If 2 = 0, then (3.13) implies that the
maximum value is zero which is not true. Thus (3.4) holds at the maximizer.
If u; is a maximizer, then the corresponding eigenvalue y, in (3.4) satisfies

lar]|7= 1 = uB(ur)
upon putting = v = u;. Hence 8, = uj'.
If 1, is not the least positive eigenvalue of (3.4), there will be a nonzero # in

H'(Q) satisfying (3.4) with fi < ;. Normalize it to have c-norm 1. Then (3.4) implies
that f satisfies

iB@) = 1.
Hence #(#1) > f, which is impossible so yx; is minimal. O

Corollary 3.5. Assume Q, 0Q, ¢, p satisfy (B2), (Al) and (A2). Then, for all
uc H'(Q),

/ (IVul* 4 ci? ] dx > / pu* do, (3.14)
Q 00

where p; > 0 is the least Steklov eigenvalue of (3.4). If equality holds here then u is
a multiple of an eigenfunction of (3.4) corresponding to y,.
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Proof. The inequality holds if u = 0. Otherwise let v := u/||u||,.. Then v € K and
#(v) < B,. Homogeniety of these functionals then yields (3.14). ]

This inequality (3.14) is the H'-trace inequality for the operator L. The case
¢(x) =1, is discussed in Horgan (1979) where some lower bounds for p; on 1- and
2-d regions are found. The choice u(x) = 1 here yields an upper bound on the first
Steklov eigenvalue:

o < /Qc(x)dx.

Note that the requirements (A2) for p permit the choice p(x) := cyx(x) where X is
any o-measurable subset of 0Q, ys is the characteristic function of X and ¢ is chosen
to normalize p. Then (3.14) provides an upper bound on

/ > do  in terms of the c-norm of u on Q.
p)

4. VARIATIONAL PRINCIPLES FOR SUCCESSIVE
STEKLOV EIGENVALUES

Given the first J Steklov eigenvalues and corresponding c-orthonormal eigen-
functions of (L, p) we shall now describe how to find the next eigenvalue u;,, and
a corresponding normalized eigenfunction. Assume that the first J eigenvalues are
O0<pu <pp<---<pu; and that {uj,us,...,u;} is a corresponding family of
c-orthonormal eigenfunctions of (3.4). This implies that

(Tuj, Tug), = ;' S (4.1)
To find p; 4, let
K;:={uekK: (I'u,Tu;),=0for 1 <j<J} (4.2)

Consider the variational problem (%) of maximizing % on K; and define

Bys1 := sup HB(u). (4.3)

uck;

Theorem 4.1. Assume that Q, 0Q, c, p satisfy (B2), (Al) and (A2). Then K, is a
bounded closed convex set in H'(Q), B,., is finite and there are maximizers
tuyy1 of B on K. These maximizers satisfy |uj+1]|, = uj+1||l"uj+1||f, =1, (3.4) with

w1 o= Byly and
[, uj], = (Tugir, Tu) =0 for 1< j<J. (4.4)

Moreover ;| is the smallest eigenvalue of this problem greater than or equal to [i;.
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Proof. The linear functionals b;(u) := (I'u,Tu;), are continuous on H'(Q) since
(A2) and the trace theorem hold. Hence K; is a bounded closed convex subset, as
K is. Thus K; is weakly compact in H!(Q), so % has a finite maximum on K and
attains this maximum on K. By symmetry of the functionals, if u;,; is a maximizer
SO 1S —uy].

The fact that |ju;11]|. = 1 holds just as in the proof of Theorem 3.4. Hence if
(3.4) holds then ;. - ;.1 = 1. The proof that (3.4) holds is described below. When
it holds substitute u; for v and u,; for u, then the definition of K; implies (4.4). The
proof that u; ; is the smallest eigenvalue greater than or equal to y; is the same as
the last part of the proof of Theorem 3.4. O

To complete the above proof, it is necessary to show that the maximizers satisfy
(3.4). This may be done using a multiplier type argument similar to that of the proof
of Theorem 3.4. A more informative proof, using elementary ideas from convex
analysis is as follows.

When C is a closed convex set in a real Hilbert space H, let I : H — [0, 00| be
the indicator functional of C defined by Ic(u) := 0 for u € C, and I¢(u) := oo when
u¢gcC.

When C is the closed unit ball of radius 1 in a closed subspace V of H, then
its subdifferential is given, when u € C, by 0lc(u) =V+ when |u| <1 and
Olc(u) ={/u+w:2>0& we Vt} when |ju]| =1. Here V* is the orthogonal
complement of V in H. The proof of this a nice exercise using the sharp form of
Schwarz’ inequality.

The extremality result that will be used is the following.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H and
F :H — R be a G-differentiable functional on H. If t maximizes & on C, then
u satisfies

DF (u) € 0lc(u) (4.5)

When C is a closed ball, centered at the origin, in a closed subspace V of H, and
maximizes # on C, then u satisfies

[DF (u),h] = [Ju+w,h] for some . >0, we€ V> and all h € H. (4.6)

This result is Theorem 2.1. In Auchmuty (2004) and the proof is straightforward.
For the problem (&,1) take K; for C, % for # and H'(Q) for H. Then the extrem-
ality condition satisfied at a maximizer of 4 on K, is that u,, | satisfies

(u,v), = [Ju+w,v]. forallve H'(Q) 4.7

where 4 > 0 and w is in the subspace spanned by {u,us, ..., u,}. Substitute u; for v
here then, since uy; is in K, one finds that

w,uj],=0 foreach1<;j<J

c
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so w=0.If 1 =0, then Z(usy1) =0, so uy,; is not a maximizer. Hence 1 > 0, or
(3.4) holds with = 27"

This process may be iterated to produce a countable increasing sequence
{u; : j > 1} of Steklov eigenvalues for (L, p). These eigenvalues have the following

property.

Theorem 4.3. Assume that Q, 0Q, c, p satisfy (B2), (Al) and (A2). Each eigen-
value y; of (L,p) has finite multiplicity and p; — oo as j — oo.

Proof. Suppose the sequence is bounded above by a finite ji. The corresponding
sequence of eigenfunctions is an c-orthonormal set in H'(Q). Hence it converges
weakly to zero. The traces {T'u;: j > 1} of these functions will converge strongly
to 0 in L?(9Q, do) as T is compact. Then (A2) implies that %(u;) converges to zero
as j — oo. However (4.1) implies that

Bu;) > >0 forall j>1.

This contradiction implies there is no such upper bound ji and the theorem
follows. 0

5. ORTHOGONAL TRACE SPACES FOR H'(Q)

In this section, we shall describe a c-orthogonal decomposition of H'(Q) and
show that the Steklov eigenfunctions for (L, p) will be a basis of the c-orthogonal
complement of H}(Q). Throughout this section, Q will be assumed to satisfy (B2).

Let C1(Q) be the set of all real-valued functions on Q which are C!' on Q and
have compact support. Let H}(Q) be the closure of C!(Q) in the H'-norm.

A function u € H'(Q) is said to be a H'-weak solution of

Lu(x) := ¢(x)u(x) — Au(x) =0 on Q (5.1
whenever
[u, ], := /Q [cup +Vu-Vo| dx=0 (5.2)

for all ¢ € C1(Q). That is, u is H'-weak solution of (5.1) if and only if u is c-ortho-
gonal to C!(Q). Define W to be the subspace of H'(Q) which is c-orthogonal to
H}(Q), then the following lemma follows from the definition of H}(Q)

Lemma 5.1. Assume Q, 0Q, ¢ satisfy (B2) and (Al) and W as above. A function
u € HY(Q) is a H'-weak solution of (5.1) if and only if uc W.

The subspace H{ (Q) may be characterized as the null space of the trace operator
I' defined in Sec. 2. When the following condition holds, this may be expressed in
terms of 4.
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(A3). p satisfies (A2) and is strictly positive o a.e. on 0Q.

Proposition 5.2. Assume Q, 0Q, ¢ satisfy (B2) and (A1) and p satisfies (A3). Then
u€ H'(Q) and #(u) =0 if and only if u € H}(Q).

Proof. When u € H'(Q) and #(u) =0 then Tu =0 in L*(0Q, pds) and thus it
is 0ga.e. on Q as (A3) holds. From Corollary 1.5.1.6 of Grisvard (1985), this
implies that u € H}(Q).

Conversely when u € H}(Q), there is a sequence {u,, : m > 1} C C!(Q) such that
Uy, — u in the c-norm. Since # is continuous and #(u,) =0 for all m, then
B(u) = 0. I

These results may be written as
H'(Q) = H}(Q)®. W or H'(Q)=ker I @ ker L.

Here @, indicates a c-orthogonal direct sum. In many treatments of elliptic
boundary value problems the closed subspace W is identified with the fractional
Hilbert space H'/?(0Q). Here we shall characterize it in terms of the coefficients in
expansions involving normalized Steklov eigenfunctions.

Theorem 5.3. Assume Q, 0Q, ¢ satisfy (B2) and (Al), p satisfies (A3). The
sequence {u;: j > 1} of Steklov eigenfunctions for (L,p) is a maximal c-ortho-
normal subset of W.

Proof. Each u; is in W as the choice v € C1(Q) in (3.5) yields that (5.2) holds. They
are c-orthonormal from Theorem 4.1. If the sequence defined in Sec. 4 is not
maximal then there is a w € W with ||w||, =1 and [w,u;]. =0 for all j > 1.

If #(w) > 0, then there will be a J such that #(w) > f;,; from Theorem 4.3.
This contradicts the definition of u,,; as w will be in K;. If #(w) =0, then
Proposition 5.2 implies w = 0, which contradicts the definition of w. Hence the
theorem follows. O

This result may be interpreted as saying that W is the closed subspace of H'(Q)
with the Schroedinger Steklov eigenfunctions {u; : j > 1} as a c-orthonormal basis.
Then Parseval’s theorem for orthogonal expansions in a real Hilbert space yields
that each function u in W has a unique representation of the form

o0

u=>" cju; with ¢; == [w,u], and [ul2 =" |¢;. (5.3)
j=1

Jj=1

The trace of such a function on 0Q is given by
Tu= cjTu; with ||l"u||f) = Z ,uj‘l lej]?. (5.4)
— =

j=1
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This follows from the formulae in Theorem 4.1 for |T'ul|,. In particular, the space
W is precisely the space of all functions on Q with expansions of the form (5.3)
and for which the last sum in (5.3) is finite. The trace of such functions on 9Q will
be the set of all functions of the form (5.4) for which the last sum in (5.3) is finite.
Such traces will be in the weighted space L?(0Q,pds) and the trace operator
r:HY(Q) = L*(0Q, pdo) will be a compact linear map with operator norm

TN = ay
Let wy := ZJJ.:I cju; be the Jth partial sum of the Steklov expansion (5.3) and
I;: H'(Q) — L*(0Q, pdo) be the corresponding partial trace defined by

Tyju:=Tw;. (5.5)

Then

—1/2
(T =T )ull, = py !l (5.6)

so these partial Steklov expansions provide very good approximations for the trace
of an H'-function in L*(09Q, pdo).

6. THE A-HARMONIC STEKLOV EIGENPROBLEM

The A-harmonic Steklov eigenproblem is that of finding non-trivial solutions of
the system

V(A(x)Vs) =0 on Q subject to (6.1)
(A(x)Vs)-v=0pu on 0Q. (6.2)

The n x n matrix valued function A(x) := (a;x(x)) will be assumed to satisfy the
following conditions:

(A4). A(x) is a real symmetric matrix whose entries are continuous on Q and there
exist constants a; > ag > 0 such that

aolé? < (A(x)E) - & < ay|é] forallxeQ, & e R". (6.3)
The weak form of (6.1)—(6.2) is to find non-trivial (§,s) in R x H'(Q) satisfying

/ (A(x)Vs(x)) - Vo(x) dx — 0 / p(x)s(x)v(x)da =0 (6.4)
Q o
for all v € H'(Q). This will be called the A-harmonic Steklov eigenproblem with
weight p on 0Q. When A(x) = I,, Eq. (6.1) is Laplace’s equation and then (6.4) will
be called the harmonic Steklov eigenproblem.

The harmonic version of this problem has been studied for a long time, espe-
cially as it has been arises as a model for the sloshing of a perfect fluid in a tank.
See Fox and Kuttler (1983) or Mclver (1989) for treatments of this problem.
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Whenever Q obeys (B1), then dy = 0 is a simple eigenvalue of (6.4) with the
associated eigenfunction syp(x) = 1. Upon substituting v = s in (6.2), one sees that,
provided (A2) and (A4) hold, the A-harmonic Steklov eigenvalues are positive.

In this section, a variational problem for the first strictly positive eigenvalue of
(6.4) will be described and the associated trace inequality derived.

Consider the bilinear and quadratic forms on H'(Q) defined respectively by

A, v) = /Q (A(x)Va(x)) - Vo(x) dx + / p(X)u(x)v(x)do, (6.5)

0Q
oAo(u) = /Q (A(x)Vu(x)) - Vu(x) dx. (6.6)

When p, A satisfy (A2) and (A4), .« is an inner product on H'(Q) and the associated
norm is denoted ||u||,. The following provides some basic results about these func-
tionals and the inequality will enable us to show that the A-norm and the standard
norm on H'(Q) are equivalent.

Theorem 6.1. Assume that Q, 0Q, p, A satisfy (B2), (A2) and (A4). Then </ is
convex, continuous and G-differentiable on H'(Q) with

A (u)(v) =2 /Q(AVu) Vv dx, forall u,ve H(Q). (6.7)

There is a constant oy > 0 such that

o] :=/(AVu)-Vudx+/ pu* do > oco/ w*dx  for all u € H'(Q).
Q oQ Q
(6.8)

Proof. The assumptions (A4) are sufficient to prove the first sentence using
straightforward arguments.

To prove the inequality consider the variational problem of minimizing Hu||i on
the subset S of H'(Q) of functions satisfying ||u||,= 1. Define

= inf [u)}.
o = inf Jully

The theorem will hold provided we can show that ay > 0.

Let {u,, : m > 1} be a minimizing sequence for this variational problem. Such a
sequence is bounded in H'!(Q) since (6.3) holds. Thus it has a weakly convergent sub-
sequence with a weak limit #&. @ is in S from Rellich’s theorem and the functional is
weakly Ls.c. on S, so ||if]| = 2. Suppose o = 0 then i is constant on Q and
#(ur) = 0. This implies that # = 0 so it will not be in S. This contradiction implies
that 9 > 0 and the inequality (6.8) follows by homogeniety. O
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It is worth noting that, the extremal conditions for the variational problem
described in the proof, imply that the constant oy above is the least eigenvalue of
the problem
—V(AVu) = au on Q and subject to (AVu) - v+ pu=0 on 9Q. (6.9)

The weak form of this is to find non-trivial («,u) in R x H'(Q) satisfying

/ [(AVu) - Vv — auv|dx +/ puvds =0 for all ve H'(Q). (6.10)
Q o0

This shows that the least eigenvalue of (6.9) is the optimal choice of oy in (6.8) and
that equality holds here for corresponding eigenfunctions of (6.9).

Corollary 6.2. Assume (A2), (A4) and (B2) hold, then || - ||, and the standard norm
on H'(Q) are equivalent.

Proof. From (A2) and Holder’s inequality,
2] < ol ITul3 00 < Cllell ullf
as I is continuous. Substitute in the definition of the norm then
lull < (a1 + Clpll) uli - (6.11)
Conversely, use (A4) and the inequality (6.8) of Theorem 6.1 to obtain
Julf 2 < (a0 ™" + o0~ ully
These two inequalities show that the norms are equivalent on H'(Q). ]
With this result, a variational principle for the least non-zero eigenvalue of the
harmonic Steklov eigenproblem may be described.

Define B, to be the unit ball of H'(Q) in the A-norm. It is the subset of functions
in H'(Q) satisfying

/(AVu)~Vudx+/ putds < 1. (6.12)
Q

oQ

Let B4 be the subset of B, of functions which also satisfy

[u, 0], = /89 pl'ude = 0. (6.13)

Here so(x) = 1 on Q so B4 will also be a bounded closed convex subset of H!(Q).
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Consider the variational principle (¥ 1) of maximizing 4 on B4 and define

71(p, A) := sup B(u). (6.14)
UEB| 7
The next theorem shows that the maximizer s; of this problem is an eigenfunction of
the harmonic Steklov problem (6.14) corresponding to the least non-zero eigenvalue
01 and that y, and 9, are related in a simple way.

Theorem 6.3. Assume that Q, 0Q, p, A satisfy (B2), (A2) and (A4). Then 0, is
finite and there are maximizers xs; of # on Bis. These maximizers satisfy
Isilla = 1 and (6.4). The corresponding eigenvalue 0, is the least non-zero eigen-

value of (6.4) and y, = (1+ ;)"
Proof. The existence argument is the same as that of Theorem 3.4 with By, in
place of K and the A-norm in place of the c-norm. The equations satisfied at the
maximizers can be found from Theorem 4.2.

Let V; be the subspace of H!(Q) of all functions that satisfy (6.13) and use % in
place of Z. Then (4.6) says that s, satisfies

/ psvde = o/ (As +w,v) for all v e H'(Q) (6.15)

o0

where A > 0 and w is a multiple of so(x). In terms of integrals, this is

(1—/1)/ psvda—i/(AVs)-Vv dx:,u/ pvdo (6.16)
a0 Q a0

forall v e HI(Q), some 4 in R and some A > 0. Put s = s;,v = 1 here, then u = 0.
Put s = v =y here, then %(s;) =4, so 2=y, > 0. Thus the maximizers satisfy
(6.4) with 6 = (1 —y;)/7,. This proves that s; is an eigenfunction of the harmonic
Steklov problem with J; as stated in the theorem. If §; is not the minimal non-zero
eigenvalue, one can show that vy, is not the supremum of this problem. O

This result yields a different trace inequality for H'-functions. Let H}(Q) be the
subspace of functions in H'(Q) which satisfy (6.13). Given u € H'(Q), define

iy := / pl'udo and Mu(x) := u(x) — uy. (6.17)
a0
Then Mu € H)(Q).

Corollary 6.4. Assume Q, 0Q, p, A satisfy (B2), (A2) and (A4) and 0| as above.
Then, for all u € H)(Q),

/ (AVu) - Vu dx > 04 / p|Tul* do. (6.18)
Q a0

Proof. This follows from (6.14) by homogeniety of the functional and the
constraint and uses the expression in Theorem 6.3 for ;. O
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Note that this inequality holds for all u € H'(Q) with T'u on the right hand side
replaced by I'Mu.

When A(x) = I, this inequality has been studied by a number of authors includ-
ing Kuttler and Sigillito (1968), Payne (1970) and Wheeler and Horgan (1976). Their
interest centered on finding lower bounds for J; in terms of geometrical quantities of
Q and 0Q.

7. THE SUBSPACE OF A-HARMONIC FUNCTIONS

In this section, results analogous to those of Secs. 4 and 5 will be described for
the A-harmonic Steklov eigenproblem and an orthonormal basis of the subspace of
A-harmonic functions on Q will be described.

Successive A-harmonic Steklov eigenvalues and eigenfunctions may be found
using a variational characterization similar to that for the Schroedinger type opera-
tors in Sec. 4. Assume we know the first J non-zero A-harmonic Steklov eigenvalues
0=0p <) <--- <9, and a corresponding family {so, s1,...,s,} of A-orthonormal
eigenfunctions of (6.4). From (6.4), they satisfy

(Ts;, Tse), = (140;) " 0 for 1< j, k<. (7.1)
To find ,,;, define

BJA::{uGBA:(Fu,Fy)ﬂ:OforOSjﬁJ}. (7.2)
Consider the variational problem (% #,.;) of maximizing % on B;4 and define

Vrp1 = sup H(u). (7.3)

uceBj
The following theorem describes the essential properties of this variational problem.

Theorem 7.1. Assume that Q, 0Q, p, A satisfy (B2), (A2) and (A4). Then By, is a
bounded closed convex set in H'(Q), y,,, is finite and there are maximizers £sy
of B on By These maximizers satisfy |sjp1ll, =1 1(64) with y, =
(1408,41)" and

A (ss51587) = (Usy1, s, =0 for 0 < j<J. (7.4)

Moreover 051 is the smallest eigenvalue of this problem greater than or equal to 0.

Proof. The proof of existence is similar to that of Theorem 4.1. The fact that the
maximizers are solutions of (6.4) with 6,,1 := y;!; — 1 follows in a similar manner
to the proof of Theorem 6.3 with a subspace V; in place of V;. The minimality of
0y+1 1s a consequence of the maximality of y;_ ;. O
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This process may be iterated to produce a countable increasing sequence
{0;: j > 1} of harmonic Steklov eigenvalues. These eigenvalues have the following
property — whose proof is similar to that of Theorem 4.3.

Theorem 7.2. Assume that Q, 0Q, p, A satisfy (B2), (A2) and (A4). Each
A-harmonic Steklov eigenvalue d; has finite multiplicity and é; — oo as j — oo.

A function u € H'(Q) is said to be a A-harmonic on Q provided
/ (AVu) -Vodx =0 for all ¢ € C}(Q). (7.5)
Q

This is a distributional version of Eq. (6.1).

Define # 4(Q) to be the subspace of H'(Q) which is A-orthogonal to H{(Q)
then, just as in Sec. 5, the density of C!(Q) in H](Q) implies that there is an decom-
position

H'(Q) = H}(Q) ©4 H 4(Q).

with the subspaces here being A-orthogonal.

The following result shows that the family of A-orthonormal harmonic Steklov
eigenfunctions obtained above is a basis of the space # 4(Q) of all A-harmonic func-
tions on Q. It is proved using exactly the same argument as in the proof of Theorem 5.3.

Theorem 7.3. Assume Q, 0Q, p, A satisfy (B2), (A3) and (A4). Then the sequence
of A-harmonic Steklov eigenfunctions {s;: j> 0} is a maximal A-orthonormal

subset of H 4(Q).

8. EXAMPLES OF HARMONIC STEKLOV SPECTRA

It is of interest to describe the harmonic eigenvalues and eigenfunctions for some
standard regions in R". Suppose that the matrix A(x) = I, and that p(x) = p; on 9Q
where the constant p, is normalized so that (3.3) holds.

In the case n =2 and Q is the unit disc, then p; = 1/2n and the harmonic
Steklov eigenfunctions are given by sy as before and, in polar coordinates x = (r, 6),

sok—1(x) := rksink0, sy (x) := r* cos kO, for k > 1, (8.1)
02—1 = 0y =k when k > 1. (8.2)

Similarly when n = 3 and Q is the unit sphere, then p; = 1/4n and the harmonic
Steklov eigenfunctions will be sy =1 and, in spherical polar coordinates
x = (r,0,¢), with 0 being the azimuthal angle,

sa(x) = 'Y, (0,9) fork>1, —k <I<k. (8.3)
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Here Yy(0, ¢) is the (k, 1, )th spherical harmonic given by

Yio(0,$) := Pi(cos¢p), whenl=0, (8.4)
Yu(0,¢) := Pi'(cos¢) cosll, when 1 <1<k, (8.5)
Y (0,¢) := P(cos¢)sinlf, when —k<I<—1. (8.6)

The Steklov eigenvalues will again be {k : k > 0} and the eigenvalue k has multipli-
city (2k + 1). For a general theory of these issues, see Groemer (1996).

9. STEKLOYV SERIES REPRESENTATIONS OF
A-HARMONIC FUNCTIONS

In this section, the preceding results will be used to describe Steklov spectral
representations of the solutions of Eq. (6.1) subject to various boundary conditions.

First consider the Dirichlet problem for this equation and assume the region Q
satisfies (B2). That is, consider the problem of finding a solution # of (7.5) which is in
H'(Q) and such that Tu = g € L?>(0Q,ds). Any such solution will be in #4(Q).
From Theorem 7.3, the fact that {s; : j > 0} is an A-orthonormal basis of # 4(Q)
implies that

i(x) = zm: cjsj(x)  with ¢; = (i1, s;). 9.1

Since ' : H'(Q) — L?(09Q, do) is compact, the trace of # on 9Q will be

i c;Isj(x (9.2)

j=0
Multiply this by p I's; and integrate over 0Q, then the Dirichlet boundary data yields
Cy = (1 + 5k) <g, Fsk>p for k > 0. (93)

That is, the solution of this Dirichlet problem is given by the series in (9.1) with the
coefficients defined by (9.3).
Parseval’s theorem then yields that

=i = (1+ 00 (g, Tse) |- (9.4)
k=0 k=0
This shows that this Dirichlet problem has a H'-solution if and only if g satisfies
> (146 [(g.Tse),* < o0 (9.5)
k=0
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This is a spectral form of the usual criterion that g € H'/2(9Q) and the above results
may be summarized as follows.

Theorem 9.1. Assume Q, 0Q, p, A satisfy (B2), (A3) and (A4), {5, :j> 0} is the
set of A-harmonic Steklov eigenvalues for Q and {s;: j > 0} is a corresponding
sequence of orthonormal A-harmonic Steklov eigenfunctions. Then there is a solu-
tion @t in H'(Q) of the Dirichlet problem for (6.1) if and only if g satisfies (9.5).
In this case, the solution can be represented in the form (9.1)—(9.3) and the series
converges strongly in the H'-norm.

Let i1y, be the Mth partial sum of the series in (9.1) then, from (9.3), one has

i (x) = /a  Pulx3)g)p)do () 9.6)
with
Py(x,y) =Y (14 6¢)se(x)Tsic(y)- 9.7)
k=0

This provides a finite rank approximation to the solution of the problem in terms of
an integral operator. These partial sums converge strongly to # when g satisfies (9.5).

When A(x) = I, on Q and p(x) is constant on 0Q, this result may be interpreted
as a representation of the Poisson kernel for the Laplacian on the region Q. This
Poisson kernel may be regarded as the integral kernel associated with the limit as
M — oo in (9.6)—(9.7).

This methodology may be used to obtain similar representations of H'-solutions
of Eq. (6.1) for general Robin, or Neumann, boundary data. Suppose now that the
boundary condition is

(I = 1)(AVu) - v(x) + tp(x)u(x) = g(x) on 9Q; 0 <7< 1. (9.8)

A function # in H'(Q) is defined to be an H'-solution of Eq. (6.1) subject to (9.8)
provided

/ (AVu) - Vodx+ (1 —1)" / (tpu — g)vde =0 forallve H'(Q). (9.9)
Q o0

These weak solutions may be described using a variational principle. Consider the
functional 2 : H'(Q) x [0,1) — R defined by

D(u,t) := / (AVu) - Vudx + (1 —1)~" / (tpu — 2g)udo. (9.10)
Q o0
The variational problem is to minimize Z(-,t) on H'(Q) and to find

B(z) := ueigl{g) D (u,7). (9.11)



03N N B Wi~

AR PR DRDDEPER D LWL L WWWLWLLWLWLWENDNDNDDNDDNDNDN DN DN = = —
N UMD RN, OOV AIANATUNRER WD, OO TIANNRAR WO, OWOVOTIAAWNAWN— OO

120039655_NFA25_03&04_R2_052504

340 Auchmuty

This is a standard variational problem and the essential results for the Robin
problem (0 < 7 < 1) may be summarized as follows.

Theorem 9.2. Assume Q, 0Q, p, A satisfy (B2), (A2) and (A4), g is in L*(0Q, do)
and 0 < t < 1. Then there is a unique minimizer it of Z(-,t) on H'(Q) and it is the
unique H'-solution of (9.9). Moreover there is a positive C(t,Q) such that

ull » < C(z,Q)l2]l5,00- (9.12)

Proof. The functional (-, 1) is convex and continuous on H'(Q), so it is weakly
l.s.c. From (A4) and Theorem 6.1, there is a constant o;(z) > 0 such that

ao 2 2 -1
Z(u,t) 2 5 [[Vully + o (D)l = 2(1 = 1) llg ]2 00lull200
2
> owollulli, = Ci(D)llgllpnllull 2

upon using the definition of the H'!'(Q)-norm and the trace theorem for u. This
implies that Z(-, 1) is coercive and strictly convex on H!(Q), so it attains its infimum
on H'(Q) and this minimizer is unique. From the definition, () <0, so the last
inequality implies that (9.12) holds with C(z,Q) < C;(t)/a2. O

This solution will have a representation of the form (9.1) as (9.9) implies that i is
in #4(Q). Put v = s; in (9.9) and use the properties of the eigenfunctions to deduce
that

(1 +5k) <g7rsk>0
=—"—"° fork>0. 9.13
Ck (I —=1)ox +7 ork= 6-13)

Thus the unique solution described in Theorem 9.2, has the representation

e (L4 00) (g, Tse)
u(x) = 2 (-0 +1 2 s (x) (9.14)

when g € L?(9Q, do) and 0 < t < 1. The partial sums of this series converge strongly
to & in H'(Q) as the {s; : k > 0} constitute an orthonormal basis of # 4(Q) from
Theorem 7.3. Again these partial sums may be written in terms of a boundary integral
operator which is a sum involving the Steklov eigenvalues and eigenfunctions.
Namely

iy (x) = 2w (1) g(x) := /m Ru(x,y;71)g(y)p(y)da(y) (9-15)
with
Ru(x,y;1) = ; (1(1;;7;:1% sk (%) T (y). (9.16)



03N N kAW~

A A PR DPEAEDE DB WLWLLLWWLLWWLWWENDNDNDDDNDNDDNDDNDND = = = = e e =
LU B WN—~, OO AITNUNRERWRNODN~R,ODOXAATNTUNEWNOR,OWVOOINWUNDA WD~ O\

120039655_NFA25_03&04_R2_052504

Steklov Eigenproblems and Representation of Solutions 341

The estimate (9.12) shows that the solution operator #(t) will be a bounded linear
map of L*(0Q,ds) into H'(Q) and the integral operators %y (t) defined above
converge strongly to %(t) as M — oo.

The Neumann problem corresponds to taking T = 0 in (9.8)—(9.10). In this case,
p(0) defined by (9.11) need not be finite and (9.9) need not have a solution. Put
v(x) = 1 on Q and substitute, then a necessary condition for (9.9) to have a solution
is that

/ gdo = 0. (9.17)
oQ

The following result shows that this condition is also sufficent when g € L?(0Q, do).

Theorem 9.3. Assume Q, 0Q, p, A satisfy (B2), (A2) and (A4) and g is in
L*(0Q,dc). Then B(0) is finite if and only if (9.17) holds. In this case, there is a
unique minimizer 4 of 2(-,0) in Hé(Q) and there is a l-parameter family of
H'-solutions of (9.9) given by u := it + ksy(x) where k is any constant.

Proof. From (9.10),
2(u,0) = / (AVu) - Vudx —2 / gudo. (9.18)
Q 20

If (9.17) does not hold take u(x) =t. Let || — oo, then one sees that (0) = —oc.
Suppose it does hold, and use the decomposition of (6.17). Then Z(u,0) = 2(v,0)
where v := Mu € H)(Q). The functional Z(-,0) is strictly convex, continuous and
coercive on H}(Q), upon using Theorem 6.1 and Corollary 6.4. Hence a unique
minimizer exists on this subspace. The theorem then follows. O

This solution will have a representation of the form (9.1) with ¢y = 0. Substitut-
ing this in (9.9) with T = 0, v = s; and using the properties of the functions sy leads to

e = (140,)d; ! /m g(Tsy)do. (9.19)

Thus the unique solution # € HEI)(Q) of the Neumann problem for (6.1) is given by

i(x) = > (14008 (g, Tse)y sel(x) (9.20)
1

o0
k=

when g € L?(9Q, do). The partial sums of this series converge strongly to # in H'(Q);
they are given by

iy (x) = ” Nu(x,y)g(y)p(y)da(y) (9.21)
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with

M
Nu(x,y) := Z (14 02)0; "5 (x) Ts (). (9.22)

k=1
Thus the solution operator for this problem can be regarded as the strong limit of the
family of integral operators defined by (9.21)—(9.22) and (9.20) provides a representa-
tion result.

These results may well be compared to those obtained using the theory of single
and double layer potentials described, for example, in DiBenedetto (1995, Chap. 3),
or Kress (1989, Sec. 6.4).

This result enables us to show that the traces of the A-harmonic Steklov eigen-
functions when p is constant on 9Q will be a basis of the space L>(9Q, do). First let &
be the probability measure associated with the surface area measure on 9Q. That is,

6(E) :==0(E)/a(0Q)

for all Borel measurable subsets E of 0Q. This corresponds to taking the density
function p,(x) = 1/5(0Q) on 9Q.

Let {6 ;:j >0} be the set of A-harmonic Steklov eigenvalues for Q,p; and
{5; : j > 0} is a corresponding sequence of orthonormal A-harmonic Steklov eigen-
functions.

Define zo(x) = 1 and

zj(x) =67 T5j(x) forx € dQ, j>1. (9.23)

Theorem 9.4. Assume Q, 0Q, p, A satisfy (B2), (A3) and (A4). Then the sequence
{zj: j > 0} defined as above is a maximal orthonormal set in L*(9Q, dc)

Proof. From Theorem 4.1, this family is orthonormal. Suppose it is not maximal
and there is a function g € L*(9Q, d5) with g # 0 and (g, z;), = 0 for all j > 0. Then
(9.17) holds, so there will be a unique solution # € H)(Q) of the Neumann case of
(9.9). This solution is given by (9.20), so it will be identically zero. This contradicts
the assumption that g is non-zero so the sequence must be maximal. O

This leads to a different characterization of the space H'/?(9Q) in terms of this
orthonormal basis. Suppose g € L?>(0Q, d5), then g has the representation

gx) =g+ Y gz(x) withg;:=(g,z)), (9.24)
=1

This will be called the Fourier-Steklov expansion of g on 0Q. From Eq. (9.23),
g = 5;/2 (g, Tsp)y forj>1 (9.25)

in terms of the Steklov eigenvalues and eigenfunctions of (6.1)—(6.2) and with p; in
place of p. This leads to the following criterion for the H'-solvability of the Dirichlet
problem for (7.5).
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Corollary 9.5. Assume Q, 0Q, p, A satisfy (B2), (A3) and (A4), g_,-,Sj are defined
as above. The Dirichlet problem for (71.5) subject to u = g on 9Q has a solution in
H'(Q) if and only if

5, 22 < ox. (9.26)

J

™

Jj=1

Proof. Substitute (9.24) and (9.25) in (9.2) and (9.5). Then the Dirichlet problem
will have an H'-solution if and only if

~ 2~7
(146))°6;" g7 <o

™

1

J

This condition is equivalent to (9.26) as the B) ; does not remain small as j increases.

O

This result may also be regarded as a characterization of H'/?(9Q) as a subspace
of L?(0Q,ds). This characteization could be used as a definition of the space
H'/?(0Q). This definition has the advantage that we only require weak regularity
conditions (Lipschitzness) for the boundary in this construction.

It should be noted that these Robin and Neumann problems will have H'-
solutions when the boundary data g € H~'/2(9Q). This space contains L(0Q, do)
for gr < g <2 where gr =2(n—1)/(n—2) when n >3 and for 1 < g <2 when
n = 2. This is proved using a stronger version of the trace theorem and requires a
more careful analysis of the variational principles for the solution. In these cases
the Steklov series representations of the solutions (9.14) and (9.20) remain valid.

10. STEKLOYV SERIES REPRESENTATIONS OF SOLUTIONS OF
SCHROEDINGER’S EQUATION

Here the problem of representing the solutions of the homogeneous Schroedinger
equation (5.2) subject to various boundary conditions will be treated.

First consider the case of prescribed Robin (0 < 7 < 1), or Neumann (tr = 0)
boundary conditions of the form

(1— r)%(x) +1p(x)u(x) =g(x) ondQ; 0 <7< 1. (10.1)

Here g is given and will be assumed to be in L?(9Q, do) — though this can be relaxed
as described at the end of the preceding section.
The weak form of this problem is to find & € H'(Q) satisfying

/[Vu.Vqucuv]der(lf‘c)*l/ (tpu —g)vde =0 for all ve H'(Q).
Q o0
(10.2)
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There is a variational principle for this problem. Consider the problem of
minimizing the functional # : H'(Q) x [0,1) — R defined by

7 (u,1) := ul? + cu?] dx — )t ToU — udo.
Fu)i= [V + o dx+ (1= [ (epu—2gua (10.3)

Theorem 10.1.  Assume Q, 0Q, c, p satisfy (B2), (A1) and (A2), g is in L*(0Q, do)
and 0 <t < 1. Then there is a unique minimizer @t of F (-,7) on H'(Q), it is the
unique H'-solution of (10.2) and is in the subspace W defined in Sec. 5. Moreover
there is a positive C(t,Q) such that

[ully » < C(z,Q) ]2l 00- (10.4)

Proof. The functional Z(-,7) is convex and continuous on H'(Q) from
Theorem 3.1. It is coercive and strictly convex from Theorems 3.1 and 3.2 and
standard inequalities. Hence this problem has a unique minimizer. The formulae
for the G-derivatives in Theorem 3.1 imply that Z(-,t) is G-differentiable on
H'(Q) and the minimizer satisfies (10.2). Choosing v to have compact support
implies that # is in W. The last inequality is proved as in Theorem 9.2. O

Since this solution is in the subspace W of H'(Q), Theorem 5.3 implies that it has
an expansion in Steklov eigenfunctions of the form

u(x) = EOC: cjuj(x) with ¢; := [it, u],. (10.5)
=1

Substitute u; for v in (10.2), to see that

(g Tuy),
S0 _y <+
(1 T)Mj+f

Hence the unique solution # of (10.2) has the Steklov series representation

for j > 1. (10.6)
i(x) = i {8 Ty uj(x), (10.7)

() =3 (& Ty 1(0). (103)

Moreover the partial sums of this series converge strongly to # in H'(Q) as the {u;}
are an orthonormal basis of W. These partial sums are given by

in(3) = [ Gt 550)e)doly (10.9)
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with
M
_ Kjupix) uj
(x,y; Tu;(y). 10.1
KT 21 1—%“ i) (10.10)

These problems were treated extensively in Part B of Bergman and Schiffer (1953)
using a variety of classical methods and restricted to n = 2. The kernel function
defined there by Eq. 2.6, p. 281 is the same operator as in (10.8) — but without
requiring the functions in their expansion to be Steklov eigenfunctions.

The Dirichlet problem for (5.2) may be regarded as the limit t — 1~ of the above
problem with p; as in the previous Sec. 9 in place of p. It need not have an H'-
solution for each g € L?(0Q,ds). If Eq. (5.2) has an H'-solution of the form
(10.5), then the boundary condition I'u = g implies that

cj=u; (g Tuy), forj=>1. (10.11)

Thus Parseval’s theorem yields that

Jull = [ (9 + el dx =3 16 (e T, . (10.12)

=1

Thus the Dirichlet problem has an H'-solution if and only if this last sum is finite.
This is a spectral form of the usual criterion that g € H'/>(Q) and the above results
may be summarized as follows.

Theorem 10.2. Assume Q, 9Q, c, p satisfy (B2), (A1) and (A3), {u;: j > 1} is the
set of Steklov eigenvalues for (L, p) and {u; : j > 1} is a corresponding sequence of
orthonormal Steklov eigenfunctions. Then there is a solution @ in H'(Q) of the
Dirichlet problem for (5.2) if and only if the sum on the right hand side of
(10.12) is finite. In this case the solution can be represented in the form (10.5) with
coefficients given by (10.11) and the series converges strongly in the H'-norm.

This result shows when the solution is in H'(Q) it may be approximated by
formulae of the form (10.9)-(10.10) with t =1, and p,;do in place of do. It also
allows the proof of the completeness of the traces of the Steklov eigenfunctions
in L2(0Q, do).

Let {f1; : j > 1} be the set of Steklov eigenvalues for (L, p;) and {#;: j > 1} isa
corresponding sequence of orthonormal Steklov eigenfunctions. Define

= VaTi;(x) forxedQ, j>1. (10.13)
VT (x)

Theorem 10.3. Assume Q, 0Q, p,, c satisfy (B2), (A1) and (A3). Then the sequence
{zj:j > 1} defined as above is a maximal orthonormal set in L*(0Q, d&)

Proof. From Theorem 5.3, this family is orthonormal. Suppose it is not maximal
and there is a function g € $L%(0Q,d5) with g #0 and (g,z;), = 0 for all j > 1.
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Then there will be a unique solution # € H'(Q) of the Neumann case of (10.2). This
solution is given by (10.7), so it is identically zero. This contradicts the assumption
that g is non-zero so the sequence must be maximal. O

11. NEUMANN TO DIRICHLET MAPS AND
ROBIN TO DIRICHLET MAPS

The Steklov series representations of the solutions of the boundary value
problems described in the last two sections permits us to compare the solutions of
an equation subject to different boundary conditions. In particular it allows a spec-
tral representation of the Neumann to Dirichlet (NtD) map and its inverse, the
Dirichlet to Neumann (DtN), map. For an introduction to this theory, see Sylvester
and Uhlmann (1990). Similar constructions may also be studied with Robin bound-
ary data substituted for either the Dirichlet or Neumann data.

First consider the case of the Schroedinger Steklov problem for (L, p,). The
solution of the Neumann problem (10.2) with 7 =0 is given by Eq. (10.8), which
may be written

it(x) i ;22,279 ui(x), (11.1)

where z; is defined by (10.13). Thus Nzi(x) = /1,:1/2 ug(x) for x € Q and the trace of
this function on 0Q is given by

TNz (x) = fiy ' zx(x) for k > 1. (11.2)

The operator I'N is the NtD map and this shows that the restrictions to the bound-
ary of the Steklov eigenfunctions for (L,p;) are the eigenfunctions of this map
corresponding to the eigenvalues fi; !. In particular, this shows that the operator is
a compact linear map of L?(0Q, d5) to itself.

The Dirichlet to Neumann map is the inverse of this map and will be a closed,
unbounded linear map of L*(9Q, da) to itself.

This also permits the description of a general Robin to Dirichlet (RtD) map. The
H'-solution of a Schroedinger equation subject to the Robin conditions (10.1) is
given by Eq. (10.7)

1/2

i(x) = Z“J’ 8200, (). (11.3)

= (I—=1p;+7

The RtD map will be the operator I'R(7) and this is a continuous linear map of
L?(0Q, d5) to itself with

TR(x)z(x) = [(1 — )i + 1) " zx(x) for k > 1. (11.4)
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This and Theorem 4.3 imply that I'R(t) is actually a compact linear map of
L*(0Q, ds) to itself, and provides a simple spectral representation in terms of the
Steklov eigenfunctions.

A similar analysis holds for the A-harmonic equation. The H'-solution of (6.1)
subject to the Robin boundary condition (9.8) is given by (9.14) so its trace on 0Q
may be written

Fi(x) = TR(z)g( fgd/+2%zk<x> (11.5)

The z; here are defined by (9.23). In particular, this shows that the z; are eigen-
functions of the RtD operator with

-1
T'R(7)zx(x) = (11_1—)% zi(x) for k > 1. (11.6)
TR(t)zo(x) = v ! zp(x) (11.7)

This and Theorem 7.2 shows that TR(z) is a compact linear map of L?(9Q, d&) to
itself with a simple spectral representation in terms of the Steklov eigenfunctions
when 0 <7 < 1.

The Neumann to Dirichlet case corresponds to the case t = 0 and then the com-
patibility condition (9.17) is required. Let L2 (9Q, d5) be the codimension 1 subspace
of L?(0Q,da) of functions on the surface whose surface integral is 0. The NtD
operator [N will be a compact linear transformation of L2 (9Q,dad) to itself with
the z;, k > 1 defined by (9.23) as eigenfunctions and

TNz (x) = 0.2 (1 4 8¢) zx(x)  for k> 1. (11.8)

It may be observed that the results of this section do not require that the boundary
0Q be a (union of) C'-manifold(s); our requirements are just that (B1) and (B2) hold.
Hence these results apply to polygonal regions in 2 dimensions and to polyhedral
regions in R3.
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