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Abstract. The spaces Hs(∂Ω) are described via Steklov eigenfunction expansions.
This characterization provides explicit formulae for the inner products, norms and al-
lows the description of explicit orthonormal bases for these spaces. It uses a special inner
product on H1(Ω), and properties of the harmonic Steklov eigenfunctions on the region.
This approach only requires the boundary of the region be Lipschitz and generalizes the
classical definitions that are used when the boundary is a smooth manifold.

1. Introduction

This paper develops a spectral characterization of Hilbert trace spaces on Lipschitz
regions in R

n. The description uses Steklov eigenfunction expansions and provides explicit
formulae for the inner products, norms and orthonormal bases.

The approach used here is intrinsic and is based on the use of special inner products
and related decompositions for H1(Ω). The Steklov eigenfunctions then simultaneously
provide orthogonal sets in H1(Ω) and of L2(∂Ω, dσ). This enables the description of
Hs(∂Ω) for all real s. The resulting spaces form an interpolatory family of spaces and
explicit formulae for the inner products in H1/2(∂Ω) and H−1/2(∂Ω) are obtained. These
results depend on completeness and related results developed in Auchmuty [4].

The usual theory of trace spaces as described in Adams and Fournier [2], Dautray
and Lions [8], Lions and Magenes [12] or McLean [13] requires the use of Fourier transforms
and local diffeomorphisms of domains onto a half-space. Such an approach is difficult to
implement computationally and does not lead to a satisfactory approximation theory. The
approach developed here has good constructive properties and is much more amenable to
numerical simulation, see Kloucek et al [11].

2. Definitions and Notation.

This paper will first provide a spectral characterization of the trace spaces H s(∂Ω)
when Ω is a regions in R

n. A region is a non-empty, connected, open subset of R
n. Its

closure is denoted Ω and its boundary is ∂Ω := Ω \ Ω. The basic assumption on this
region is the following.

(B1): Ω is a bounded region in R
n and its boundary ∂Ω is the union of a finite number

of disjoint closed Lipschitz surfaces; each surface having finite surface area.
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When this holds there is an outward unit normal ν defined at σ a.e. point of ∂Ω. The
definitions and terminology of Evans and Gariepy [9], will generally be used except that
σ, dσ will represent Hausdorff (n− 1)−dimensional measure and integration with respect
to this measure respectively. All functions in this paper will take values in R := [−∞,∞]
and derivatives should be taken in a weak sense.

A real sequence {xm : m ≥ 1} is said to be (strictly) increasing if xm+1(>) ≥ xm for
all m. Similarly a function u is said to be (strictly) positive on a set E, if u(x) ≥ (>)0 on
E. The gradient of a function u will be denoted ∇u.

The real Lebesgue spaces Lp(Ω) and Lp(∂Ω, dσ), 1 ≤ p ≤ ∞ will be defined in the
standard manner and have the usual p-norm denoted by ‖u‖p and ‖u‖p,∂Ω respectively.
Their inner products are defined by

〈u, v〉 :=

∫

Ω

u(x) v(x) dx and 〈u, v〉∂Ω := |∂Ω|−1

∫

∂Ω

u v dσ.

Let H1(Ω) be the usual real Sobolev space of functions on Ω. It is a real Hilbert space
under the standard H1− inner product

(2.1) [u, v]1 :=

∫

Ω

[u(x).v(x) + ∇u(x) · ∇v(x)] dx.

The corresponding norm will be denoted by ‖u‖1,2

The region Ω is said to satisfy Rellich’s theorem provided the imbedding of H 1(Ω)
into Lp(Ω) is compact for 1 ≤ p < pS where pS(n) := 2n/(n − 2) when n ≥ 3, or
pS(2) = ∞ when n = 2.

There are a number of different criteria on Ω and ∂Ω that imply this result. When
(B1) holds it is theorem 1 in section 4.6 of [9]. See also Amick [1]. DiBenedetto [7], in
theorem 14.1 of chapter 9 shows that the result holds when Ω is bounded and satisfies a
”cone property”. Adams and Fournier give a thorough treatment of conditions for this
result in chapter 6 of [2] and show that it also holds for some classes of unbounded regions.

When (B1) holds and u ∈ W 1,1(Ω) then the trace of u on ∂Ω is well -defined
and is a Lebesgue integrable function with respect to σ, see [9], Section 4.2 for details.
The region Ω is said to satisfy a compact trace theorem provided the trace mapping
Γ : H1(Ω) → L2(∂Ω, dσ) is compact. The trace map is the linear extension of the map
restricting Lipschitz continuous functions on Ω to ∂Ω. Occasionally u will be used in
place of Γu for the trace of a function on ∂Ω.

Evans and Gariepy [9], section 4.3 show that Γ is continuous when ∂Ω satisfies
(B1). Theorem 1.5.1.10 of Grisvard [10] proves an inequality that implies the compact
trace theorem when ∂Ω satisfies (B1). This inequality is also proved in [7], chapter 9,
section 18 under stronger regularity conditions on the boundary.

Here we shall always require that the region satisfy
(B2): Ω and ∂Ω satisfy (B1), the Rellich theorem and the compact trace theorem.
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Instead of (2.1), we will primarily use the ∂−inner product

(2.2) [u, v]∂ :=

∫

Ω

∇u · ∇v dx + |∂Ω|−1

∫

∂Ω

u v dσ.

The corresponding norm will be denoted by ‖u‖∂ . When (B2) holds, this norm is equiva-
lent to the usual (1, 2)−norm on H1(Ω). This is proved in Corollary 6.2 of [4] and is part
of theorem 21A of [14].

A function u ∈ H1(Ω) is said to be harmonic on Ω provided it is a solution of
Laplace’s equation in the usual weak sense. Namely

(2.3)

∫

Ω

∇u · ∇ϕ dx = 0 for all ϕ ∈ C1
c (Ω).

Here C1
c (Ω) is the set of all C1−functions on Ω with compact support in Ω.

Define H(Ω) to be the space of all such harmonic functions on Ω. When (B1) holds,
the closure of C1

c (Ω) in the H1−norm is the usual Sobolev space H1
0 (Ω). Then (2.3) is

equivalent to saying that H(Ω) is ∂−orthogonal to H1
0 (Ω). This may be expressed as

(2.4) H1(Ω) = H1
0 (Ω) ⊕∂ H(Ω),

where ⊕∂ indicates that this is a ∂−orthogonal decomposition. This result is also discussed
in section 22.4 of [14].

In this paper we shall use various standard results from the calculus of variations
and convex analysis. Background material on such methods may be found in Blanchard
and Bruning [6] or Zeidler [15], both of which have discussions of the variational principles
for the Dirichlet eigenvalues and eigenfunctions of second order elliptic operators. The
variational principles used here are variants of the principles described there and are
analogous to those for the Laplacian described in section 5 of Auchmuty [3].

In this paper all the variational principles, and functionals will be defined on (closed
convex subsets of) H1(Ω). When F : H1(Ω) → (−∞,∞] is a functional, then F is said
to be G-differentiable at a point u ∈ H1(Ω) if there is a F ′(u) such that

lim
t→0

t−1 [F(u + tv) −F(u)] = F ′(u)(v) for all v ∈ H1(Ω),

with F ′(u) a continuous linear functional on H1(Ω). In this case, F ′(u) is called the
G-derivative of F at u.

3. The Harmonic Steklov Eigenproblem

Assume Ω is a region in R
n which satisfies (B2). A non-zero function s ∈ H1(Ω) is

said to be a harmonic Steklov eigenfunction on Ω corresponding to the Steklov eigenvalue
δ provided s satisfies

(3.1)

∫

Ω

∇s · ∇v dx = δ |∂Ω|−1

∫

∂Ω

s v dσ for all v ∈ H1(Ω).
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This is the weak form of the boundary value problem

(3.2) ∆ s = 0 on Ω with Dν s = δ |∂Ω|−1 s on ∂Ω.

Here ∆ is the Laplacian and Dν s(x) := ∇s(x) ·ν(x) is the unit outward normal derivative
of s at a point x on the boundary.

δ0 = 0 is the least eigenvalue of this problem corresponding to the eigenfunction
s0(x) ≡ 1 on Ω. This eigenvalue is simple as Ω is connected. All other eigenvalues of (3.1)
are strictly positive.

These eigenvalues and a corresponding family of ∂−orthonormal eigenfunctions may
be found using variational principles as described in sections 6 and 7 of [4]. A different
variational description is developed in Bandle [5], Chapter 3. Let the first k Steklov
eigenvalues be 0 = δ0 < δ1 ≤ δ2 ≤ . . . ≤ δk−1 and s0, s1, . . . , sk−1 be a corresponding set
of ∂−orthonormal eigenfunctions. The k-th eigenfunction sk will be a maximizer of the
functional

(3.3) B(u) := |∂Ω|−1

∫

∂Ω

u2 dσ

over the subset Bk of functions in H1(Ω) which satisfy

(3.4) ‖s‖∂ ≤ 1 and [s, sl]∂ = 0 for 0 ≤ l ≤ k − 1.

The existence and some properties of these eigenfunctions are described in sections
6 and 7 of [4]. In particular, that analysis shows that each δj is of finite multiplicity and
δj → ∞ as j → ∞; see Theorem 7.2 of [4]. Let S := {sj : j ≥ 0} be the maximal family
of ∂−orthonormal eigenfunctions constructed inductively as above. For each u ∈ H 1(Ω),
consider the series

(3.5) PH u(x) :=

∞
∑

j=0

[u, sj]∂ sj(x)

Theorem 3.1. Assume Ω, ∂Ω satisfy (B2) and PH is defined by (3.5), then PH is the
∂−orthogonal projection of H1(Ω) onto H(Ω).

Proof. This follows from standard results about orthogonal expansions and theorem 7.3
of [4] which says that S is a maximal orthonormal subset of H(Ω). �

An expression of the form

(3.6) v(x) :=
∞

∑

j=0

cj sj(x) with cj := [v, sj]∂

will be called a harmonic Steklov expansion and, since S is a basis of H(Ω), the Riesz-
Fischer theorem implies that it represents an H1− harmonic function on Ω if and only
if

(3.7)

∞
∑

j=0

|cj|
2 < ∞.
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As described in section 8 of [4], the Steklov eigenfunctions on the unit disc in R
2

are the functions rk cos kθ and rk sin kθ so the above series are familiar from classical
treatments of harmonic functions on a disc. Similarly when Ω is the unit ball in R

3 the
Steklov eigenfunctions are spherical harmonics and these series generalize some common
expansions in classical mathematical physics.

4. A Spectral Representation of the Trace Operator

The Steklov eigenfunctions sj described in the preceding section have L2 traces on
the boundary ∂Ω whenever (B1) holds. Define

(4.1) ŝj(x) :=
√

1 + δj Γ sj(x) for x ∈ ∂Ω, and j ≥ 0.

Then (3.1) and (3.4) imply that the set Ŝ := {ŝj : j ≥ 0} will be an orthonormal set in
L2(∂Ω, dσ) with respect to the inner product defined in section 2. The following result
provides an explicit expression for the trace operator in terms of the harmonic Steklov
expansion of a function u ∈ H1(Ω).

Theorem 4.1. Assume Ω, ∂Ω satisfy (B2), with Γ, Ŝ as above. Then Ŝ is a maximal
orthonormal set in L2(∂Ω, dσ) and

(4.2) Γu =
∞

∑

j=0

(1 + δj)
−1/2 [u, sj]∂ ŝj for each u ∈ H1(Ω).

Proof. The first claim is a special case of theorem 9.4 in [4]. The null space of the
operator Γ is H1

0 (Ω) from theorem 3.40 of [13]. Hence, from (2.4) and theorem 3.1,
Γu = ΓPH u, where PH is the projection onto the space H(Ω). (4.2) then follows from
(4.1). �

Apply Parseval’s identity to (4.2) then

(4.3) ‖Γ u‖2
∂Ω := |∂Ω|−1

∫

∂Ω

|Γ u|2 dσ =
∞

∑

j=0

(1 + δj)
−1 [u, sj]∂

2.

for any u ∈ H1(Ω), since Ŝ is a basis of L2(∂Ω, dσ).

Suppose now that g = Γ u for some u ∈ H1(Ω), then g ∈ L2(∂Ω, dσ) and

(4.4) g(x) =
∞

∑

j=0

gj ŝj(x) with gj = 〈g, ŝj〉∂Ω.

(4.2) and the orthonormality of Ŝ implies that

[u, sj]∂ = (1 + δj)
1/2 gj for all j ≥ 0.
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Let gM be the M-th partial sum of the series (4.4) and consider the map EM : L2(∂Ω, dσ) →
H(Ω) defined by

(4.5) EM g(x) :=

M
∑

j=0

(1 + δj)
1/2 gj sj(x).

This is a harmonic function on Ω with boundary trace gM . Define

(4.6) E g(x) := lim
M→∞

EM g(x)

then (3.7) shows that Eg is in H(Ω) if and only if

(4.7)
∞

∑

j=0

(1 + δj) |gj|
2 < ∞.

Formally E defines a harmonic extension of the boundary data g to Ω.

5. A Spectral Definition of Hs(∂Ω)

The classical description of trace theorems for H1− functions on a region requires the
description of the boundary using local coordinates and mappings from canonical regions
such as a half-space. See chapter 3 of McLean [13] for a detailed description under weak
regularity conditions. A comparison of a number of methods for defining these spaces is
given in the appendix to chapter 4, volume 2 of [8]. Here a very different definition will
be described which should be much more useful for computational purposes. It uses an
intrinsic characterization so that no mappings, or special representations, of the region
are required.

Specifically Hs(∂Ω) is defined as that subspace of L2(∂Ω, dσ) of functions whose
harmonic Steklov coefficients satisfy certain summability conditions. For s ≥ 0, we define
Hs(∂Ω) to be the subspace of all functions g ∈ L2(∂Ω, dσ) with Steklov expansion (4.4),
satisfying

(5.1)
∞

∑

j=0

(1 + δj)
2s |gj|

2 < ∞.

Define the s-inner product and s-norm on Hs(∂Ω) by

(5.2) [g, h]s,∂Ω :=

∞
∑

j=0

(1 + δj)
2s gj hj and ‖g‖2

s,∂Ω :=

∞
∑

j=0

(1 + δj)
2s gj

2.

When s = 0, one sees that H0(∂Ω) = L2(∂Ω, dσ).

When s = 1/2, (4.7) shows that the space H1/2(∂Ω) will be precisely the class of
all boundary values of H1− functions on Ω - so this definition agrees with the classical
definition based on Fourier methods when ∂Ω is a smooth manifold.
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Note that this definition of the spaces Hs(∂Ω) only requires that ∂Ω be smooth
enough for the Steklov eigenanalysis to hold. The following results show that this defi-
nition satisfies the same intermediate space properties as the original definitions of Lions
and Magenes [12] chapter 1, section 7.3 - which required that the boundary be a C∞−
manifold.

Theorem 5.1. Assume that Ω, ∂Ω satisfy (B2) and H s(∂Ω) is defined as above. If
0 ≤ s1 < s2, then Hs2(∂Ω) is a dense subspace of Hs1(∂Ω) and the imbedding of Hs2(∂Ω)
into Hs1(∂Ω) is compact.

Proof. For M ≥ 1, let PM : L2(∂Ω, dσ) → L2(∂Ω, dσ) be the finite rank operator
corresponding to the M-th partial sum of the Steklov expansion (4.4). That is

(5.3) PM g(x) :=

M
∑

j=0

〈g, ŝj〉∂Ω ŝj(x) for g ∈ L2(∂Ω, dσ).

Obviously PM g ∈ Hs(∂Ω) for all s ≥ 0 and the definition (5.2) yields that

(5.4) ‖g‖s1,∂Ω ≤ ‖g‖s2,∂Ω whenever 0 ≤ s1 < s2.

Given g ∈ Hs1(∂Ω), then the sequence {PM g : M ≥ 1} is a subset of Hs2(∂Ω) which
converges to g in Hs1(∂Ω). Thus Hs2(∂Ω) is a dense subspace of Hs1(∂Ω).

Consider the linear map Lθ : L2(∂Ω, dσ) → L2(∂Ω, dσ) defined by

(5.5) Lθ g(x) :=

∞
∑

j=0

(1 + δj)
−θ 〈g, ŝj〉∂Ω ŝj(x).

For θ > 0, using the fact that δj → ∞, Lθ is a compact linear operator as it may be
uniformly approximated by a finite rank operator. Moreover

(5.6) ‖Lθ g‖2
s,∂Ω =

∞
∑

j=0

(1 + δj)
2(s−θ) 〈g, ŝj〉

2
∂Ω.

Thus Lθ is a linear isometry of L2(∂Ω, dσ) onto Hθ(∂Ω) so the imbedding of Hs(∂Ω) into
L2(∂Ω, dσ) is compact whenever s > 0. A translation in s, then yields that the imbedding
of Hs2(∂Ω) into Hs1(∂Ω) is compact whenever s1 < s2. �

The family of spaces Hs(∂Ω) with s ≥ 0 form an interpolatory family (or scale) of
real Hilbert spaces as these s-norms satisfy the following log-convexity inequality.

Theorem 5.2. Assume that Ω, ∂Ω satisfy (B2) and H s(∂Ω) is defined as above. If
0 ≤ s1 < s2 and s = (1 − θ)s1 + θs2 with 0 ≤ θ ≤ 1, then

(5.7) ‖g‖s,∂Ω ≤ ‖g‖1−θ
s1,∂Ω ‖g‖θ

s2,∂Ω for all g ∈ Hs2(∂Ω).

Proof. This is obviously true when θ = 0 or 1. Assume 0 < θ < 1, then from (5.2),

(5.8) ‖g‖2
s,∂Ω :=

∞
∑

j=0

(1 + δj)
2s gj

2.
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Factor each term in the sum, so that (1 + δj)
2s gj

2 = cj dj with

cj := (1 + δj)
s1(1−θ) gj

2(1−θ), dj := (1 + δj)
s2θ gj

2θ.

Apply Holder’s inequality to (5.8) with p := 1/(1 − θ), p∗ := θ−1, then (5.7) follows. �

Suppose F is a continuous linear functional on Hs(∂Ω) with s ≥ 0. F will be
represented by a function f ∈ L2(∂Ω, dσ) provided

(5.9) F (g) = |∂Ω|−1

∫

∂Ω

f g dσ = 〈f, g〉∂Ω for all g ∈ Hs(∂Ω).

When f, g have Steklov expansions of the form (4.4) with Steklov coefficients fj, gj, then
this becomes

(5.10) F (g) =
∞

∑

j=0

fj gj

Use of Schwarz’ inequality here shows that each f ∈ L2(∂Ω, dσ) represents a continuous
linear functional on such Hs(∂Ω).

For s < 0, define the space Hs(∂Ω) to be the completion of the space L2(∂Ω, dσ)
with respect to the inner product and norm of (5.2). Elements of this space will be called
generalized functions on ∂Ω. Below we shall show that H−s(∂Ω) is precisely the dual
space of Hs(∂Ω) with respect to the pairing induced by the L2−inner product on ∂Ω.
When ∂Ω is a C∞ manifold, these will be spaces of distributions on ∂Ω.

It is straightforward to verify that Hs(∂Ω) with s < 0 is a real Hilbert space under
the inner product of (5.2). The following theorem specifies the duality relationship.

Theorem 5.3. Assume that Ω, ∂Ω satisfy (B2), Hs(∂Ω) is defined as above with s > 0
and F is a continuous linear functional on Hs(∂Ω). Then there is a unique generalized
function f ∈ H−s(∂Ω) such that

(5.11) F (g) = 〈f, g〉∂Ω for all g ∈ Hs(∂Ω).

Moreover the dual norm of F is ‖f‖−s,∂Ω.

Proof. Rewrite each term in the sum (5.10) as the product of

cj := µ−1
j fj and dj := µj gj with µj := (1 + δj)

s.

Apply Schwarz’ inequality to (5.10), then the definitions of the norms yield

(5.12) |F (g)| ≤ ‖f‖−s,∂Ω ‖g‖s,∂Ω

Moreover equality holds here whenever fj = (1 + δj)
2 gj for all j ≥ 0. Since F is continu-

ous if and only if it is bounded, we see that each continuous linear functional on H s(∂Ω)
will be represented by a generalized function in H−s(∂Ω). The dual norm is defined by

‖F‖∗s := sup
‖g‖s,∂Ω

≤ 1

|F (g)|.

so (5.12) shows that it is given by the norm on H−s(∂Ω). �
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6. Spectral Representation of the Normal Derivative

When ∂Ω is locally a C1−manifold, then the exterior unit normal ν is a continuous
vector field. The exterior normal derivative of a C1−function u on Ω is then given by

(6.1) Dν u(x) := ∇u(x) · ν(x) for x ∈ ∂Ω.

When the Steklov eigenfunctions are sufficiently smooth, then (3.2) and (4.1) imply
that

(6.2) Dν sj(x) =
δj

|∂Ω|
√

(1 + δj)
ŝj(x) for x ∈ ∂Ω and j ≥ 0.

Take this to hold for each Steklov eigenfunction. When v ∈ H(Ω) has a Steklov expansion
of the form (3.6), define the linear extension of Dν to be

(6.3) Dν v = |∂Ω|−1
∞

∑

j=1

δj
√

(1 + δj)
[v, sj]∂ ŝj.

The Hs− norm of this generalized function on ∂Ω is

(6.4) ‖Dν v‖2
s,∂Ω = |∂Ω|−2

∞
∑

j=1

(1 + δj)
2s−1δj

2 [v, sj]
2
∂ .

In view of this calculation, this operator satisfies the following.

Theorem 6.1. Assume that Ω, ∂Ω satisfy (B2), Hs(∂Ω) is defined in section 5. Then the
operator Dν defined by (6.3) is a continuous map from H(Ω) to H s(∂Ω) for s ≤ −1/2.

Proof. From (6.4), the operator will be continuous if and only if there is a constant
C > 0 such that

(1 + δj)
2s−1δj

2 ≤ C for all j ≥ 0.

Since δj → ∞, this holds if and only if s ≤ −1/2. �

7. Explicit Inner Product on H1/2(∂Ω).

When f, g ∈ H1/2(∂Ω), the inner product on H1/2(∂Ω) was defined in section 5 in
terms of a Steklov series expansion. Here it will be shown to have an expression in terms
of the boundary trace and a normal derivative.

Given g ∈ H1/2(∂Ω), let Eg be its harmonic extension in H(Ω) defined by (4.6).
Then the outward normal derivative Dν Eg will be in H−1/2(∂Ω) from theorem 6.1.

Theorem 7.1. Assume that Ω, ∂Ω satisfy (B2) and H1/2(∂Ω) is defined as above. Then
E is an linear isometry from H1/2(∂Ω) to H(Ω) and

(7.1) [f, g]1/2,∂Ω = 〈f, g + |∂Ω|Dν Eg〉∂Ω for all f, g ∈ H1/2(∂Ω).



10 AUCHMUTY

Proof. From (4.6),

E g(x) =
∞

∑

j=0

(1 + δj)
1/2 gj sj(x), so

(7.2) ‖Eg‖2
∂ =

∞
∑

j=0

(1 + δj) |gj|
2 = ‖g‖2

1/2,∂Ω for all g ∈ H1/2(∂Ω).

Hence E is an isometry as claimed. Substitute for Eg in (6.3), then

Dν E g(x) = |∂Ω|−1
∞

∑

j=0

δj gj ŝj(x).

This and the orthonormality of Ŝ, yields that

(7.3) 〈f, g + |∂Ω|Dν Eg〉∂Ω =

∞
∑

j=0

fj (1 + δj) gj

which is (7.1). �

This result (7.1) may be written formally as

[f, g]1/2,∂Ω =

∫

∂Ω

f (|∂Ω|−1 g + Dνg) dσ

so the (1/2)−norm is defined by the quadratic form

(7.4) ‖g‖2
1/2,∂Ω =

∫

∂Ω

[ |∂Ω|−1 g2 + g Dνg ] dσ.

That is, H1/2(∂Ω) is the space of all functions in L2(∂Ω, dσ) for which this quadratic form
is finite. Here Dνg is actually the outward normal derivative of the harmonic extension
of g to Ω.

8. The Inner Product on H−1/2(∂Ω).

The space H−1/2(∂Ω) was defined as the completion of L2(∂Ω, dσ) with respect to
the inner product defined by (5.2) with s = −1/2. In this section, this inner product will
be characterized in terms of the solution of a Robin boundary value problem for Laplace’s
equation. More specifically, it will be described using a variational principle for such
solutions.

Given g ∈ H−1/2(∂Ω), define the functional D : H1(Ω) → R by

(8.1) D(u) :=

∫

Ω

|∇u|2 dx + |∂Ω|−1

∫

∂Ω

|Γu|2 dσ − 2 〈g, Γu〉∂Ω.
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Consider the variational principle of minimizing D on H1(Ω) and determining

(8.2) q(g) := inf
u∈H1(Ω)

D(u).

The essential results about this problem can be stated as follows.

Theorem 8.1. Assume that Ω, ∂Ω satisfy (B2), g ∈ H−1/2(∂Ω) and D is defined by (8.1).
Then there is a unique minimizer û of D on H1(Ω) and it satisfies

(8.3)

∫

Ω

∇u · ∇v dx + 〈(Γ u − g), Γ v〉∂Ω = 0 for all v ∈ H1(Ω).

Proof. The existence of a unique minimizer of D on H1(Ω) is theorem 9.2 of [4] with
τ = 1/2 and g ∈ L2(∂Ω, dσ). The extension to g ∈ H−1/2(∂Ω) is straightforward.

This functional D is convex and G-differentiable on H1(Ω) and its derivative can be
obtained from theorems 3.1 and 6.1 of [4]. The left hand side of (8.3) is the directional
derivative of D, so the extremality conditions imply that û will be a minimizer of D on
H1(Ω) if and only if it is a solution of (8.3). �

Note that equation (8.3) is the weak form of the Robin boundary value problem

(8.4) ∆ u = 0 on Ω with |∂Ω|Dν u + u = g on ∂Ω.

When v ∈ H1
0 (Ω), then Γv ≡ 0 so (8.3) implies that (2.3) holds or the solution û is

harmonic on Ω. Let û have a Steklov expansion of the form

(8.5) û(x) :=

∞
∑

j=0

uj sj(x) on Ω.

Then, from (4.2), the boundary trace Γ û is given by

(8.6) Γ û :=

∞
∑

j=0

uj
√

(1 + δj)
ŝj.

Assume that g ∈ H−1/2(∂Ω) has the Steklov representation

(8.7) g :=

∞
∑

j=0

gj ŝj with gj := 〈g, ŝj〉∂Ω.

Substitute v = s0 in (8.3) to find that u0 = g0.

For k ≥ 1, put v = sk in (3.1), then

(8.8)

∫

Ω

∇u · ∇sk dx = δk 〈sk, Γ u〉∂Ω for all u ∈ H1(Ω).

Substitute this in (8.3) with v = sk, to obtain

(8.9) (1 + δk) 〈Γû, ŝk〉∂Ω = 〈g, ŝk〉∂Ω for all k ≥ 1.
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The expression (8.6) for Γû, yields that the Steklov coefficients uk of the solution of this
variational problem are given by

(8.10) uk = (1 + δk)
−1/2 gk for each k ≥ 0.

Define GR : H−1/2(∂Ω) → H(Ω) to be the solution operator of this variational
problem. Equations (8.5) and (8.10) show that GR has the Steklov spectral representation

(8.11) û(x) := GR g(x) =
∞

∑

k=0

(1 + δk)
−1/2 gk sk(x).

for any g ∈ H−1/2(∂Ω) as in (8.7). The boundary trace of this function will be

(8.12) ΓGR g =

∞
∑

k=0

(1 + δk)
−1 gk ŝk.

Moreover a straightforward computation shows that

(8.13) ‖ΓGR g‖1/2,∂Ω = ‖g‖−1/2,∂Ω.

so this operator ΓGR is an isometric linear mapping of H−1/2(∂Ω) onto H1/2(∂Ω) More
generally ΓGR will be an isometry from any space Hs(∂Ω) onto Hs+1(∂Ω).

This, together with the orthonormality of Ŝ, proves the following theorem

Theorem 8.2. Assume that Ω, ∂Ω satisfy (B2) and GR is the operator defined by (8.12).
Then the inner product on H−1/2(∂Ω) obeys

(8.14) [f, g]−1/2,∂Ω = 〈f, Γ GR g〉∂Ω for all f, g ∈ H−1/2(∂Ω).

For other negative values of s, the inner products on Hs(∂Ω) may be defined using
fractional powers of the operator ΓGR.
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