
OPTIMAL COERCIVITY INEQUALITIES IN W 1,p(Ω).
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Abstract. This paper describes the characterization of optimal constants for some
coercivity inequalities in W 1,p(Ω), 1 < p < ∞. A general result involving inequalities
of p-homogeneous forms on a reflexive Banach space is first proved. The constants
are shown to be the least eigenvalues of certain eigenproblems with equality holding
for the corresponding eigenfunctions. This result is applied to 3 different classes of
coercivity results on W 1,p(Ω). The inequalities include very general versions of the
Friedrichs’ and Poincaré inequalities. Scaling laws for the inequalities are also given.

1. Introduction

This paper describes the characterization of optimal constants, and corresponding
optimal functions, for some inequalities satisfied by functions in the Sobolev spaces
W 1,p(Ω), 1 < p < ∞. Here Ω is a bounded, connected, open set in R

n which satisfy
assumptions (A1) and (A2) of section 2.

First some general properties of p-homogeneous inequalities on a reflexive Banach
space are derived in sections 3 - 5. It is shown that, for certain classes of problems,
the optimal constants may be found using either a constrained, or an associated un-
constrained, variational principle. The extremality condition for the minimizer of the
unconstrained problem is used to show that the optimal constants are the least eigen-
value of a related eigenproblem. The corresponding eigenfunctions will be optimal
functions for the inequality.

These results are then applied to three different classes of inequalities on W 1,p(Ω).
These include W 1,p− versions of Friedrichs’-type inequalities in sections 6 and 7, some
different inequalities involving boundary integrals in sections 8 and 9, and some general-
ized Poincaré type inequalities in section 10. For each of the inequalities, an associated
scaling law is described.

These inequalities generalize some well-known, and often-used, results from the
theory of Sobolev spaces. In particular the inequalities are used to prove the equivalence
of various norms on W 1,p(Ω). Such results already appear in Necas [14] Chapter 7.4,
and more recently in Atkinson and Han [3], section 6.3.5. Most of the published proofs
are non-constructive and for numerical, and other, purposes it is of considerable interest
to know how the constants depend on the geometry and size of the underlying region.
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The results are illustrated in section 11 by describing the constants in some special
cases for rectangular boxes in the plane.

Here three different classes of inequalities will be distinguished. They differ in only
one the functionals involved, but the associated extremality conditions lead to different
types of eigenproblems at optimality. The inequalities have a variety of names in the
literature. Currently Poincaré inequality is commonly used for inequalities of the form
(2.5) below. Here we will follow the older usage (see Hellwig [12], Section 5.3) of calling
results similar to (6.1) Friedrichs’ inequality. Recently there also has been interest in
the discrete analogues of these inequalities; see Brenner [6] and the references therein.

In this paper we shall use various standard results from the calculus of variations
and convex analysis. Background material on such methods may be found in Blanchard
and Bruning [7] or Zeidler [15], both of which have discussions of the variational princi-
ples for the Dirichlet eigenvalues and eigenfunctions of second order elliptic operators.
The variational principles used here are variants of the principles described there and
are analogous to those for the Laplacian described in section 5 of Auchmuty [5]. Some
different unconstrained variational principles for eigenvalue problems are described in
[4].

2. Definitions and Notation.

Let Ω be a non-empty, bounded, connected, open subset of R
n with boundary

∂Ω. Such a set Ω is called a region. Let Lp(Ω) be the usual real Lebesgue space of all
functions u : Ω → [−∞,∞] which are p-th power integrable with respect to Lebesgue
measure on Ω, 1 < p <∞. Let σ, dσ represent Hausdorff (n−1)−dimensional measure
and integration with respect to this measure respectively. The space Lp(∂Ω, dσ) is the
space of all such p-th power integrable functions on ∂Ω. The corresponding norms are
‖u‖p and ‖u‖p,∂Ω and are defined by

(2.1) ‖u‖p
p :=

∫

Ω

|u|p dx and ‖u‖p
p,∂Ω :=

∫

∂Ω

|u|p dσ.

All functions in this paper will take values in R := [−∞,∞] and we shall write

u := |Ω|−1

∫

Ω

u dx and u∂ := |σ(∂Ω)|−1

∫

∂Ω

u dσ.

for the mean values of u over the region Ω and the boundary ∂Ω respectively. Also
p∗ := p/(p− 1) is the dual index to p.

When u ∈ Lp(Ω) its weak j-th derivative is denoted Dj u. The Sobolev space
W 1,p(Ω) is defined to be the space of all functions in Lp(Ω), whose weak first derivatives
Dj u, 1 ≤ j ≤ n are all in Lp(Ω). The standard norm on W 1,p(Ω) is denoted ‖u‖1,p and
is defined by

(2.2) ‖u‖p
1,p :=

∫

Ω

[

n
∑

j=1

|Dj u|
p + |u|p

]

dx.
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This space is a Banach space. When p = 2, this becomes the Hilbert space H1(Ω)
with the standard H1− inner product

(2.3) [u, v]1 :=

∫

Ω

[u(x)v(x) + ∇u(x) · ∇v(x)] dx.

Here ∇u := (D1u,D2u, ..., Dnu) is the gradient of the function u and we shall write

(2.4) ‖∇u‖p
p :=

∫

Ω

n
∑

j=1

|Dj u|
p dx

For our analysis we also require some mild regularity conditions on Ω and ∂Ω.
First we shall require that the Sobolev imbedding theorem and the Rellich-Kondrachov
theorem hold for W 1,p(Ω). Specifically

(A1): The imbedding i : W 1,p(Ω) → C0(Ω) is compact when p > n and i : W 1,p(Ω) →
Lq(Ω) is compact for 1 ≤ q < qc when p ≤ n and qc = np/(n− p).

Criteria for this assumption are given in Adams and Fournier [1] and in Edmunds
and Evans [10] chapter V. In particular when (A1) holds, then the Poincaré inequality
follows. Namely there is a Cp = Cp(Ω) > 0, which depends on Ω, p only, such that

(2.5) ‖∇u‖p ≥ Cp ‖u− u‖p for all u ∈ W 1,p(Ω).

For a (non-constructive) proof see section 5.8 of [8]. A detailed analysis of criteria that
guarantee inequalities such as this is found in [10] chapter V, sections 4 and 5.

We also require a trace condition. Assume that ∂Ω has finite surface σ−measure
and is a finite union of disjoint Lipschitz surfaces. When this holds there is an outward
unit normal ν defined at σ a.e. point of ∂Ω. For the definition of this, and related
terms, see Evans and Gariepy [9] chapter 4. Let Γ denote the boundary trace operator,
then we will require
(A2): The boundary trace operator Γ : W 1,p(Ω) → Lp(∂Ω, dσ) is continuous.

A functional F : W 1,p(Ω) → (−∞,∞] is said to be homogeneous of degree p (or
p-homogeneous) provided

F(cu) = |c|p F(u) for all c ∈ R, u ∈ W 1,p(Ω).

We say the functional is positive if F(u) ≥ 0 for all u. It is said to be G-
differentiable at u ∈ W 1,p(Ω) if there is a continuous linear functionalDF(u) such that

lim
t→0

t−1 [F(u+ th) − F(u)] = DF(u)(h) for all h ∈ W 1,p(Ω),

In this case, DF(u) is called the G-derivative of F at u and this expression will also be
denoted 〈DF(u), h〉.

A real sequence {am : m ≥ 1} is said to be (strictly) decreasing if am+1(<) ≤ am

for all m. A function u is said to be (strictly) positive on a set E, if u(x)(>) ≥ 0 on E.
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3. The p−homogeneous Inequality

Our interest in this paper is in finding the optimal constant C0, in inequalities of
the form;

(3.1) F(u) :=

∫

Ω

n
∑

j=1

|Dj u|
p dx + B(u) ≥ C0 P(u)

where 1 < p < ∞, B,P are p-homogeneous functionals on W 1,p(Ω) and C0 > 0. The
constant C0 in 3.1 is said to be optimal if it is the largest number such that (3.1) holds.
A non-zero function û in W 1,p(Ω) optimizes (3.1) if equality holds in (3.1) with the
optimal choice of C0. When û optimizes (3.1), so does any multiple of û.

We will be particularly interested in the case where P : W 1,p(Ω) → [0,∞] is
defined by

(3.2) P(u) :=

∫

Ω

ρ(x)|u(x)|p dx.

and ρ : Ω → [0,∞] satisfies
(A3): The function ρ is in L1(Ω) when p > n or else ρ is in Lq(Ω) for some q > q0
with q0 := n/p when 1 < p ≤ n and also

∫

Ω
ρ dx > 0.

Some properties of this functional may be summarized as follows.

Proposition 3.1. Assume Ω satisfies (A1), ρ satisfies (A3) and P is defined by (3.2).
Then P is positive, bounded, convex, weakly continuous and G-differentiable on W 1,p(Ω)
with

(3.3) 〈DP(u), h〉 = p

∫

Ω

ρ|u|p−2uh dx for all u, h ∈ W 1,p(Ω).

Proof. First consider the case p > n. From (A1), u ∈ W 1,p(Ω) implies that u is in
C0(Ω) and this imbedding is compact. Use Holder’s inequality and (A3), then

0 ≤ P(u) ≤ ‖ρ‖1 ‖u‖
p
∞

so P is continuous and bounded. P is convex as |s|p is convex on R.

Assume {um : m ≥ 1} converges weakly to û in W 1,p(Ω). From (A1), it converges
to û in the uniform norm on C0(Ω). Thus

ρ(x) |um(x)|p → ρ(x) |û(x)|p pointwise on Ω.

The Lebesgue dominated convergence theorem now implies that P is weakly continuous
on W 1,p(Ω).

When 1 < p ≤ n and (A3) holds then Holder’s inequality yields

0 ≤ P(u) ≤ ‖ρ‖q ‖|u|
p‖q∗ .
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Choose r = pq/(q − 1) then, when (A1)holds, the imbedding i : W 1,p(Ω) → Lr(Ω) is
compact as p < r < np/(p− 1). Also

‖|u|p‖q∗ = ‖u‖p/r
r ,

so P is positive and bounded on W 1,p(Ω). It is convex as before.

If {um : m ≥ 1} converges weakly to û in W 1,p(Ω) then, from (A1), it converges
strongly in Lr(Ω). Thus there is a subsequence {umj

: j ≥ 1} which converges a.e. to û
on Ω. Apply the Lebesgue dominated convergence theorem then P is weakly continuous
as claimed.

The function ψ(s) := |s|p with p > 1 is continuously differentiable on R with

ψ′(s) = p |s|p−2s for s 6= 0 and ψ′(0) = 0. Define

Ψ(t) := P(u+ th) =

∫

Ω

ρ|u+ th|p dx

with u, h ∈ W 1,p(Ω). Then the G-derivative of P at u is given by Ψ′(0) = 〈DP(u), h〉.
The conditions of Corollary 1.2.2 of [13], page 124 hold in our case, so the t-derivative
can be taken under the integral and (3.3) follows. �

Note that this result implies that P(u)1/p is a weakly continuous semi-norm on
W 1,p(Ω).

The essential requirement for the functional B : W 1,p(Ω) → [0,∞] will be
(A4): The functional B is weakly lower semi-continuous (l.s.c) on W 1,p(Ω).

We will describe inequalities based on three examples of this functional B. The
first is

(3.4) B1(u) :=

∫

∂Ω

b |Γu|p dσ.

In the following the trace operator Γ will often be omitted. We will require that
(B1): b : ∂Ω → [0,∞) is in L∞(∂Ω, dσ) and

(3.5)

∫

∂Ω

b dσ := b0 > 0.

A second example is

(3.6) B2(u) :=

∣

∣

∣

∣

∫

∂Ω

b Γu dσ

∣

∣

∣

∣

p

where we require that
(B2): b : ∂Ω → [0,∞] is in Lp∗(∂Ω, dσ) and (3.5) holds.

A third example will be

(3.7) B3(u) :=

∣

∣

∣

∣

∫

Ω

c(x)u(x) dx

∣

∣

∣

∣

p

.
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We will require
(B3): c : Ω → [0,∞] is in Lp∗(Ω) and

(3.8)

∫

Ω

c(x) dx := c |Ω| > 0.

We shall treat the inequalities associated with each of these choices of B separately
in later sections. In each of these examples the functions ρ, b and/or c may be zero on
sets of positive measure; in many important applications they will be characteristic
functions of specific subsets.

Both B2,B3 are functionals of the form

(3.9) B(u) := |b(u)|p

with b being a continuous linear functional on W 1,p(Ω). We will use the following
general result for functionals of this form.

Proposition 3.2. Assume b is a continuous linear functional on W 1,p(Ω), B is defined
by (3.9) and 1 < p < ∞. Then B is continuous, convex and satisfies (A4). B is
G-differentiable with DB(u) = 0 when b(u) = 0 and

(3.10) 〈DB(u), h〉 = p |b(u)|p−2b(u)b(h) for all u, h ∈ W 1,p(Ω).

Proof. When p > 1, let ψ(s) := |s|p as above. ψ is convex and continuously differentiable
on R . Using standard results on compositions, B will be continuous and convex. Thus it
is weakly l.s.c. on W 1,p(Ω). Applying the chain rule for G-derivatives and the expression
for ψ′, the third sentence follows. �

4. Scaling of p−homogeneous Inequalities

The inequalities studied here arise in the numerical analysis of elliptic equations,
so it is of interest to know how they scale with the size of the domain. Given a reference
region Ω, and L > 0, define the scaled region ΩL := {Lx : x ∈ Ω}.

Define the dilation operator SL : W 1,p(Ω) →W 1,p(ΩL) by

(4.1) SLu(y) := uL(y) := u(y/L) for y ∈ ΩL.

SL is a linear isomorphism and the change of variables rule yields that

(4.2)

∫

ΩL

n
∑

j=1

|DjuL(y)|pdy = Ln−p

∫

Ω

n
∑

j=1

|Dj u(x)|
p dx.

For L > 0, define the functional PL : W 1,p(ΩL) → [0,∞] by

(4.3) PL(uL) :=

∫

ΩL

ρL(y)|uL(y)|p dy

with ρL := SLρ. This functional satisfies

(4.4) PL(uL) = LnP(u) for each u ∈ W 1,p(Ω).
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Similarly define the function bL : ∂ΩL → [0,∞] by bL(y) := b(y/L). Then the function-
als BjL defined by (3.4) and (3.6)-(3.7) on W 1,p(ΩL) scale according to

BjL(uL) = Ln−1Bj(u) for j = 1, 2 and B3L(uL) = Ln B3(u).

In the following sections we shall describe the scaled versions of the inequalities
of the form (3.1). In each case the optimal functions will be dilations of the optimal
function with L = 1.

5. Variational Principles for Optimal Constants

In this section, we shall show that the problem of finding the optimal constants,
and functions, in inequalities of the form (3.1) can be described using an unconstrained
variational principle. This reformulation enables a much simpler description of the
extremality conditions.

We will now assume that X is a real reflexive Banach space and also
(C1): F ,P are continuous functionals on X which are homogeneous of degree p > 1.
(C2): F is convex and there exists c0 > 0 such that

(5.1) F(u) ≥ c0 ‖u‖p
X for all u ∈ X.

(C3): P is weakly continuous and bounded on X and there exists v ∈ X such that
P(v) > 0.

Define

(5.2) B := {u ∈ X : F(u) ≤ 1} and B1 := {u ∈ X : F(u) = 1}.

Consider the variational problem of finding

(5.3) β := supu∈B1
P(u).

When this β is finite, then the homogeniety condition (C1) implies that

(5.4) βF(u) ≥ P(u) for all u ∈ X.

Now (C2) and (C3) imply that β > 0, so we also have

(5.5) F(u) ≥ β−1 P(u) for all u ∈ X.

Theorem 5.1. Assume (C1) - (C3) hold, then β defined by (5.3) is finite and there is
a û ∈ B1 with P(û) = β.

Proof. First we shall show that β := supu∈B P(u) is finite and that this supremum
is attained. Then we prove this supremum is attained at a point in B1 which leads to
the theorem.

The set B is closed, convex and bounded so it is weakly compact as W 1,p(Ω)
is reflexive. P is weakly continuous from (C3), so there is a finite β0 > 0 such that
β0 = supu∈B P(u) and this infimum is attained so there is a û in B with P(û) = β0.
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If F(û) < 1, then τ û ∈ B for some τ > 1. Then P(τ û) = |τ |pβ0 > β0. This
contradicts the definition of β0, so F(û) = 1. This implies that β = β0 and the theorem
follows. �

Corollary 5.2. Assume (C1)-(C3) hold, then (3.1) holds with C0 = β−1. Moreover
this constant is optimal and equality holds in (3.1) when u is any multiple of û.

Proof. (3.1) follows from theorem 5.1 and (5.5). Substitution shows that equality
holds in (5.5) whenever u is a multiple of any function û in B1 for which P(û) = β.
This implies the same for (3.1). �

The variational principle described above provides the usual constrained varia-
tional characterization of the best constants in inequalities such as (3.1). Now consider
the functional J : X → R defined by

(5.6) J (u) :=
1

2
F(u)2 − P(u),

and the unconstrained problem of finding the infimum of J on X. The following holds
for this problem.

Theorem 5.3. Assume (C1) - (C3) hold with β,J defined by (5.3) and (5.6). Then
J is weakly l.s.c. and coercive on X and attains its infimum at points ± ũ in X where
ũ = β1/pû and û is a maximizer of P on B1.

Proof. When F is convex and continuous on X, so is F 2 as it is positive. Thus F 2 and
J are weakly l.s.c. on X. Define c1 := supu∈B1

|P(u)|. This is finite from assumption
(C3) and homogeniety implies that P(u) ≤ c1‖u‖

p
X for all u ∈ X. Thus

J (u) ≥ c0
2‖u‖2p

X − C1‖u‖
p
X

for all u ∈ X. This shows that J is coercive on X. Hence J is bounded below on X
and attains its infimum. If ũ is a minimizer, so is −ũ as J is even.

Given u ∈ X, u 6= 0, p > 1, consider the ray Γu := {su : s > 0}. Let z be the
unique point on this ray satisfying F(z) = 1. Then u = tz where tp = F(u). Now

J (sz) = s2p/2 − spP(z).

If P(z) ≤ 0, this expression is minimized at s = 0 and the infimum of J along the ray
Γu is zero. If P(z) > 0, this expression is minimized at s̃ where

(5.7) s̃p = P(z) and inf
s>0

J (sz) = −P(z)2/2.

For z ∈ B1, define P+(z) := max(0,P(z)). Then

(5.8) inf
u∈X

J (u) = inf
z∈B1

inf
s>0

J (sz) = infz∈B1
[−P+(z)2/2] = −β2/2.

That is, the minimizers of J on X are ũ = ±β1/pû where û is a maximizer of P on B1.
Moreover at these minimizers

(5.9) F(ũ) = β, P(ũ) = β2 and J (ũ) = −β2/2.
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�

To describe the conditions satisfied by the solutions of these problems we shall
require
(C4): F ,P are G-differentiable on X.

When a functional P is p-homogeneous and G-differentable at u ∈ X, then dif-
ferentiation of P(tu) at t = 1 yields Euler’s rule that

(5.10) 〈DP(u), u〉 = p P(u).

Corollary 5.4. Assume (C1)-(C4) hold and ũ minimizes J on X. Then ũ is a
solution of

(5.11) DF(u) = β−1DP(u).

Proof. Apply the chain rule to (5.6), then

DJ (u) = F(u) DF(u) −DP(u).

From (5.9) the minimizers of J on X have F(ũ) = β, so (5.11) follows. �

Consider now the general eigenvalue problem of solving

(5.12) DF(u) = µ DP(u)

That is, we wish to find those (µ, u) ∈ R×X, with u 6= 0, which solve (5.12). This will
be interpreted in the weak form that

(5.13) 〈DF(u), h〉 = µ 〈DP(u), h〉 for all h ∈ X.

Theorem 5.5. Assume (C1) - (C4) hold, and β is defined by (5.3). Then β−1 is the
least value of µ such that (5.13) has a non-zero solution in X.

Proof. Let v̂ be a non-zero solution of (5.13). Put u = h = v̂ in (5.13), then Euler’s
rule (5.10) and (5.4) yield that

0 = p [F(v̂) − µ P(v̂)] ≥ p(1 − µβ)F(v̂).

From (C2), F(v̂) > 0, so µ ≥ β−1. Moreover û is a non-zero solution of (5.13) with
µ = β−1 so the result follows. �

6. p−versions of Friedrichs’ Inequality

K.O Friedrichs’ is credited with H1−coercivity inequalities of the form

(6.1)

∫

Ω

n
∑

j=1

|Dj u|
2 dx +

∫

∂Ω

|u|2dσ ≥ C0

∫

Ω

|u|2dx.

See Necas [14] theorem 1.9 and Hellwig [12], Section 5.3 for proofs of this result and
references to the earlier literature.
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Here we shall describe the p-analogue of this with 1 < p < ∞ and allow weights
in the last two terms. That is, we prove an inequality of the form (3.1) with B1 given
by (3.4) in place of B and P defined by (3.2). The intent is to identify the optimal
constant CF and corresponding optimal functions for the inequality

(6.2) F1(u) :=

∫

Ω

n
∑

j=1

|Dj u|
p dx +

∫

∂Ω

b|u|p dσ ≥ CF

∫

Ω

ρ|u|p dx.

for all u ∈ W 1,p(Ω). Here ρ, b obey (A3) and (B1) respectively. The value of CF depends
on the region Ω, the value of p and the functions b, ρ. It will be called Friedrichs’
constant and some variational characterizations of it will be developed.

We need some basic properties of the functional B1.

Proposition 6.1. Assume (A2) and (B1) hold and B1 is defined by (3.4). Then B1 is
convex, positive and continuous on W 1,p(Ω). Also (A4) holds and B1 is G-differentiable
with

(6.3) 〈DB1(u), h〉 = p

∫

∂Ω

b|u|p−2uh dσ for all u, h ∈ W 1,p(Ω).

Proof. The integrand b(x, s) := b(x)|s|p is positive on Ω × R and b(x, .) is convex on
R, so B1 is positive and convex.

If {um : m ≥ 1} converges to û in W 1,p(Ω), then (A2) implies that {Γum} con-
verges strongly to Γû in Lp(∂Ω, dσ). Thus there is a subsequence {Γumj

: j ≥ 1} which
converges σ a.e. to Γû on ∂Ω, so

b(x, umj
(x)) → b(x, û(x)) σ a.e. on ∂Ω as j → ∞.

When (B1) holds the Lebesgue dominated convergence theorem shows that B1 is con-
tinuous as claimed. Since B1 is continuous and convex, (A4) holds.

The proof that B1 is G-differentiable and (6.3) holds parallels that of the corre-
sponding part of the proof of Proposition 3.1. �

A consequence of this result is the observation that B1(u)
1/p is a continuous semi-

norm on W 1,p(Ω).

Consider the variational problem of minimizing F1 on the set

(6.4) S1 := { u ∈ W 1,p(Ω) : P(u) = 1}.

When ρ satisfies (A3), proposition 3.1 shows that S1 will be a weakly closed unbounded
subset of W 1,p(Ω). Define

(6.5) α := inf
u∈S1

F1(u).

Let W 1,p
m (Ω) be the subspace of W 1,p(Ω) of all functions with mean value zero.

Then each u ∈ W 1,p(Ω) has a unique decomposition of the form

(6.6) u = u + v with v ∈ W 1,p
m (Ω).
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The triangle inequality for norms yields

(6.7) ‖u‖1,p ≤ |u||Ω|1/p + ‖v‖1,p .

Theorem 6.2. Assume (A1) - (A3) and (B1) hold and 1 < p < ∞. Then there is an
optimal constant CF > 0 and corresponding optimal functions for (6.2).

Proof. To prove this we shall show that the infimum of F1 on S1 is attained and
then (6.2) holds with the optimal CF = α > 0. Since F1(u) ≥ 0 we have α ≥ 0. Let
{um : m ≥ 1} be a decreasing, minimizing sequence for F1 on S1, then

‖∇um‖
p
p ≤ F1(u1) for all m ≥ 1.

For each m, write um = um + vm as in (6.6) . Then ‖∇um‖p = ‖∇vm‖p, so ‖vm‖1,p

is bounded from the Poincaré inequality (2.5).

When B1 is defined by (3.4) and (B1) holds then, since B1
1/p is a semi-norm,

|um|b0
1/p = B1(um)1/p ≤ B1(um)1/p + B1(vm)1/p ≤ F1(u1)

1/p + C2 ‖vm‖1,p .

In the last inequality the fact that Γ is continuous from (A2) was used. This yields
that {um : m ≥ 1} is bounded. Then (6.7) implies that {um : m ≥ 1} is bounded in
W 1,p(Ω). This sequence has a weak limit û as W 1,p(Ω) is reflexive when 1 < p < ∞
and û is in S1 as S1 is weakly closed. The functional F1 is weakly l.s.c. on W 1,p(Ω)
from proposition 6.1. Thus F1(û) = α as the sequence {um : m ≥ 1} is a minimizing
sequence. Hence the infimum in (6.5) is attained.

If α = 0 then ‖∇û‖p = 0. Thus û is constant on Ω since Ω is connected.

From (3.6) this constant must be 0 which is impossible if û ∈ S1. Hence α > 0. By
homogeniety (6.2) follows with CF := α and any multiple of û is an optimal function
for (6.2). �

This theorem implies that the expression

(6.8) ‖u‖b,p := F1(u)
1/p

is a norm on W 1,p(Ω). Moreover we have the following

Corollary 6.3. Assume (A1), (A2) and (B1) hold, 1 < p < ∞, then the (b, p) norm
defined by (6.8) is an equivalent norm to the standard norm on W 1,p(Ω).

Proof. When (B1) holds and u ∈ W 1,p(Ω), then

F1(u) ≤ ‖∇u‖p
p + ‖b‖

∞,∂Ω ‖Γu‖p
p,∂Ω.

Since Γ is continuous from (A2) this yields

‖u‖b,p ≤ (1 + C)‖u‖1,p for some positive C.

Take ρ ≡ 1 in theorem 6.2 then, since b ≥ 0 and (6.2) holds,

2F1(u) ≥ ‖∇u‖p
p + CF‖u‖

p
p ≥ min(1, CF ) ‖u‖p

1,p
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These two inequalities imply the equivalence of these norms on W 1,p(Ω). �

To describe the scaling of these inequalities, let Ω, ΩL be as in section 4. Define
ρL, bL as before. When (6.2) holds on Ω, multiply through by Ln−p and use the formulae
of section 4 to find that

(6.9)

∫

ΩL

n
∑

j=1

|Dj u|
p dy + L1−p

∫

∂ΩL

bL|u|
p dσ ≥ CF L

−p

∫

ΩL

ρL|u|
p dy.

for all L > 0, u ∈ W 1,p(ΩL). This is the general scale dependent version of (6.2) and
equality will hold here for some functions in W 1,p(ΩL).

7. Friedrichs’ constant as an Eigenvalue

In the section we shall show that the optimal constant CF in (6.2), and also the op-
timal functions, can be described as the least eigenvalue, and associated eigenfunctions,
of a p-Laplacian eigenproblem on Ω.

This will be done by using the unconstrained variational formulation introduced
in section 5. Take X = W 1,p(Ω),F1 in place of F and assume P is defined by (3.2).
When (A1) and (A3) hold for ρ, then proposition 3.1 shows that P satisfies (C1),
(C3) and (C4). Similarly when (A1)-(A2) hold then F1 satisfies (C1) and (C3). The
characterization of CF in (6.2) may be compared with (5.5) and theorem 5.5 to show
that CF is the least eigenvalue of an eigenproblem of the form (5.13).

The G-differentiability of F1 is directly verified and then equation (5.13) becomes,
in this case, the problem of finding (µ, u) in R ×W 1,p(Ω) with u 6= 0 which solve

(7.1)

∫

Ω

[

n
∑

j=1

|Dj u|
p−2Dj uDjh − µρ|u|p−2uh

]

dx +

∫

∂Ω

b|u|p−2uh dσ = 0.

for all h ∈ W 1,p(Ω).

When p = 2, this is the weak form of a linear eigenvalue problem for the Laplacian
on Ω. Namely to find non-zero solutions of

(7.2)

∫

Ω

[

n
∑

j=1

Dj uDjh − µρuh

]

dx +

∫

∂Ω

buh dσ = 0 for all h ∈ H1(Ω).

This is the weak form of the eigenproblem

−∆u = µ ρ u in Ω(7.3)

(∇u) · ν + bu = 0 on ∂Ω.(7.4)

This boundary condition is of Robin type, when b is strictly positive and of Neumann
type on any subset where b = 0. In section 12, we shall determine the value of CF for
rectangles in the plane by direct solution of this problem.
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For general p > 1, (7.1) is the weak form of an eigenvalue problem for the p-
Laplacian on Ω. Namely one seeks non-zero solutions of

−∆pu = −
n

∑

j=1

Dj(|Dj u|
p−2Dj u) = µ ρ |u|p−2 u in Ω(7.5)

n
∑

j=1

(|Dj u|
p−2(Dj u)νj + b|u|p−2u = 0 on ∂Ω.(7.6)

Friedrichs’ constant may now be characterized as follows.

Theorem 7.1. Assume (A1) - (A3) and (B1) hold with 1 < p <∞. Then the optimal
constant CF > 0 in (6.2) is the least eigenvalue µ1 of (7.1). Equality holds in (6.2) if
and only if u is an eigenfunction of (7.1) corresponding to the least eigenvalue µ1.

Proof. The fact that CF is the least eigenvalue of (7.1) follows from theorem 5.5. If
u1 is a corresponding eigenfunction of (7.1) then put u = h = u1 in (7.1) to see that
equality holds in (6.2).

Conversely if ũ is a non-zero function for which equality holds in (6.2) then it is
a multiple of a function which maximizes P on the unit sphere in W 1,p(Ω) with the
(b,p)-norm. Hence it is a multiple of a minimizer of the associated J on W 1,p(Ω).
Corollary 5.4 now yields the result when one observes that any multiple of a solution
of (7.1) is again a solution of the equation. �

8. Coercivity Inequalities with Boundary Integrals

The analysis of finite element methods for linear elliptic operators uses coercivity
inequalities of the form

(8.1)

∫

Ω

n
∑

j=1

|Dj u|
2 dx +

(
∫

∂Ω

bu dσ

)2

≥ C1

∫

Ω

|u|2dx.

for all u ∈ H1(Ω). See Brenner [6] or Arnold et al [2] for discussions of this. This
inequality differs from (6.2) and I’m not aware of a published proof of this result which
includes an estimate of the constant C1. A slightly different inequality is given as
example 6.3.16 in [3].

A more general form of this is that for 1 < p < ∞, there is a constant CB > 0
such that

(8.2) F2(u) :=

∫

Ω

n
∑

j=1

|Dj u|
p dx +

∣

∣

∣

∣

∫

∂Ω

bu dσ

∣

∣

∣

∣

p

≥ CB

∫

Ω

ρ|u|p dx.

for all u ∈ W 1,p(Ω). Here b, ρ satisfy (B2) and (A3). The value of CB will depend
on Ω, p, b, ρ. Here we shall characterize the optimal constant CB, and the optimizing
functions in this inequality via some variational principles. In particular we will show
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that CB is the least eigenvalue of a eigenproblem with integro-differential boundary
conditions.

The analysis of this inequality parallels that for Friedrichs’ inequality. We first
consider the variational problem of minimizing F2 on the set S1 defined by (6.4). Write

(8.3) α2 := inf
u∈S1

F2(u).

The proof of the following theorem shows that the minimizers of this problem
exist and are functions for which equality holds in (8.2) with the value α2 = CB.

Theorem 8.1. Assume (A1) - (A3) and (B2) hold and 1 < p < ∞. Then there is an
optimal constant CB > 0 and corresponding optimal functions for (8.2).

Proof. First note that α2 > 0. Let {um : m ≥ 1} be a decreasing, minimizing se-
quence for F2 on S1, then

‖∇um‖
p
p ≤ F2(u1) for all m ≥ 1.

For each m, write um = um + vm as in (6.6) . Then ‖∇um‖p = ‖∇vm‖p, so ‖vm‖1,p

is bounded from the Poincaré inequality (2.5).

Define the linear functional b on W 1,p(Ω) by

(8.4) b(u) :=

∫

∂Ω

bΓu dσ.

Then b(um) = b0um + b(vm). When (A2) and (B2) hold, b will be continuous, so

b0|um| ≤ |b(um)| + C ‖vm‖1,p .

Now |b(um)| is bounded as we have a descent sequence for F2 thus |um| is uniformly
bounded. Hence the sequence {um : m ≥ 1} is bounded in W 1,p(Ω) from (6.7). The
concluding arguments in the proof of theorem 6.2 now apply and complete the proof of
this theorem. �

This result implies that the expression

(8.5) ‖u‖∂,p := F2(u)
1/p

defines a norm on W 1,p(Ω). This may be strengthened to the following

Corollary 8.2. Assume (A1), (A2) and (B2) hold, 1 < p < ∞, then the (∂, p) norm
defined by (8.5) is an equivalent norm to the standard norm on W 1,p(Ω).

Proof. When (B2) holds and u ∈ W 1,p(Ω), then

F2(u) ≤ ‖∇u‖p
p + ‖b‖p

p∗,∂Ω ‖Γu‖p
p,∂Ω

Since Γ is continuous from (A2) this yields

‖u‖∂,p ≤ (1 + C)‖u‖1,p for some positive C.
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Take ρ ≡ 1 in theorem 8.1 then, since b ≥ 0 and (8.2) holds,

2F2(u) ≥ ‖∇u‖p
p + CB‖u‖

p
p ≥ min(1, CB) ‖u‖p

1,p

These two inequalities imply the equivalence of these norms on W 1,p(Ω). �

When ΩL is defined as in section 4, the scaled version of (8.2) is obtained by
multiplying by Ln−p and using the formulae in section 4. This yields

(8.6)

∫

ΩL

n
∑

j=1

|Dj u|
p dy + Ln(1−p)

∣

∣

∣

∣

∫

∂ΩL

bLu dσ

∣

∣

∣

∣

p

≥ CBL
−p

∫

ΩL

ρL|u|
p dy.

for all L > 0, u ∈ W 1,p(ΩL). Moreover there are functions in W 1,p(ΩL) for which
equality holds here.

9. The Optimal constant CB

In the last section the constant CB was identified as the value of a variational
problem. This problem has the form of the problem described in section 5 with X
replaced by W 1,p(Ω), F by F2 and β by α2.

Just as in section 5, an unconstrained variational principle for this problem may
be introduced and we find that the minimizers of our problem are given by the eigen-
functions of the analogue of equation (5.13) corresponding to the least eigenvalue. It
is straightforward to complete the verification that F2 is G-differentiable on W 1,p(Ω).
In this case equation (5.13) becomes the problem of finding non-zero solutions (µ, u) in
R ×W 1,p(Ω) of

(9.1)

∫

Ω

[

n
∑

j=1

|Dj u|
p−2Dj uDjh − µρ|u|p−2uh

]

dx + |b(u)|p−2b(u)b(h) = 0

for all h ∈ W 1,p(Ω). When p = 2, this reduces to

(9.2)

∫

Ω

[

n
∑

j=1

Dj uDjh − µρuh

]

dx + b(u)b(h) = 0 for all h ∈ H1(Ω).

This is the weak form of the eigenproblem

−∆u = µ ρu in Ω(9.3)

(∇u) · ν + b(u)b = 0 on ∂Ω.(9.4)

This boundary condition is an integro-differential equation. Nevertheless standard el-
liptic spectral theory applies to this eigenproblem with only minimal changes.
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For general p > 1, (9.1) is the weak form of an eigenvalue problem for the p-
Laplacian on Ω. Namely one seeks non-zero solutions of (7.5) subject to the integro-
differential boundary condition

(9.5)

n
∑

j=1

(|Dj u|
p−2(Dj u)νj + b|b(u)|p−2b(u) = 0 on ∂Ω.

The optimal constant CB may now be characterized in a similar way to that of
the Friedrichs’ constant in section 7. The proof of the following is essentially the same
as that of thoerem 7.1.

Theorem 9.1. Assume (A1) - (A3) and (B2) hold with 1 < p <∞. Then the optimal
constant CB > 0 in (8.2) is the least eigenvalue µ1 of (9.1). Equality holds in (8.2) if
and only if u is an eigenfunction of (9.1) corresponding to the least eigenvalue µ1.

10. Generalized Poincaré Inequalities

The name Poincaré Inequality is attached to a number of different results. In
Gilbarg and Trudinger, [11] Section 7.9 or Edmunds and Evans [10], Chapter V, section
3, inequalities of the form

(10.1)

∫

Ω

n
∑

j=1

|Dj u|
p dx ≥ Cp

∫

Ω

|u− u|pdx.

are described with specific simple formulae for (in fact general lower bounds on) Cp.

Here we shall consider the question of finding the optimal constant CP in the
inequality

(10.2) F3(u) :=

∫

Ω

n
∑

j=1

|Dj u|
p dx +

∣

∣

∣

∣

∫

Ω

cu dx

∣

∣

∣

∣

p

≥ CP

∫

Ω

ρ|u|p dx.

for all u ∈ W 1,p(Ω). Here c, ρ satisfy (B3) and (A3). When p = 2 and the functions c, ρ
are constants, this is one of the forms given in Necas [14], Chapter 1. The value of CP

will depend on Ω, p, c, ρ.

Here we shall characterize the optimal constant CP , and the optimizing functions
in this inequality via some variational principles. In particular we will show that CP is
the least eigenvalue of a Neumann eigenproblem for an integrodifferential operator on
Ω.

Just as before, consider the problem of minimizing the functional F3 on the set
S1 defined by (6.4). Write

(10.3) α3 := inf
u∈S1

F3(u).

The proof of the following theorem shows that the minimizers of this problem
exist, there are functions for which equality holds in (10.2) and the value α3 = CP .
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Theorem 10.1. Assume (A1), (A3) and (B3) hold and 1 < p < ∞. Then there is an
optimal constant CP > 0 and corresponding optimal functions for (10.2).

Proof. First note that α3 > 0. Let {um : m ≥ 1} be a decreasing, minimizing se-
quence for F3 on S1, then

‖∇um‖
p
p ≤ F3(u1) for all m ≥ 1.

For each m, write um = um + vm as in (6.6) . Then ‖∇um‖p = ‖∇vm‖p, so ‖vm‖1,p

is bounded from the Poincaré inequality (2.5).

Define the linear functional c on W 1,p(Ω) by

(10.4) c(u) :=

∫

Ω

c u dx.

Then c(um) = c |Ω|um + c(vm). When (B3) holds, c will be continuous, so the fact
that |c(um)| is uniformly bounded implies that |um| is uniformly bounded. Hence the
sequence {um : m ≥ 1} is bounded in W 1,p(Ω) from (6.7). The concluding arguments
in the proof of theorem 6.2 apply again here to yield the proof of this theorem. �

This result implies that the expression

(10.5) ‖u‖c,p := F3(u)
1/p

defines a norm on W 1,p(Ω). This may be strengthened to the following

Corollary 10.2. Assume (A1), (A3) and (B3) hold, 1 < p <∞, then the (c, p) norm
defined by (10.5) is an equivalent norm to the standard norm on W 1,p(Ω).

Proof. When (B3) holds and u ∈ W 1,p(Ω), then

F3(u) ≤ ‖∇u‖p
p + ‖c‖p

p∗ ‖u‖
p
p ≤ C ‖u‖p

1,p

with C > 0. Take ρ ≡ 1 in theorem 10.1 then, since c ≥ 0 and (10.2) holds,

2F2(u) ≥ ‖∇u‖p
p + CP‖u‖

p
p ≥ min(1, CP ) ‖u‖p

1,p

These two inequalities imply the equivalence of these norms on W 1,p(Ω). �

When ΩL is defined as in section 4, the scaled version of (10.2) is obtained by
using the formulae in section 4 and multiplying by Ln−p. This yields

(10.6)

∫

ΩL

n
∑

j=1

|Dj u|
p dy + Ln−p(n+1)

∣

∣

∣

∣

∫

ΩL

cLu dy

∣

∣

∣

∣

p

≥ CPL
−p

∫

ΩL

ρL|u|
p dy.

for all L > 0, u ∈ W 1,p(ΩL). Equality holds here for some functions in W 1,p(ΩL).
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For this case the analog of (5.13) is to find non-zero solutions (µ, u) in R×W 1,p(Ω)
of

(10.7)

∫

Ω

[

n
∑

j=1

|Dj u|
p−2Dj uDjh − µρ|u|p−2uh

]

dx + |c(u)|p−2c(u)c(h) = 0

for all h ∈ W 1,p(Ω). When p = 2, this reduces to

(10.8)

∫

Ω

[

n
∑

j=1

Dj uDjh − µρuh

]

dx + c(u)c(h) = 0 for all h ∈ H1(Ω).

This is the weak form of the eigenproblem

−∆u + c(u)c = µ ρu in Ω(10.9)

(∇u) · ν = 0 on ∂Ω.(10.10)

This is an eigenvalue problem for an integro-differential equation on Ω. It is
worth noting that when the function c here is itself an eigenfunction of the Neumann
problem for equation (7.4), then the eigenfunctions of this problem are precisely the
eigenfunctions of the Neumann problem for (7.4) and only one eigenvalue is different.

For general p > 1, (10.7) is the weak form of an eigenvalue problem for the p-
Laplacian on Ω. Namely one seeks non-zero solutions of the system

−
n

∑

j=1

Dj(|Dj u|
p−2Dj u) + |c(u)|p−2c(u)c = µ ρ |u|p−2 u in Ω(10.11)

n
∑

j=1

(|Dj u|
p−2(Dj u)νj = 0 on ∂Ω.(10.12)

11. Optimal Inequalities for Boxes

In her paper [6], Brenner describes discrete analogues of the boundary inequality
(11.2) and the Poincaré inequality (11.3) below for 2d polygons and 3d polyhedra. To
illustrate the preceding analysis and for comparison with the results in [6], we will find
explicit formulae for the optimal constants when the region Ω is taken to be a rectangle.
Take p = 2 and Ω := (0, π) × (0, h) with h > 0 being the height of the rectangle and
let all the coefficient functions be identically 1.
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The three different inequalities may be written
∫

Ω

n
∑

j=1

|Dj u|
2 dx +

∫

∂Ω

|u|2 ds ≥ CF (h)

∫

Ω

|u|2 dx(11.1)

∫

Ω

n
∑

j=1

|Dj u|
2 dx +

∣

∣

∣

∣

∫

∂Ω

u ds

∣

∣

∣

∣

2

≥ CB(h)

∫

Ω

|u|2 dx, and(11.2)

∫

Ω

n
∑

j=1

|Dj u|
2 dx +

∣

∣

∣

∣

∫

Ω

u dx

∣

∣

∣

∣

2

≥ CP (h)

∫

Ω

|u|2 dx.(11.3)

Here ds replaces dσ as it represents arc-length on ∂Ω,

From (7.4)-(7.4), the value of CF (h) in (11.1) is the least eigenvalue of the Robin-
Laplacian problem

(11.4) −∆u = µu in Ω and (∇u) · ν + u = 0 on ∂Ω.

Similarly the value of CB(h) in (11.2) is the least eigenvalue of the Laplacian
eigenproblem

(11.5) −∆u = µu in Ω and (∇u) · ν +

∫

∂Ω

u ds = 0 on ∂Ω.

Finally the value of CP (h) in (11.3) is the least eigenvalue of the modified Lapla-
cian eigenproblem

(11.6) −∆u +

(
∫

Ω

u dx

)

= µu in Ω and (∇u) · ν = 0 on ∂Ω.

The eigenfunctions of (11.6) are precisely the eigenfunctions of the Neumann-

Laplacian on Ω. The first non-zero eigenvalue of the Neumann-laplacian is λ
(N)
1 =

min(1, π/h2). Thus the optimal constant in (11.3) for this rectangle is

(11.7) CP (h) = min(hπ, 1, π/h2).

A careful analysis of a family of constrained variational principles for CB(h) leads
to the result that

(11.8) CB(h) = min(1, π/h2).

The first eigenvalue, and the corresponding eigenfunction of (11.4) may also be
found explicitly. It is

(11.9) CF (h) = k0 + (k1(h))
2

where k0 = 0.40742 and 0.5(π/h) < k1(h) < (π/h). In fact k0, k1 are the smallest
positive solutions respectively of

tan kπ = (−2k)/(1 − k2) and tan kh = (−2k)/(1 − k2).
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