
DIVERGENCE L2−COERCIVITY INEQUALITIES.

GILES AUCHMUTY

Abstract. This paper describes sharp L
2−coercivity inequalities for the divergence

operator on bounded Lipschitz regions in R
n. The inequalities are given in a manner

which scales under dilations of the region. The optimal constants in the inequality are
identified as the least eigenvalue of a biharmonic problem or else of a non-standard
problem for the Dirichlet Laplacian. When n = 2, a coercivity result for the curl
operator is also obtained.

1. Introduction

An important class of estimates for the analysis of elliptic boundary value prob-
lems are Friedrichs’ type inequalities such as

(1.1)

∫

Ω

|∇ϕ|2 dnx +

∫

∂Ω

|ϕ|2 dσ ≥ C0

∫

Ω

|ϕ|2 dnx for all ϕ ∈ H1(Ω).

Here Ω is a bounded region with a sufficiently nice boundary. See Necas [9] theorem
1.9 and Hellwig [7], Section 5.3 for proofs of this result and references to the original
literature. For a recent discussion of generalizations, including Lp versions, of this
inequality see Auchmuty [3].

For the analysis of boundary value problems involving vector fields, it is natural
to ask about possible analogues of this inequality when ϕ is replaced by a vector field
v and the gradient operator is replaced by div v or curl v. Some such inequalities are
described in Monk [8] chapter 3 for use in the analysis of Maxwell’s equations. In this
paper sharp inequalities of the form

(1.2)

∫

Ω

| div v|2 dnx + |Ω|−1

(
∫

∂Ω

v · ν dσ

)2

≥ C2

∫

Ω

ρ|v|2 dnx

will be proved. Here v lies in a specific subspace of H(div,Ω) and the optimal constant
C2 will be characterized. The factor in front of the boundary integral here is chosen so
that this inequality scales under dilations as described in section 3. This inequality is
sharper than those described in [8] as it does not require that the boundary flux v · ν
be in L2(∂Ω, dσ).

In section 4, a representation theorem is described which enables the characteri-
zation of the subspace of fields for which this inequality holds. Then the existence of a
finite constant C2 such that (1.2) holds is proved using variational arguments in section
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5. The following section 6 describes an unconstrained variational principle for the op-
timal constant C2 which is then used to show that the constant is the least eigenvalue
of a biharmonic boundary value problem.

When ρ(x) ≡ 1, this eigenproblem can be reduced to a non-standard eigenproblem
for the Dirichlet Laplacian on Ω. As a consequence, upper and lower bounds on C2 are
found in terms of the first eigenvalue of the Dirichlet eigenproblem on Ω.

In section 8 a similar inequality for the curl operator with the same optimal
constant is proved when n = 2. Namely

(1.3)

∫

Ω

| curl v|2 d2x + |Ω|−1

(
∫

∂Ω

(v · τ) ds

)2

≥ C2

∫

Ω

ρ|v|2 d2x.

This holds for all fields in a subspace of H(curl,Ω). Here τ is a unit tangent field on
the boundary ∂Ω while ds represents arc length.

In this paper, we will not try to describe the most general inequalities of this type
involving the divergence operator. We shall, however, identify the optimal constants in
these inequalities and the associated extremal fields.

2. Definitions and Assumptions.

Let Ω be a non-empty, bounded, connected, open subset of R
n, n ≥ 2, with

boundary ∂Ω. Such a set Ω is called a region. Its closure is denoted Ω and its
boundary is ∂Ω := Ω \ Ω. Points in Ω will be described using Cartesian coordinates
x := (x1, x2, . . . , xn). When x, y ∈ R

n, their scalar product and Euclidean norm are
denoted x · y, |x| respectively.

Let L2(Ω) be the usual real Lebesgue space of all functions ϕ : Ω → [−∞,∞]
which are square integrable with respect to Lebesgue measure on Ω. Similarly L2(Ω; Rn)
is the class of all vector fields v on Ω whose components vj all are in L2(Ω). These are
real Hilbert spaces under the usual inner products

(2.1) 〈ϕ, ψ〉 :=

∫

Ω

ϕψ dnx and 〈u, v〉 :=

∫

Ω

u · v dnx

The weak j-th derivative of a function ϕ is denoted Dj ϕ and its gradient is the
vector field ∇ϕ := (D1ϕ,D2ϕ, ..., Dnϕ). The Sobolev space H1(Ω) is defined to be
the space of all functions in L2(Ω), whose gradient is also in L2(Ω; Rn). This is a real
Hilbert space under the H1− inner product

(2.2) [φ, ψ]1 :=

∫

Ω

[φ(x)ψ(x) + ∇ϕ(x) · ∇ψ(x)] dnx.

The space H1
0 (Ω) is the closure of C∞

c (Ω) with respect to the norm (2.2). When
Ω is bounded an equivalent inner product on H1

0 (Ω) will be

(2.3) 〈ϕ, ψ〉1 :=

∫

Ω

∇ϕ · ∇ψ dnx
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The divergence of a vector field v ∈ L2(Ω; Rn) is the distribution Tv defined by

(2.4) Tv(ϕ) := −

∫

Ω

v · ∇ϕ dnx for all ϕ ∈ C∞

c (Ω).

Suppose there is a function ρ ∈ L1
loc(Ω) such that

(2.5) Tv(ϕ) = −

∫

Ω

ρϕ dnx for all ϕ ∈ C∞

c (Ω).

Then we say that ρ = div v on Ω.

Define H(div,Ω) to be the subspace of all fields in L2(Ω; Rn) having div v in L2(Ω).
H(div,Ω) is a real Hilbert space under the inner product

(2.6) [v, w]div :=

∫

Ω

[v(x) · w(x) + div v(x) divw(x)] dnx.

The associated norm will be denoted ‖.‖div.

The field v ∈ L2(Ω) is said to be solenoidal, or divergence-free, whenever

(2.7)

∫

Ω

v · ∇ϕ dnx = 0 for all ϕ ∈ C∞

c (Ω).

That is the (weak) divergence of v is zero on Ω. The class of all solenoidal vector
fields in H(div,Ω) will be denoted N(div) and is a closed subspace of L2(Ω; Rn) and of
H(div,Ω).

For our analysis we also require some mild regularity conditions on Ω and ∂Ω. Our
basic criteria is that the boundary ∂Ω is Lipschitz in the sense of Evans and Gariepy,
[5], section 4.2.

Let σ, dσ represent Hausdorff (n− 1)−dimensional measure and integration with
respect to this measure respectively. When ∂Ω is Lipschitz, the unit outer normal ν(x)
is defined σ a.e. on ∂Ω and the boundary traces of functions in W 1,p(Ω) are well-defined.
See section 4.3 loc. cit. In particular, the Gauss-Green theorem holds in the form

(2.8)

∫

Ω

Dj ψ dnx =

∫

∂Ω

ψ νj dσ for all 1 ≤ j ≤ n, ψ ∈ W 1,1(Ω).

This follows from theorem 1, section 4.3 of [5] with p =1. We will generally require
that Ω satisfy

Condition A1: Ω is a bounded open region and ∂Ω is a finite union of Lipschitz
surfaces, each with finite surface area.

When v, div v are in L1(Ω; Rn), L1(Ω) respectively this implies that the divergence
theorem holds on the region Ω. Namely

(2.9)

∫

Ω

div v dnx =

∫

∂Ω

v · ν dσ.

This follows from (2.8) by substituting vj for ψ and summing over j.

The function ρ will be required to satisfy
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Condition A2: ρ ∈ L∞(Ω) satisfies ρ(x) ≥ 0 a.e. on Ω and
∫

Ω
ρ dx > 0.

3. Scaling under Dilations

There are a variety of forms for the inequality (1.2). Consider the functionals
F ,P : H(div,Ω) → [0,∞) defined by

F(v) :=

∫

Ω

| div v|2 dnx + |Ω|−1

(
∫

Ω

div v dnx

)2

and(3.1)

P(v) :=

∫

Ω

ρ(x)|v(x)|2 dnx.(3.2)

We will describe a subspace X of H(div,Ω) and a constant C2 > 0 such that

(3.3) F(v) ≥ C2 P(v) for all v ∈ X.

Note that the divergence theorem (2.9) implies that this F(v) is equal to the left
hand side of (1.2). From Schwarz inequality

(3.4)

(
∫

∂Ω

v · ν dσ

)2

≤ |∂Ω|

∫

∂Ω

|v · ν|2 dσ

When v ∈ H(div,Ω) and |Ω| is finite, the left hand side of this inequality is always
finite - but the right hand side need not be. Thus (3.3) is significantly better than the
(3d) result described in corollary 3.51 of [8].

The coefficient in the definition of F was chosen so that the inequality scales under
dilations. Given a reference region Ω, and L > 0, define ΩL := {Lx : x ∈ Ω}. Consider
the dilation operator SL : H(div,Ω) → H(div,ΩL) defined by

(3.5) SLv(y) := vL(y) := v(y/L) for y ∈ ΩL.

This is a linear isomorphism and we have

(3.6) divy vL(y) = L−1 divx v(y/L) for each v ∈ H(div,Ω), L > 0.

For L > 0, define the functional PL : L2(ΩL; Rn) → [0,∞] by

(3.7) PL(vL) :=

∫

ΩL

ρL(y) |vL(y)|p dy

with ρL := SLρ. This functional satisfies

(3.8) PL(vL) = Ln P(v) for each v ∈ L2(Ω; Rn).

The change of variables rule and (3.6) yield
∫

ΩL

| div vL(y)|2 dny = Ln−2

∫

Ω

| div v(x)|2 dnx.(3.9)

∫

ΩL

div vL(y) dny = Ln−1

∫

Ω

div v(x) dnx.(3.10)
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If there is a constant C2 such that (3.3) holds on Ω, then (3.8)-(3.10) imply

(3.11)

∫

ΩL

| div vL|
2 dny + |ΩL|

−1

∣

∣

∣

∣

∫

ΩL

div vL d
ny

∣

∣

∣

∣

2

≥ C2 L
−2

∫

ΩL

ρL(y) |vL|
2 dny.

Thus this particular combination of terms provides a simple scaling law under dilations
of the region.

4. Potentials and Allowable Fields

Clearly the inequality (3.3) cannot hold when v is solenoidal as F(v) = 0 for
such fields. We shall show, however, that the inequality holds when X is taken to
be the orthogonal complement of N(div) in H(div,Ω). First note that N(div) is a
different space that the usual space of divergence-free fields studied in texts on the
Navier-Stokes equations. For example, theorem 1.1 in chapter 3 of Galdi [6], describes
the complement of the space of fields in the closure of the smooth solenoidal fields with
compact support on Ω. This is a proper subspace of N(div), so its L2− orthogonal
complement is a different (and larger) subspace of H(div,Ω).

The Laplacian is the linear differential operator defined by ∆ϕ := div(∇ϕ). Define
H0(∆,Ω) to be the subspace of all functions ϕ in H1

0(Ω) having ∆ϕ in L2(Ω). This is
a real Hilbert space under the inner product

(4.1) [ϕ, ψ]∆ :=

∫

Ω

∆ϕ∆ψ dnx.

The corresponding norm is denoted ‖.‖∆.

Define G1
0(Ω) := {∇ϕ : ϕ ∈ H0(∆,Ω)}, then G1

0(Ω) is a subspace of H(div,Ω).
The important property for our purposes is the following.

Theorem 4.1. Assume (A1) holds, then G1
0(Ω) is the orthogonal complement of N(div)

in H(div,Ω)

Proof. When v ∈ H(div,Ω) and ϕ ∈ H1
0 (Ω), apply the divergence theorem (2.9) to

ϕ v to see that
∫

Ω

v · ∇ϕ dnx +

∫

Ω

ϕ div v dnx = 0

Thus the subspaces G1
0(Ω) and N(div) are L2−orthogonal and orthogonal in H(div,Ω).

This result will be proved by establishing a representation theorem for fields in
H(div,Ω) using saddle point methods. First note that div is a continuous linear map-
ping of H(div,Ω) into L2(Ω), so N(div) will be a closed subspace of H(div,Ω).

Given v ∈ H(div,Ω), consider the problem of finding a saddle point of the func-
tional L : H(div,Ω) ×H0(∆,Ω) → R defined by

(4.2) L(u, ϕ) :=

∫

Ω

[ |u− v|2 − 2ϕ div u ] dnx.
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Maximizing this on H1
0 (Ω), one observes that

(4.3) sup
ϕ∈H1

0
(Ω)

L(u, ϕ) = ‖u− v‖2 if u ∈ N(div).

When u /∈ N(div), this supremum is ∞.

The primal problem associated with this functional is to minimize ‖u− v‖2 subject
to u ∈ N(div). This has a unique solution û which is the projection of v onto the closed
subspace N(div) of H(div,Ω).

Now consider the problem of evaluating the dual functional G : H0(∆,Ω) → R

defined by

(4.4) G(ϕ) := inf
u∈H(div,Ω)

∫

Ω

[ |u− v|2 − 2ϕ div u ] dnx.

This is a simple quadratic variational problem and the integral is minimized when
u = v −∇ϕ. Substitute this back in the integrand to find that

(4.5) −G(ϕ) =

∫

Ω

[ |∇ϕ|2 + 2ϕ div v ] dnx

The dual problem is to maximize G on H0(∆,Ω). − G is a convex functional so any
critical point of G is a maximizer of G on H0(∆,Ω). An elementary calculation shows
that these critical points are solutions of

(4.6) 〈DG(ϕ), ψ〉 =

∫

Ω

(∇ϕ · ∇ψ + ψ div v) dnx = 0 for all ψ ∈ H0(∆,Ω).

This is a well-known problem which has a unique solution ϕ̂ in H1
0 (Ω), which will be in

H0(∆,Ω) when v ∈ H(div,Ω). Note that (4.6) is the weak version of the equation

(4.7) ∆ϕ = div v on Ω with ϕ = 0 on ∂Ω.

Putting ψ = ϕ̂ in (4.6) and substituting leads to

(4.8) G(ϕ̂) =

∫

Ω

|∇ϕ̂|2 dnx.

Define û := v −∇ϕ̂, then û ∈ N(div) and

‖û− v‖2 = ‖∇ϕ̂‖2

This implies that û is a solution of the primal problem and that (û, ϕ̂) is a saddle point
of this Lagrangian from theorem 3.1 of [1].

That is, an arbitrary v = û+∇ϕ̂ is the sum of a field in N(div) and one in G1
0(Ω).

Since the solution of (4.6) is unique, it follows that this ϕ̂, and thus the splitting is
unique. Since for each v ∈ H(div,Ω) there is a ∇ϕ̂ ∈ G1

0(Ω), then from corollary 3.3 of
[2], G1

0(Ω) is a closed subspace of H(div,Ω) and the proof is complete. �

This result may be summarized by the decomposition

(4.9) H(div,Ω) = G1
0(Ω) ⊕N(div).
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The subspaces on this right hand side are closed and they are both L2−orthogonal and
orthogonal with respect to the H(div,Ω) inner product.

In view of this characterization of G1
0(Ω), one sees that the inequality (3.3) holds

for all v ∈ G1
0(Ω) if and only if there is a constant C2 > 0 such that

(4.10)

∫

Ω

|∆ϕ|2 dnx + |Ω|M(∆ϕ)2 ≥ C2

∫

Ω

ρ |∇ϕ|2 dnx.

for all ϕ ∈ H0(∆,Ω). Here

M(χ) := |Ω|−1

∫

Ω

χ dnx

is the mean value of the function χ on Ω. To prove this inequality we will use the
following compact imbedding theorem.

Theorem 4.2. Assume (A1) holds, then H0(∆,Ω) is compactly imbedded in H1
0 (Ω).

Proof. Let {ek : k ≥ 1} be an L2− orthonormal basis ofH1
0 (Ω) consisting of eigenfunc-

tions of the Dirichlet Laplacian on Ω. Let {λk : k ≥ 1} be the corresponding increasing
family of eigenvalues. When (A1) holds there is such a basis and Limk→∞ λk = ∞. See
[4], section 6.5, theorem 1.

Suppose ϕ ∈ H1
0 (Ω) and ϕ =

∑

∞

k=1 ck ek with ck := 〈ϕ, ek〉 be the usual L2−
eigenfunction expansion. From Parseval’s theorem and the expression (2.3) for the
inner product on H1

0 (Ω), we see that

(4.11) ‖∇ϕ‖2
2 =

∞
∑

k=1

λk ck
2.

Similarly, using (4.1) and some elementary identities, we see that

(4.12) ‖ϕ‖2
∆ =

∞
∑

k=1

λk(1 + λk) ck
2.

To show the imbedding is compact, we prove that the unit ball B in H0(∆,Ω) is
precompact in H1

0 (Ω) by showing that for any ε > 0, B has a finite ε−net in H1
0 (Ω).

Choose K sufficiently large that λK+1 > 2/ε. Let EK be the subspace spanned by
{e1, . . . , eK}. Then B ∩ EK is a bounded compact subset of H1

0 (Ω). Let PK ϕ be the
projection of ϕ onto EK. From (4.11) this has H1

0 (Ω) norm given by

‖ϕ− PKϕ‖
2 =

∞
∑

k=K+1

λk ck
2

Since the λk are increasing, this left hand side is

≤ λK+1
−1

(

∞
∑

k=K+1

λk
2 ck

2

)

< λK+1
−1 < ε/2.

for ϕ ∈ B. Hence B has a finite ε−net in H1
0(Ω) as claimed. �



8 AUCHMUTY

5. Variational Principles for C2.

The optimal constant C2 in (4.10) will now be characterized using a variational
principle. Let C be the subset of functions in H0(∆,Ω) which satisfy

(5.1) F1(ϕ) :=

∫

Ω

|∆ϕ|2 dnx + |Ω|M(∆ϕ)2 ≤ 1.

Let P1 be the functional on H0(∆,Ω) defined by

(5.2) P1(ϕ) :=

∫

Ω

ρ |∇ϕ|2 dnx.

Consider the variational problem of maximizing P1 on C and determining

(5.3) β := sup
ϕ∈C

P1(ϕ).

To describe the existence of solutions of this variational problem, some elementary
properties of these functionals are needed.

Proposition 5.1. Assume (A1) holds, then
(i). F1 is continuous, convex and coercive on H0(∆,Ω).
(ii). When (A2) holds, then P1 is convex and weakly continuous on H0(∆,Ω).
(iii). F1,P1 are G-differentiable and their G-derivatives are given by

〈DF1(ϕ), ψ〉 = 2

∫

Ω

∆ϕ∆ψ dnx + 2 |Ω|M(∆ϕ)M(∆ψ)(5.4)

〈DP1(ϕ), ψ〉 = 2

∫

Ω

ρ∇ϕ · ∇ψ dnx.(5.5)

Proof. (i) Apply Schwarz’ inequality to M(∆ϕ), then

|M(∆ϕ)|2 ≤ |Ω|−1 ‖∆ϕ‖2
2 .

Use this and (4.1) in (5.1) then

‖ϕ‖2
∆ ≤ F1(ϕ) ≤ 2 ‖ϕ‖2

∆

This, and the fact that F1 is quadratic, implies (i).

(ii) P1 is convex as it is quadratic and positive. If {ϕm : m ≥ 1} is a sequence
which converges weakly to ϕ̂ in H0(∆,Ω) then, from theorem 4.2, ϕm converges strongly
to ϕ̂ in H1

0 (Ω). When (A2) holds, P1 is continuous on H1
0 (Ω), so it will be weakly

continuous on H0(∆,Ω).

(iii) Evaluate t−1 [F1(ϕ + tψ) − F1(ϕ)] and take the limit as t goes to zero, to
obtain the derivative of F1. Similarly for P1. �

Theorem 5.2. Assume (A1) and (A2) hold, then β is strictly positive and finite and
there are non-zero maximizers ±ϕ1 of P1 on C.
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Proof. The set C is closed and bounded since F1 is continuous and coercive. It is
convex as F1 is convex, thus C will be weakly compact in the Hilbert space H0(∆,Ω).
Since P1 is weakly continuous, it will attain its supremum on C and the value β is
finite. If β = 0, then every function in C must have ∇ϕ = 0 on the support of ρ. This
is impossible when (A2) holds.

Since both F1,P1 are even, if ϕ1 is a maximizer, so is −ϕ1. The maximizers also
must have F1(ϕ1) = 1 by homogeniety. �

This theorem enables the proof of the validity of the coercivity inequality (4.10)
and the identification of the optimal value of C2.

Corollary 5.3. When (A1), (A2) hold, then (4.10) holds for all ϕ ∈ H0(∆,Ω) with
C2 = β−1. In this case, equality holds in (4.10) when ϕ is a multiple of a maximizer of
P1 on C.

Proof. When ϕ 6= 0 is in H0(∆,Ω), then c ϕ will be in C provided |c| ≤ F1(ϕ)−1/2.
Thus P1(cϕ) ≤ β for such c. Multiply both sides by F1(ϕ), to find that

(5.6) P1(ϕ) ≤ β F1(ϕ) for all ϕ ∈ H0(∆,Ω)

so (4.10) will hold with C2 := β−1. The last sentence follows directly. �

These results may be restated in terms of the divergence coercivity inequality of
section 1.

Theorem 5.4. Assume (A1) and (A2) hold, then (1.2) holds for all v ∈ H(div,Ω)
which are L2− orthogonal to N(div) and with C2 = β as above.

Proof. The previous corollary shows that (4.10) holds with this value of C2. That is
(1.2) holds for all v ∈ G1

0(Ω) and moreover equality will hold here when v = ±∇ϕ1.
This theorem then follows from theorem 4.1. �

6. The Optimal constant as an Eigenvalue

We have just seen that the optimal constant in (1.2) may be characterized in terms
of the value of an inequality constrained variational principle. Here we shall show that
it is the least eigenvalue of an unusual eigenproblem for the biharmonic operator.

This eigenproblem arises from the extremality conditions satisfied by the maxi-
mizers of P1 on C. Instead of using a theory based on multipliers, the following analysis
uses a different variational principle to obtain the equations satisfied by the maximizers
of P1 on C.

Consider the functional J : H0(∆,Ω) → R defined by

(6.1) J (ϕ) := F1(ϕ)2 − 2 P1(ϕ),

and the unconstrained problem of finding the infimum of J on H0(∆,Ω). The basic
results about this problem may be summarized as follows.
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Theorem 6.1. Assume A1, A2 hold with β,J defined by (5.3) and (6.1). Then J
is weakly l.s.c. and coercive on H0(∆,Ω) and attains its infimum at points ± ϕ̃ in
H0(∆,Ω) where ϕ̃ = β1/2ϕ̂ and ϕ̂ is a maximizer of P1 on C. Moreover F1(ϕ̃) =
β, P1(ϕ̃) = β2 and J (ϕ̃) = −β2.

Proof. This is a special case of theorem 5.3 of [3]. �

When F1,P1 are G-differentiable on H0(∆,Ω), so is J with

(6.2) DJ (ϕ) = 2 [F1(ϕ) DF1(ϕ) −DP1(ϕ) ].

Thus the last part of theorem 6.1 shows that the minimizers ϕ̃ of J are solutions of

(6.3) DF1(ϕ) = β−1DP1(ϕ).

This may be regarded as a linear eigenproblem with β−1 as an eigenvalue. Substi-
tute the expressions for these derivatives from proposition 5.1 and consider the eigen-
problem of finding the values of µ such that there are non-trivial solutions ϕ ∈ H0(∆,Ω)
of

(6.4)

∫

Ω

(∆ϕ∆ψ − µ ρ ∇ϕ · ∇ψ) dnx + |Ω|M(∆ϕ)M(∆ψ) = 0

for all ψ ∈ H0(∆,Ω). This is the weak form of the system

−∆2ϕ = µ div(ρ∇ϕ) on Ω subject to,(6.5)

∆ϕ + I(∆ϕ) = 0 and ϕ = 0 on ∂Ω.(6.6)

Here I(χ) :=
∫

Ω
χ dnx is the integral of χ over Ω.

The following theorem proves that the least eigenvalue of this biharmonic eigen-
problem (6.4) yields the optimal constant in the inequalities (4.10) and (1.2).

Theorem 6.2. Assume A1, A2 hold, C2 is the optimal constant in (4.10) and β as
above. Then the least eigenvalue µ1 of the system (6.4) obeys µ1 = C2 = β−1 and
equality holds in (4.10) for any eigenfunction corresponding to the eigenvalue µ1.

Proof. When ϕ1 is a maximizer of P1 on C, then it will be a solution of (6.3) using
linearity and theorem 6.1. Hence it is a solution of (6.4) with µ = β−1. Let (µ, ϕ̃) be
any eigenvalue and a corresponding eigenfunction of (6.4). Put ψ = ϕ = ϕ̃ in (6.4),
then F1(ϕ̃) = µP1(ϕ̃). Use (5.6), then

0 = F1(ϕ̃) − µP1(ϕ̃) ≥ (1 − µβ)F1(ϕ̃).

This implies µ ≥ β−1 or β−1 is the least eigenvalue of (6.4). �
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7. The case ρ ≡ 1.

When ρ ≡ 1 on Ω, this biharmonic eigenproblem can be reduced to an eigenprob-
lem for the Laplacian with zero Dirichlet data.

Given ϕ ∈ H0(∆,Ω), let ψ = Lϕ := ∆ϕ + I(∆ϕ). If ϕ is an eigenfunction of the
system (6.5)-(6.6) with ρ ≡ 1, then, from the boundary conditions, the corresponding
ψ will be in H1

0 (Ω) and will be a solution of

(7.1) −∆ψ = µ I1ψ on Ω.

Here I1 is the linear mapping of L2(Ω) to itself defined by

(7.2) I1ψ := ψ − (1 + |Ω|)−1 Iψ.

Observe that I1 is a rank 1 perturbation of the identity on L2(Ω) and it is continuous
and self-adjoint. Take inner products of this with ψ and use Schwarz inequality to see
that

(7.3)
1

1 + |Ω|
‖ψ‖2 ≤ 〈I1ψ, ψ〉 ≤ ‖ψ‖2 for all ψ ∈ L2(Ω).

In particular I1 is a positive definite, self-adjoint, operator on L2(Ω).

This inequality leads to the following bounds on the best constant C2 in terms of
the first eigenvalue λ1D of the Dirichlet Laplacian on Ω.

Theorem 7.1. Assume (A1), ρ ≡ 1 and λ1D is the least eigenvalue of the Dirichlet
Laplacian on Ω. Then the optimal constant in (4.10) obeys

(7.4) λ1D ≤ C2 ≤ (1 + |Ω|) λ1D

Proof. From Rayleigh’s principle the least eigenvalue µ1 of (7.1) is given by the min-
imum value of

(7.5) R(ψ) :=
‖∇ψ‖2

〈I1ψ, ψ〉

for ψ ∈ H1
0 (Ω) \ {0}. The inequality (7.3) then yields (7.4). �

8. A 2D curl coercivity inequality

When Ω is a planar region, the inequality (4.10) enables us to prove (1.3) for all
fields in a subspace of H(curl,Ω).

First the relevant definitions. When ψ ∈ H1(Ω), then Curlψ is the vector field
whose Cartesian components are (D2ψ,−D1ψ). If v ∈ L2(Ω; R2), then its (weak) curl
will be the distribution Wv defined by

(8.1) Wv(ϕ) :=

∫

Ω

v · Curlϕ d2x for all ϕ ∈ C∞

c (Ω).

When v(x) := Curlψ(x) then |v(x)| = |∇ψ(x)| and curl v(x) = −∆ψ(x).
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If there is a function ω ∈ L1
loc(Ω) such that

(8.2) Wv(ϕ) = −

∫

Ω

ω ϕ d2x for all ϕ ∈ C∞

c (Ω),

then we say that ω = curl v on Ω. When v is differentiable, the Gauss-Green theorem
yields the classical definition

curl v(x) := D1 v2(x) −D2 v1(x).

Define H(curl,Ω) to be the subspace of all fields in L2(Ω; R2) having curl v in
L2(Ω). H(curl,Ω) is a real Hilbert space under the inner product

(8.3) [v, w]curl :=

∫

Ω

[v(x) · w(x) + curl v(x) curlw(x)] d2x.

The associated norm will be denoted ‖.‖curl.

A field v ∈ L2(Ω; R2) is said to be irrotational whenever

(8.4)

∫

Ω

v · Curlϕ d2x = 0 for all ϕ ∈ C∞

c (Ω).

The class of all irrotational vector fields in H(curl,Ω) will be denoted N(curl) and
is a closed subspace of L2(Ω; R2) and of H(curl,Ω).

Suppose v, curl v are in L1(Ω; R2), L1(Ω) respectively, and τ := (ν2,−ν1) is a unit
tangent field on ∂Ω. Then (2.8) and (A1) imply that

(8.5)

∫

Ω

curl v d2x =

∫

∂Ω

v · τ ds.

In consequence, (1.3) cannot hold for any irrotational field. Note that, from Schwarz
inequality, for all v ∈ H(curl,Ω),

(8.6)

(
∫

∂Ω

v · τ ds

)2

≤ |∂Ω|

∫

∂Ω

|v · τ |2 ds

When v ∈ H(curl,Ω), the left hand side of this inequality is always finite - but the
right hand side need not be. Thus (1.3) is significantly stronger than the analogous
(3d) result described in corollary 3.51 of [8].

We shall show that (1.3) holds on the orthogonal complement of N(curl) in
H(curl,Ω). Define Curl10(Ω) := {Curlψ : ψ ∈ H0(∆,Ω)}. Then Curl10(Ω) is a subspace
of H(curl,Ω) and the following analog of theorem 4.1 holds.

Theorem 8.1. Assume Ω ⊂ R
2 satisfies (A1). Then Curl10(Ω) is the orthogonal com-

plement of N(curl) in H(curl,Ω).

Proof. When v ∈ H(curl,Ω) and ψ ∈ H1
0 (Ω), use the Gauss-Green theorem to see

that
∫

Ω

v · Curlψ d2x =

∫

Ω

ψ curl v d2x.
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Thus the subspaces Curl10(Ω) and N(curl) are L2−orthogonal and also orthogonal in
H(curl,Ω).

Substitute H(curl,Ω), curl u for H(div,Ω), div u in the definition (4.2) of a La-
grangian and repeat the proof with the obvious changes. Given v ∈ H(curl,Ω), we

find a û ∈ N(curl) and a ψ̂ ∈ H0(∆,Ω) such that v = û + Curl ψ̂. This is the desired
orthogonal decomposition and Curl10(Ω) will be a closed subspace of H(curl,Ω) just as
was the case for G1

0(Ω). �

This result enables the proof that (1.3) holds on the subspace Curl10(Ω).

Theorem 8.2. Assume (A2) holds and Ω ⊂ R
2 satisfies (A1). Then (1.3) holds for

all v ∈ H(curl,Ω) which are L2− orthogonal to N(curl). Moreover C2 = µ1 is the least
eigenvalue of (6.4).

Proof. Substitute v = Curlψ in (1.3). Then

(8.7)

∫

Ω

|∆ψ|2 d2x + |Ω|−1

(
∫

∂Ω

(∇ψ) · ν ds

)2

≥ C2

∫

Ω

ρ |∇ψ|2 d2x.

upon using the relationship between τ and ν on ∂Ω. From theorem 6.2, this holds for
all ψ ∈ H0(∆,Ω) with C2 = µ1. Hence (1.3) holds for all v ∈ Curl10(Ω). The preceding
theorem 8.1 now yields this theorem. �
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