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1.1 INTRODUCTION

Variational principles which characterize the eigenvalues and eigenfunctions of
self-adjoint linear differential operators have been studied for over a century.
Most of them are related to Rayleigh’s principle which is usually regarded as
a constrained variational problem of extremizing a quadratic form subject to
the constraint that another quadratic form is held constant. These constrained
extrema are the eigenfunctions and the eigenvalue are given both by the value
of the problem and the Lagrange multipliers associated with the constraint.
Some texts which describe these principles include Bandle, 1980, Chatelin,
1983, Courant and Hilbert, 1958, Gould, 1966, Mikhlin, 1964 and Weinberger,

1974.



Here we shall describe, and analyze, some unconstrained variational prob-
lems which identify the eigenvalues and eigenvectors of self-adjoint linear op-
erators. They involve functionals which are bounded below, non-convex and
not quadratic. The critical points of these functions are eigenfunctions of the
operator, while the critical values and the norms of the critical points are re-
lated to the corresponding eigenvalue. The minimum value of the functional is
related to the least eigenvalue of the operator and the nonzero minimizers are
eigenfunctions corresponding to this eigenvalue.

The functional has well defined second derivatives. Thus we shall describe
a (Morse-) index for the critical points and a Morse theory which enables the
identification of the eigenvalue associated with a particular critical point. A
non-degenerate critical point of index j of the functional is a simple eigenfunc-
tion of the operator corresponding to the (5 + 1)-st smallest eigenvalue. This
index theory plays the same role as, but is more straightforward than, the
Courant-Fischer-Weyl minimax theory for the Rayleigh quotient.

The theory developed here uses works for closed, self-adjoint linear operators
on a Hilbert space. The conditions imposed, however, are those appropriate for
studying the spectral theory of elliptic boundary value problems. This is done,
for linear second order equations, with possibly indefinite weight functions, in
section 1.8.

The author has described, in Auchmuty, 1989a and Auchmuty, 1989b, related
principles for characterizing the eigenvalues and eigenvectors of matrices and

of compact linear operators. Some other functionals for these problems were
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analyzed in Auchmuty, 1986, where they were obtained using nonconvex duality
theory.

Our first interest is in studying regular, and weighted, eigenproblems for a
closed, self-adjoint linear operator which is semibounded and has compact resol-
vent. In section 1.2, some basic results on the quadratic forms and functionals
associated with these operators are described. The results are needed for the
application of methods from convex analysis to these problems. Then section
1.3 describes the evaluation of the Morse index of quadratic forms between dual
Banach spaces and obeying certain inequalities of Garding type.

Section 1.4 describes the functional and the variational principle appropriate
to the standard eigenproblem. The critical points, critical values and minima
are found. The functional involves a parameter p and the dependence of critical
points, or bifurcation diagram, with respect to u is described. Then, in section
1.5, the second variation is analyzed and a Morse theory is developed. The
use of further, linear orthogonality constraints to find higher eigenvalues and
eigenvectors is described in section 1.6.

In section 1.7, certain classes of weighted eigenproblems are analyzed. Our
formulation allows us to treat these problems under weaker assumptions on the
weights, than is possible with Rayleigh’s principle. Results are obtained for
indefinite weight operators; including some necessary and sufficient conditions
for the existence of eigenvalues and results on the number of linear independent

eigenvectors.



Finally in section 1.8, the results are applied to linear second-order elliptic
boundary value problems, with both definite and indefinite weight functions.
Variational principle for finding successive eigenvalues and eigenfunctions are
described. When the weight function is nonnegative, Morse indices of non-

degenerate critical points are determined.

1.2 QUADRATIC FORMS AND CLOSED LINEAR OPERATORS

Throughout this paper H will be a real, separable, Hilbert space with inner
product {, ) and norm || ||. All topologies and convergence shall be understood
to be in this norm topology unless otherwise stated.

Let L : Dy (C H) — H be closed, densely-defined, linear operator on H and
L* be its adjoint. Then L* is again a closed densely-defined linear operator
and its domain is denoted Dy

The operator L is said to be symmetric if Dy, C D+ and Lu = L*u for all
w in Dy. L is said to be self-adjoint if it is symmetric and Dy = Dp«. The

operator L is said to be positive semidefinite if

(Lu,uy >0 for all win Dy,. (1.1)

It is positive definite if there is a constant ¢ > 0 such that

(Lu,u) > c|lu||> for all w in Dy, (1.2)

In this section, various properties of this operator L will be related to those of

some associated quadratic forms. Let R = [~00,00] and define f : H — R to
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be the quadratic form

>(Lu, u) win Dy,
00 otherwise.

flu) = { (1.3)

Lemma 1.2.1 Let L be a closed, densely defined, linear operator on H and f

be defined by (1.83). Then the following statements are equivalent:
(i) fis convex on H,
() L is positive semidefinite operator on H, and
(i) f has a finite infimum on H.

Proor: (i) & (ii). Let u(t) = (1 — t)u + tv with w,v in Dy. Then f(u(t)) =
at® + bt + ¢ with 2a = (L(u —v),v — v). Now f is convex on H if and only if it
is convex on Dy, and this occurs if and only if @ > 0 for all u,v in Dp. Since L
is linear, this holds if and only if L is a positive semidefinite operator on H.

(ii) < (iii) Let v = infyem f(u). When (ii) holds, then v = 0 so (iii) holds.

Also f(tu) = t2f(u) for any real scalar ¢, so v can only be 0 or —oo. Thus
(iif) = (ii). O

When g : H — R is a given functional, its essential domain is dom g =
{u € H : |g(u)| < oo}. A convex functional g : H — R is said to be closed if its
epigraph

epi g ={(z,2) e HxR:2z> f(z)} is closed.

When g is not closed, its closure g is defined to be the maximal, closed, convex

minorant of g.



Despite this naming, when a closed operator L obeys the conditions of lemma
1.2.1, the quadratic form f associated with L is not a closed convex functional

unless, Dy, = H . We have the following information on the closure f.

Lemma 1.2.2 Let L be a closed, densely defined, positive semidefinite operator

on H, f be defined by (1.3) and f is the closure of f. Then
(i) f is a nonnegative convez, L.s.c. function on H.
(ii) f(v) = f(v) for all v in Dy, N D+, and
(iii) 3(Lv + L*v) € 8f(v) for all v in Dy, N D}.

PRrROOF: From these assumptions and lemma 1.2.1, f and epi f are convex.
From Zeidler, 1985, proposition 51.6, epi f is the closure of epi f. Hence f
will be convex and lower semicontinuous (l.s.c.). It is nonnegative as 0 is a

convex minorant of f. Since L is a positive semidefinite, (1.1) yields

(L(u —v),v —v) >0 forall u,vin Df.

Thus f(u) > f(v)+ %(Lv,u) + %(Lu,v) —{(Lv,v)
= )+ %(Lv+L*v,u—v) (1.4)
when v is also in Dyp+.
Suppose f(v) = @ and f(v) = @. Then a < a by definition and there is a

sequence of points {(vn,2,) :n > 1} in epi f with v, converging to v and z,

converging to @. Substitute v, for u in (1.4), then

zn 2 flon) = f(v) —cllvn —oll,
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for all n where ¢ = 1 ||Lv + L*v]| . Take limits as n increases, then (ii) holds as

a > flv)y > [f) =a

When w is any point in dom f, there is a sequence of points {(uy,(,) : n >

1} C epi f with u, — u, and ¢, — f(u). (1.4) and (ii) yield that
_ 1 N
Cn > f(un) > f(v)+§ <LU+L U;un_'v>-
Take the limit as n — oo of both sides here, then
_ 1 .
Fw) > F)+ 5ilo+ Lo —o),
or 2(Lv + L*v) € f(v) as claimed. O

Corollary 1.2.3 If DN Dy is dense in H, then 8f(v) = {3(Lv + L*v)} for

each v in Dy N Dp-.

PROOF: Suppose v is in Dy N Dy« and w is in af(v). Then, for any h in

DN D+, f(v+th)— f(v) >t (w,h). Thus

limg_,o+ 7! [f(v + th) — f(v)] = §(Lv + L*v,h) > (w,h), or

(3(Lv+L*v) —w,h) > 0 forallhin DpNDp..

Since Dy, N Dy is dense in H, this implies w = 1(Lv 4+ L*v). O

When L is a symmetric, positive definite, closed linear operator, we define
the Hilbert space Hy to be the completion of Dy with respect to the inner
product

[u,v] = (Lu,v). (1.5)
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The norm on Hy, is defined by
llull = (Lu, u). (1.6)

Any Cauchy sequence in Dj, with respect to the norm (1.6), will also be a
Cauchy sequence in H. Hence H; may be regarded as a subspace of H and
(1.2) implies that the embedding of Hy, in H is continuous.

Let Hj be the dual space of Hy, with respect to the pairing ( , ). Hf is a

Banach space under the usual dual norm,

llgll, = sup (u,g). (L.7)

llull ,=1

The next result shows that the essential domain of f is Hy, - as expected.

Theorem 1.2.4 Suppose L is a symmetric, positive definite, closed, densely
defined linear operator on H and f is defined by (1.3). Let f be the closure
of f and Hy, be the completion of Dy, with respect to the inner product (1.5).

Then

e o

00 otherwise.

PRrOOF: Let g be the functional on H defined by the right hand side of (1.8).
Then g is a convex functional on H. Let {(z,2,) : n > 1} be a sequence
of points in epi f which converge to (4,2) in H x R. Given ¢ > 0, for all

sufficiently large n,

2f(un) = |l < 22+e
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Hence {u, : n > 1} is a bounded sequence in Hy,. Since the embedding of
Hy, in H is continuous, there is a v in Hy and a subsequence {uy; : j > 1},
such that u,; converges weakly to v in H. But u,; converges strongly to @ by
assumption, so 4 = v is in H,.

The norm on Hj, is weakly [.s.c. so

1.2 R | 2 .. .
§||u||L < jll>rgo1nf§||unj|| < jll{{.lomfznj = Z.

Thus g(t) < 2, 0r epi gD epi f = epi f.
Let (@, Z) be a point in epi g. Then there is a sequence of points {u,, : n > 1}
in Dy, such that ||u, — 11||2L — 0asn — oo. Let 2, = 2+ f(u,) — g(@). Then

(un,2n) is in epi f, u, converges to @& in H and z, converges to Z as

. .1 2 .
Hence (i, Z) is in the closure of epi f, or epi g = epi f. O

Corollary 1.2.5 Under the assumptions of the theorem, 8f(v) = {Lv} for all

v in Dy,

PROOF: Since L is symmetric, Lv = L*v for all v € Dy, and Dp« D Dp. Thus
Dy N Dp+ = Dy, is dense in H and the result follows from the corollary to
lemma 1.2.2. O

In view of this result, we shall use the restriction of f to Hy as our basic

functional throughout this paper. Define fr, : Hr, — R by

fuw) = 5wl (19)



10
When L obeys the conditions of theorem 1.2.4, then from a well-known result

of Friedrichs, it has an extension which obeys the following condition:

(£1) : The operator L is closed, densely defined, linear, self-adjoint and positive

definite.

Theorem 1.2.6 Suppose (L1) holds and fr, is defined by (1.9). Then
(i) fr is convez, continuous and weakly l.s.c. on Hi,,
(i) there exists a continuous, linear, self-adjoint operator £ : Hr, — H7, with

fr(u) = %(ﬁu,u) for all w in Hy,, and (1.10)

(ii) fr is twice continuously Gateauz differentiable on Hy, with

Dfr(u) = Lu and D?fr(u) = L. (1.11)

Proor: (i) follows as (1.9) defines a norm.

(ii) Define £ : Hy, — H} by the equation (Lu,v) = [u,v] for all u,v in Hy,.
This operator is linear and bounded so it is continuous. Self-adjointness follows
from the symmetry of the inner product.

(iii) follows directly from the representation (1.10) and the definition of
Gateaux derivative. O

We shall also use the condition:

(£2) M : Dy(C H) — H is a closed, densely defined, self-adjoint linear

operator with Dy, C Djs obeying
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(i) M is positive semi-definite on Dys
(ii) there exists a constant v > 0 such that

(Mu,u) < v (Lu,u) for all u in Dy,. (1.12)

Consider the quadratic form g : H — R defined by

Mu,u) ifuin D
— 2 ( ’ M
g(u) { —0 otherwise.

From lemma (1.2.1), g is a convex functional when M obeys (£2). Let g be
its closure, then the following holds.

Lemma 1.2.7 Assume (L1) and (£2) hold, then dom gD Hy.

PROOF: Suppose {u, : n > 1} is a Cauchy sequence in Dy, with respect to
the norm defined by (1.6) and 4 is its limit in Hr. Then {{Muy,u,) : n > 1}
is a Cauchy sequence since (1.12) holds. Hence lim,,yoo{Muy,u,) = g(4) is

well-defined and finite, so Hy C dom g as claimed. O

Corollary 1.2.8 Suppose (L£1) - (£2) hold, then there is a continuous self-
adjoint linear operator M : Hy — Hj obeying g(u) = 1(Mu,u) for all u in

Hy.
PROOF: Define G : Hy, x H, — R by

G(u,v) = g(u+v) — g(u) — §(v). (1.13)
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When u,v are in Dy, then

Glu,v) = %(M(uw),uﬂ)—%(MU,u)—%(Mu,m

= (Mu,v) using the self-adjointness of M.
Since 0 < g(u) < 3 ||u||i for all u in Dy, substitution yields
v 2
o) < T futoll.

Thus G is bounded on bounded sets in Hy, x Hj and G is bilinear and
symmetric on a dense subspace, so it is bilinear and symmetric on Hy, x Hy,.
Hence G is continuous and there is a continuous, self-adjoint, operator M

mapping Hp, into H; and obeying
G(u,v) = {(Mu,v) for all w,v in Hp.

Put v = w in (1.13) then (Mu,u) = 2g(u) so the result holds. O
In analogy to (1.10) we shall often write far : Hr, — R where fyr is the

restriction of g to Hy,. Thus
1 .
fu(u) = §(Mu,u) for all v in Hy, (1.14)

and fps will be a continuous, convex, nonnegative functional on Hr,.

1.3 MORSE INDEX OF A QUADRATIC FORM

The type of a critical point of a variational problem is determined by the
quadratic form associated with the second derivative of the functional at the

point. A theory of the Morse index for such problems in a Hilbert space was
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developed by Hestenes, 1951. In this paper, we will use an extension of this
theory along the lines outlined in Zeidler, 1985, Section 37.27b.

We will use the following conditions:

(Al): H is a Hilbert space, X is another infinite dimensional, Banach space
which is a subspace of H and the imbedding I : X — H is 1 — 1 and

continuous.

(A2): Let X* be the dual space of X with respect to the inner product on H,

and A : X — X* be a linear, continuous, self-adjoint map,

(A3): there exist constants ¢; > 0 and ¢ > 0, and a compact, linear, self-adjoint

map B : X — X* such that, for all u in X,

(Au,u) > 1 ||ull% — c2(Bu,u). (1.15)

Consider the quadratic form @ : X — R defined by
Qu) = (Au,u). (1.16)

In Morse theory we seek subspaces X, X_ of X and a corresponding splitting

of the operator A so that
Q(U) = <A+u7u) - <A,’U,,’LL>, (117)

with A, and A_ positive semidefinite operators from X to X*.
When A obeys an inequality of the form (1.15), then such splittings are

related to the eigenvalue problem of finding non-trivial solutions in Hy, of

Au = ABu. (1.18)
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The quadratic form @ is said to be nondegenerate if A is bijective. The nullity
(or null index) of Q is the dimension of the null space N(A) of A.

Let E_ = {z € X : Q(z) < 0}. The Morse indez i(Q) of @ is the maximum

dimension of those subspaces of X which are subspaces of E_ U {0}.

Theorem 1.3.1 Assume (A1) - (A3) hold and Q is defined by (1.16). Then

Q is nondegenerate if and only if 0 is not an eigenvalue of A.

PrOOF: From (1.15) one sees that A + ¢2B is a bijective linear map of X to
X*. In particular, it is a Fredholm map of index 0. Thus A is a Fredholm map
of index 0 as B is compact; see Zeidler, 1986, Section 8.4.

Hence the range of A is closed and A will be bijective if and only if N(A) =
{0}. That is, 0 is not an eigenvalue of A. O

As was indicated in this proof, for any value of A, A — AB is a Fredholm
map of index zero. When N (A — AB) is nonzero, it must be finite dimensional.
We define m(A) = dim N(A — AB) to be the multiplicity of \ as an eigenvalue
of (1.18). The results will often require the condition:

(A4): (Bu,u) >0 for all uin Hy, \ {0}.

When (A1) - (A4) hold, a spectral theory for (1.18) can be described. Namely
there is a countable family of eigenvalues {); : j > 1} obeying —oo < Ay <
A2 < --- with no finite accumulation point. There is a corresponding family of
eigenvectors {e; : j > 1} of (1.18) with (Be;j, ex) = d;,. These eigenvectors are
said to be B-orthonormal and, for each w in Hr,,

oo
u = Z (Bu, e;) e;. (1.19)

Jj=1
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This is proven as proposition 22.31 of Zeidler, Volume ITA.

Theorem 1.3.2 Assume (A1) - (A4) holds and Q is defined by (1.16). Then
the Morse index of @ is finite and equal to the number of negative eigenvalues
of (1.18) counting multiplicity. Moreover, if {)\; : j > 1} is the set of all eigen-
values of (A,B) and {e; : j > 1} is a corresponding family of B-orthonormal
eigenvectors, then

Qu) = Z \j (Bu,e;)*. (1.20)

Jj=1

PRrOOF: For each u in Hp, (1.19) holds. Thus

Au = Y Xj (Bu,e;) Be; (1.21)
7j=1

as each Ae; = AjBej, so (1.20) follows.

Let J be the number of negative eigenvalues of (1.18) counting multiplicity,
and {e; : 1 < j < J} be a corresponding set of B-orthonormal eigenfunctions.
Let X_ be the subspace of X spanned by this set. If a non-zero v is in X_ then
from (1.20), Q(v) < 0. Moreover (1.20) shows that X _ is a maximal subspace
for which this holds so i(Q) = dim X_ = J. O

This result enables us to define the operators A_, A, in (1.17) and corre-
sponding subspaces X_, X ;. Let X_ be the subspace defined in this last proof
andlet X4 = {v € Hy, : (Bv,ej) =0for 1< j < J}. Then X = X, & X_ with
X_ being finite dimensional. Define A_ : X — X* by

Auw = — Z Aj (Bu,e;) Be;.
7j=1
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Then A_ is a positive semi-definite operator with finite dimensional range. Let
Ay = A+ A_; then from (1.21) and (1.20) A, is positive semidefinite and
(1.17) holds.

These results hold when B is any compact self-adjoint linear map obeying
(A4) and for which the estimate (1.15) holds. Different choices of B will provide
different representations of the form (1.17) but the index J remains invariant.
When I : X — H is compact, take B = I so that (1.15) is an inequality of

Garding type.

1.4 UNCONSTRAINED VARIATIONAL PRINCIPLES FOR
SELF-ADJOINT EIGENPROBLEMS

Suppose L, M are closed, self-adjoint, linear operators on Hilbert space H obey-
ing (£1) and (£2). Consider the eigenvalue problem of finding those values A

for which there are nonzero solutions u in Dy, of

Ay = Lu+ Mu = Mu. (1.22)

In this section we shall describe some (unconstrained) functionals whose
critical points yield the eigenvalues and eigenfunctions of A. First note that if
M : H — H is continuous, and L obeys (£1) then (1.12) always holds. More-
over one can always add a finite multiple of the identity to both sides of (1.22)
so there is no loss of generality in requiring that M be positive semidefinite
also.

The number A is an eigenvalue of A if there is a nonzero vector v in Dy,

satisfying (1.22). Any such v is called an eigenfunction of A corresponding to
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the eigenvalue A. When v is an eigenfunction of A of norm 1 we say v is nor-
malized. Let Ey be the set of all normalized eigenfunctions of A corresponding
to the eigenvalue A. The number of linearly independent eigenfunctions of A
corresponding to the eigenvalue A is called the multiplicity of A as an eigenvalue
of A and is denoted m(\).

When m()\) = 1, X is a simple eigenvalue of A and E) consists of exactly
two points. When m(\) > 2, then E) is diffeomorphic to a sphere of dimension
m(A) — 1.

Let Hy, be the completion of Dy, in the norm (1.6) and M be the continuous
linear operator associated with M as defined in the corollary to lemma 1.2.7.

Consider the parameterized functional 7, : Hy, x (0,00) — R by
1 1 1 I
Fotus) = 5 lulfy + 50w+l = Bl (129

where ||| ., |||| are the norms on Hy, and H respectively and 2 < p < 0.
The variational principle (P,) is the unconstrained problem of minimizing

F(,; 1) on Hy, and finding

() = inf Fylus ). (1.24)

A point v in Hy, is said to be a critical point of Fp(.;p) if Fp(;p) is G-

differentiable at v and

DFp(v;p) = 0. (1.25)
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Here DFp(v; p) is the Gateaux derivative of Fp(.; ) at v in Hy. A number
v is said to be a critical value of Fp(.;p) if there is a critical point v with
Fp(v; p) = v. Henceforth we shall also require
(£3): The imbedding I : H;, — H is compact.

The following theorem describes some properties of the functional F,. The

subscript p will be omitted henceforth.

Theorem 1.4.1 Assume (L1) - (£3) hold and F is defined by (1.23) with

p > 2, then
(i) F(.;p) is continuous, coercive and weakly l.s.c. on Hy,

(i) F(;p) is Gateauz differentiable on Hy, with

DF(u; p) = Lu+ Mu + (|Jul|P~ = p)u. (1.26)

(i53) If v is a critical point of F(.;u) thenv =0 or v = (u — A)?%e where A is

an eigenvalue of A lying in (0,u), e is in E\ and g = (p—2)71.

(iv) The critical values of F(.; p) are 0 and —Cp(pu— A)P? where A is an eigen-

value of A in (0,u) and C, = (2pq) 1.

(v) If M1 is the least eigenvalue of A, then

0 fO<pu<Xh

ap(n) = { —Cp(p— A1) when > M (1.27)

(vi) When p < A1, F(;p) is minimized at O while if p > A, then it is mini-

mized at (u — \1)% with e in Ey,.
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PrOOF: (i). F(.;u) is continuous as each term in its definition is. When

p>2, ||ul]| >0, it is straightforward to verify that
Dl — Bl 2 ~Cpu”
p 2 -

where C, = (1 — %) =(p-2)/pand p' =p/(p—1).

Thus (1.23) implies that F(u;p) > L lul|7 — Cpu?’, so F(;p) is coercive
on Hy. If {u, : n > 1} converges weakly to u in Hp,, then it converges strongly
to w in H when (£3) holds. Thus the last two terms in (1.23) are weakly
continuous. The first term is weakly Ls.c. from theorem 1.2.6 and the second
term is because it is continuous and convex on Hy,.

(ii). Each of the terms in (1.23) is Gateaux differentiable. From theorem
1.2.6, the chain rule and a direct computation, (1.26) follows.

(iii). If v is a critical point of F(.; u) then (1.26) implies that it obeys
Au = (= ||u|["~*)u (1.28)

where A = £+ M. Obviously 0 is always a solution of this. When v is nonzero,
this right hand side is in Hp, and thus in H. Thus Av is in H, so v must
actually be in Dy, as L + M maps Dy, onto H. Hence v is a solution of (1.22)
and is an eigenfunction of A corresponding to the eigenvalue A = p — |[v]|P ™.
That is, |[v]|P™> = — X or |Jo|| = (u — A) with ¢ = (p —2)~".

(iv). F(O;p) = 0, so 0 is a critical value. If v # 0 is a critical point then,
from (1.28),

(Av,v) = (= [[olI”™) Ilo]l”

and  Fp(vsp) = (5 —3) [P = —Cplp— 2.
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(v)-(vi). From (i), F, attains its infimum on Hy, and this must occur at a
critical point; so the infimum is a critical value.

When 0 < p < Aq, 0 is the only critical point of F,(.; u), so a,(u) = 0 and
it is attained at 0 in Hyp,.

When g > Ay, then the critical values of Fp(.; 1) are —Cp(p — A;)P? from
(iv) and this will be smallest when A = A; is the least eigenvalue of A. This
value will be attained at any vector of the form (1 — A\1)%e with e in E,. O

This theorem may be restated to provide the following description of the

critical points of F(,; p).

Corollary 1.4.2 Assume (L£1) - (£3) hold and F is defined by (1.22), with
2 < p < 0. Then the set of critical points of F(,; u) is a closed, bounded set in
Hy, with o finite number of connected components. It is a finite set if and only
if each eigenvalue of A in (0, ) is simple.
Proor: The critical points of (1.23) are the solutions of (1.28). This is an
eigenvalue problem of the type (1.18) with X = H, A = A and B = I being
the imbedding operator of Hy, into Hj. I obeys (A4) and (A3) holds with
c1 =1, ¢ =0 so A will only have a finite number of eigenvalues less than p.
Thus the set of critical points in F(.; ) is the union of (1 — A;)PE; where
A;j is an eigenvalue of A in (0,u) and E; = E);. Each E; either consists of 2
points or is a infinite set which is connected, closed and bounded. O
The variational principle (P,) can be used to find both upper and lower
bounds on A. If, for given positive u, ap(u) = 0, then A; must be greater than

or equal to . This provides a lower bound on ;.
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If p is given and there is a u in Hy, with F(u;u) < 0, then Cp(p — A1)P? >

—F(u, ). Rearrangement leads to an upper bound on A;, namely

—F(u; )\ > . —F (u; )
<pu—|——= . In f: = - —" )
A< p ( C, ) nfact, M f<i$§<o a C,

There are 2 parameters p,p in this functional. p may be chosen at our
convenience provided p > 2. The choice of p does not affect the number, or
type, of critical points.

In contrast, when the parameter y is increased, the number of critical points
may increase. For all values of p, 0 is a critical point and it is the unique
critical point of Fp(.; #) when p < A;. As p increases through an eigenvalue A;
of A, then a new branch of critical points of F,, bifurcates from the origin.

Figure 1.1 is a schematic bifurcation (or solution) diagram for the critical
points of 7, when p = 3. In that figure, C; = {(\; + s,s¢e;) : s > 0, e; € E;}
is the set of critical points corresponding to the j-th distinct eigenvalue of A.
Each of these branches is a straight line which extends to infinity in both g and
Hy, (or H). There is no secondary bifurcation.

For general p, the branches have the form
CP) = {(\j +5,5%;) : s > 0,¢; € Ej}

with ¢(p — 2) = 1 as before. When p = 4, the branches are parabolae and the

bifurcation diagram is similar to figure 1.2.
1.5 TYPES OF CRITICAL POINTS AND MORSE INDICES

In this section we shall show that the functional F(.; u) defined by (1.23) has

a well-defined second derivative. The quadratic form associated with this sec-
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Figure 1.1 Solution diagram of critical points of F3.
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Figure 1.2  Critical point diagram of F;.
ond derivative has a Morse-type index and it provides a Morse theory for this
functional. The results described below may be compared with the Courant-
Fisher-Weyl minimax theory for Rayleigh’s principle.

When u( # 0) is in Hp,, define the linear operator P, : Hy, — Hp, by

Py = ((u,0)/||ull”) u. (1.29)
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P, is the projection in the direction of u and is a continuous linear operator.

Theorem 1.5.1 Assume (£1)-(£2) hold and F is defined by (1.23) with 2 <

p < 0o. Then DF(.;u) is Gateaux differentiable on Hy, and

A—pl when u =0

DAF (u; ) ={ A pl+ P 2+ (p-2)P] whenuso (130

Proof: From (1.26), DF (u; ) = Au + (||ul|P~> — uI) u where I : Hy, — H} is
the natural imbedding.

Consider the mapping N : Hy, — H} defined by NV'(u) = ||u’”> u. When
p > 2, then lim;_,o+ t '[NV(th) — N(0)] = 0 for all h € Hy. Thus, N is G-
differentiable at 0 with DA/ (0) = 0 and D*F(0; u) = A — pl.

When u # 0, a calculation shows that

lim ¢~UN (u+th) = N(w)] = |[ulP~? [h+ (p — 2)P.h]. (1.31)

t—0+

Thus the second part of (1.30) holds, since the other terms in DF(u;u) are
linear and continuous. O

Now consider the (Hessian) quadratic form @, : H, — R defined by

Qu(h) (D*F (u; p)h, h) (1.32)

(AR, B) + ([ull”™ = @) B + (o = 2) [[ul”~" (u,)*. (1.33)

This quadratic form satisfies the conditions described in section 1.3 with
X = Hy,, A=DF(u;p) and B = I being the imbedding of Hy, into H}.

When (£1)-(£3) hold, then so do (A1)-(A4).
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A critical point v of F(.; ) is said to be nondegenerate if the quadratic form
Q. defined by (1.32) is nondegenerate. The Morse index i(v) of the critical
point v will be the Morse index of @,. The following provides some results on

the degeneracy and indices of the critical points of F.

Theorem 1.5.2 Assume (L1)- (£3) hold and F is defined by (1.23) with 2 <
p < 00, then
(i:) 0 is a nondegenerate critical point of F if and only if p is not an

eigenvalue of (1.22). If u < Ai then the Morse index of 0 is 0 and when

m > )\1, it 18
> m(\). (1.34)
Aj<p

(ii:) when v = (u — \;j)%; is a nonzero critical point of F, then v is

nondegenerate if and only if A\; is a simple eigenvalue of (1.22). When j =1

its Morse index is 0, while if j > 2 it is

Jj—1

> m() (1.85)

k=1

PROOF: (i) A computation gives Qo(h) = (Ah,h) — p||h||>. From theorem
1.3.1, 0 is a non-degenerate critical point of F(,;u) if and only if p is not an
eigenvalue of A. Theorem 1.3.2 says that the Morse index of 0 is the number
of negative eigenvalues, counting multiplicity, of A — pI, so (1.34) holds.

(i) When v = (u — Aj)%e;, then IolP 2 =p— A; so (1.32) implies

Qu(h) = (Ah, h) = X; 1Al + (p — 2)(1 — Aj)(ej, h).
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Using theorem 1.3.1 again, @, will be nondegenerate if and only if A; is a

simple eigenvalue of A. Now
Qu(h) = ([A=XNI+(p—2)(u—A;)Pj]h, h)

where Pjh = (ej, h)ej. Thus from theorem 1.3.2 the Morse index of v is the

number of negative eigenvalues A of
[A=XI+(p-2)(n—X)Ple; = e

The negative eigenvalues here correspond precisely to the eigenvalues of A
which are less than A; so (1.35) follows. O

These results extend the analysis of section 1.4. There we saw that when
i > A1, the critical points on the branch Cl(p ) were the minimizers of ()
on Hj. From this analysis one sees that, when p > A, the critical points on
02(1’ ) are saddle points of F(.; u) with index m()\;). In general, the Morse index
of a critical point on any of the branches C’J(p ) may be found explicitly and this
index is invariant along the branch.

Along the trivial branch, when p passes through an eigenvalue A; of A the
Morse index of 0 changes with it — i~ = m()\;) where it = limu_»\;r (0) and
i =lim, Ny i(0). Moreover, from theorem 1.4.1, when p crosses A; a branch
of critical points diffeomorphic to an (m(A;) — 1)-dimensional sphere bifurcates
from the trivial solution. This differs from the more common situation where

a finite number of different branches bifurcate from the trivial branch when

m()\]) > 1.



26

1.6 CONSTRAINED VARIATIONAL PRINCIPLES FOR HIGHER
EIGENVALUES

In the last two sections, it has been shown that the variational principle (P,)
provides information on A; and, when p > X\, F(;u) is minimized at an
eigenfunction of A corresponding to A;. The other eigenfunctions can only be
saddle points of F(.; u); never local minimizers.

Just as for Rayleigh’s principle, however, we may develop minimization
principles for these other eigenfunctions by looking for constrained minima
of F(.; u); subject to certain orthogonality constraints.

Let {e; : 1 < j < J} be a set of eigenvectors of (1.22) which obey

(ej,exr) = Ojk for 1<y, k< J.

Let V; be the subspace spanned by this set and define

Wy ={u€ Hg:(u,e;) =0for 1 <j<J}. (1.36)

W will be the orthogonal complement of V; with respect to the inner product
on H.

Consider the problem (P, s) of minimizing F(.; x) on Wy and finding

as(p) = inf Fp(u; ). (1.37)

Let Ayy1 be the least eigenvalue of (1.22) corresponding to an eigenvector of
A which lies in W;. The next theorem describes the minimizers and the value

of this variational principle.
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Theorem 1.6.1 Assume (L£1)-(L£3) hold, F is defined by (1.28) with 2 < p <

oo and Wy, Aj11 as above. Then

0 if <Ayt

@) = { =Cp(p—Asp1)? when p > Ay (1.58)

When p > Ajy1, this infimum is attained at v = (p — Ajy1)%e with e in

EJ+1 NnWwj.

Proor: W; is a closed subspace of Hr, and F(.; u) is coercive on Hr, so it is
coercive on Wjy. Thus F(., ) has a finite infimum on W and it is attained.
The Lagrange multiplier rule and (1.26) implies that the local extrema of

F(.;;p) on Wy obey
J
Au + (Jull®? —p)u = 3 Bie;
j=1

where (1,...,03s are real numbers. Take inner products of this with ey, then
Br = 0 for each k, as A is self-adjoint and each  is in Wj.

Thus the local extrema obey (1.28). Repeating the analysis in the proof of
part (v) of theorem 1.4.1, leads to (1.38). O

This theorem shows that the successive eigenvalues, and eigenvectors, of A
may be found by a deflation process. Namely, given the first J eigenvalues
A1, ..., Ay of A and a corresponding orthonormal set of eigenfunctions, the
next smallest eigenvalue A1 and a corresponding eigenfunction is obtained
by solving this constrained variational problem on W; and with g > Ajy1.

Just as in section 1.4, this principle may be modified to find upper and lower

bounds on Aj41.
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1.7 INDEFINITE WEIGHTED EIGENPROBLEMS

The preceding methodology may be extended to weighted eigenproblems of the
form

Au = Ly + Mu = ABu (1.39)

where £, M are as before, and B obeys
(£4): B:Hp — Hj is a compact linear operator.

When B is positive semi-definite, replace the last two terms in (1.23) by
1(lS’u u)P/? — H(Bu u)
p ) 2 ) -

Then the preceding analysis applies to this functional and analogous results to
those obtained above may be obtained in a parallel manner.

It is of much greater interest to show how these methods can be used to
describe variational principles for indefinite weighted eigenproblems for which
B is not required to be positive semi-definite. For such problems, the usual
Rayleigh-type principles do not apply.

Consider the functional K : Hy, x (0,00) — R defined by

1 1 1
K(us p) = 5 lully, + 5 (M, u) + 2 (Bu,u)® - g(Bu,U)- (1.40)

This functional reduces to F4(u; u) when B = I. The variational principle

will be to find

() = Jnf K(u; p)- (1.41)
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The basic properties of this functional, and this variational principle, may

be summarized as follows.

Theorem 1.7.1 Assume (L1) - (£4) hold and K is defined by (1.40). Then

(i) K(.; ) is continuous, coercive and weakly l.s.c. on Hp,
(i3) K(.;p) is G-differentiable on Hy, with

DK (u; p) = Lu + Mu + ((Bu,u) — p)Bu, (1.42)

(i43) v is a nonzero critical point of K(.; ) if and only if it is an eigenvector

of (1.39) corresponding to an eigenvalue A in (0, u) and

(Bu,v) = p— A, (1.43)

(i) if (1.39) has a least eigenvalue A1 in (0, u), then

-0 Jor0<p <X
T = { —i(u =) forp> A, (1.44)

(v) K(:;u) attains its infimum on Hy. When p > A1, it is minimized at
an eigenvector of (1.89) corresponding to the least positive eigenvalue A

provided p > Ay. Otherwise it is minimized at 0.

(vi) If there is a vector e in Hy, such that (Be,e) > 0, then (1.39) has at least

one positive eigenvalue.

PrOOF: (i) When B obeys (£4) then the last two terms in (1.40) are continuous

and weakly continuous. Moreover, K(u; ) > 1 llulls — 2 /4 for all u in Hy, as

ta? — g > —p? /4 for all real z. Hence K is coercive and its infimum is finite.
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(ii) follows from the chain rule as the G-derivative of (Bu,u) is 2Bu.

(iii) v is a nonzero critical point of K(.;u) if and only if it is a nonzero
solution of

Au = (p — {(Bu,u)) Bu. (1.45)

Thus v is an eigenvector of (1.39) with A = u{Bv,v). Take inner products of
(1.45) with v, then since (Av,v) >0, one has A(u — A) >0, or 0 < A< p.

When ) is an eigenvalue of (1.39) lying in (0,u) and w is a corresponding
eigenfunction, then (Bw,w) = A~ (Aw,w) > 0. Let v = 7w be the multiple of
w which obeys (1.43), then w is a critical point of (.; ) as it obeys (1.45), so
(iil) holds.

(iv) if v is a nonzero critical point of K(.; ), then it obeys (1.45) so
(Av,v) = XBv,v) = AMpu—A).
Thus (iv) holds as

K(wi) = 50— N+ 300 =N = Blu=X) =~ (= V2.

(v) The existence of a minimizer follows from (i). When g > Ay, v(u) < 0
so the minimizer must be a nonzero solution of (1.45) from (iii). Thus it is an
eigenvector of (1.39).

(vi) Consider ¢(t,u) = K(te;p) = $t*b* + 1t%(cy — bu) where ¢; = (Ae,e)
and b = (Be,e) > 0. Take pu > c1/b then ¢(t, ) will be negative for ¢? small
enough and thus v(u) < 0. Hence the minimizer of K on Hy, is nonzero and will
be an eigenvector of (1.39). Thus (1.39) has at least one positive eigenvalue

lying in (0, ¢1/b). O
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To find the negative eigenvalues of (1.39) just replace B with —B in (1.39)
and (1.40). Note that (vi) is sharp as if (Be,e) <0 for all e in Hy, then (1.39)
cannot have any positive eigenvalues since we have assumed (Au,u) > 0 for
nonzero u in Hy,.
It is worthwhile looking at the problem of finding successive positive eigen-
values and corresponding eigenvectors of (1.39). Let {e; : 1 < j < J} be a set

of eigenvectors of (1.39) corresponding to positive eigenvalues

0< A <A< <Ay, and obeying

(Bej,er) = djk for 1<j, k<J. (1.46)

Let Wy = {u € Hy, : (Bu,e;) = 0for 1 < j < J}. Consider the problem of

minimizing X on W and finding

v (p) = ule%J K(u; p)- (1.47)

This solutions of this variational principle will be eigenvectors of A corre-
sponding to the next smallest eigenvalue of the problem (1.39); whenever they

exist.

Theorem 1.7.2 Assume (L1) - (£4) hold. If there exists a vector e in Wy
obeying (Be,e) > 0, then there is another positive eigenvalue \j41 and a cor-

responding eigenvector eyy1 of (1.39) with ejy1 lying in Wj.

ProOF: Wj is a closed subspace of Hy, and K(.; p) is weakly Ls.c. and coercive

on Hy, so K(.; p) attains its infimum on Wj.
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Define ¢ as in the proof of (vi) of the previous theorem. For u large enough,
~vs(u) < 0 and so the minimizer of X(.; u) on W; will be an eigenvector corre-
sponding to the least eigenvalue Ay1 of (1.39) whose corresponding eigenfunc-
tion lies in W;. Thus the result holds. O

This theorem allows us to count exactly the number of linearly independent
eigenvectors, corresponding to positive eigenvalues of (1.39). Let &, = {u €
Hyp, : (Bu,u) > 0}. When V is a subspace of £ U{0}, V is said to be maximal
if there is no subspace W of H, which properly contains V' and is a subspace

Corollary 1.7.3 Let V be a mazimal subspace of £ U{0}. If the dimension of
V is J, then (1.39) has exactly J linearly independent eigenvectors correspond-

ing to positive eigenvalues of (1.39).

PRroOOF: This follows directly from the last two theorems. d

As further corollaries of this result note that this indefinite weighted eigen-
problem has infinitely many positive, (or negative), linearly independent eigen-
vectors provided the maximal subspaces of £4 U {0} (or £_ U {0} with &_ =
{u € Hr, : (Bu,u) < 0}) are infinite dimensional. The completeness of the
eigenfunctions of (1.39) is obtained by using the usual requirement that this

maximal subspace be Hy, itself or, alternatively, that (Bv,v) > 0 for all v in

Hp \ {0}.
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1.8 LINEAR, SECOND-ORDER, SELF-ADJOINT ELLIPTIC
EIGENPROBLEMS

In the previous section, various unconstrained variational principles for finding
eigenvalues and eigenvectors of closed, self-adjoint linear operators on Hilbert
space were developed. Here these methods will be applied for use for both
definite and indefinite weighted eigenproblems for linear, second-order, elliptic
boundary value problems. The specific, prototypical examples are eigenvalue
problems for the Laplacian or Schroedinger operators. The indefinite case often
arise in problems of ecology and population modeling. See Hess and Kato, 1980
and the recent surveys of such problems by Belgacem, 1997 and Cosner, 1990.

Let Q be an open, bounded, connected set in R™ with a locally Lipschitz

boundary 9. Consider the problem of finding non-trivial solutions (A,u) of

Au(z) = — i Dj(a;r(x)Dru) + c(x)u = Ab(z)u in Q (1.48)
jik=1

subject to u(z) =0 on Of. (1.49)

Here D; = % represents partial differentiation with respect to z;, and we

shall require

(E1): Each aj; : @ — R is a bounded, Lebesgue measurable function and

a;k(z) = ag;(x) a.e. on Q.
(E2): There exists ¢g > 0 such that

n
ajr(x)&&k > co €] a.e. on Q, and for all £ in R™. (1.50)
j.k=1
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(E3): ¢:Q —[0,00) and b: Q — R are essentially bounded, Lebesgue measur-

able functions.

(E4): The set By = {z € Q: b(xz) > 0} has positive Lebesgue measure.

Let H = L?(Q) be the usual real Hilbert space of all square-integrable,

Lebesgue measurable, real valued functions defined on 2. The inner product is

(uyv) = / w(z)v(z) de. (151)
Q
Under the assumptions (E1)-(E3), the closure of the operator A defined by the
left hand side of (1.48)-(1.49) is a self-adjoint, densely defined, linear operator.
Its domain is D4 = H?(Q) N H}(Q); see Brezis, 1983, chapter 9 for definitions
of the Sobolev spaces and these properties.

The quadratic form f defined by (1.3), associated with this operator, is

1 0 ou
flu) = -3 /QU []Zk(a(ajka—%) —cu] dx (1.52)

for 4 in D 4. Upon integrating by parts,

_1 Louou L
fluw) = 5/9 [Zka]k 95, O +cu ] dz. (1.53)

In this case H4 will be the Sobolev space HE () and the closure f of the
functional defined by (1.52) is given by (1.53) for all u in H} (). The dual
space H% is H=1(f2) as described in Brezis, 1983, chapter 9.

The functional for this problem, analogous to K in section 1.7, is G : H} () x

(0,00) = R with

G(u; /[Z ajk g: (‘?u +(c —,ub)uz] dw+i(/9bu2dm)2. (1.54)
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The variational principle (Q,,) is to minimize G(.; ) on Hg(f2) and to find

— inf - 10). 1.55
a(p) ue}%(mg(u,u) (1.55)

This is an unconstrained problem. Some basic properties of the functional G
and this variational principle will be summarized below. The next theorem
parallels theorem 1.7.1. Henceforth all integrals will be Lebesgue integrals over

 and the domain will often be omitted.

Theorem 1.8.1 Assume (E1)-(ES3) hold and G(.; u) be defined by (1.54). Then
(i) G(.;p) is continuous, coercive and weakly l.s.c. on H3 (),
(ii) DG(.;p) is Gateauz differentiable on Hy(Q) with

DG(u,p) = Au + (/bu2 - ,LL) bu. (1.56)

1/2¢ where A

(i) If v is a nonzero critical point of G(.;u), then v = (u — )
is an eigenvalue of (1.48)-(1.49) lying in (0,u) and e is a corresponding

eigenfunction obeying

/ be? =1 (1.57)

(iv) the nonzero critical values of G(.; ) are —1(u— X)? where X is an eigen-

value of (1.48)-(1.49) in (0, ).

(v) if A1 is the least positive eigenvalue of (1.48)-(1.49) then

0 when p < A\

a(p) = { “Lu—N)? forp> A, (1.58)



36

(vi) G(.;u) attains its infimum on HE(Q). When u > i, this infimum is

attained at an eigenfunction corresponding to A1,

(vii) if there is a function w in H () obeying [bw? > 0, then (1.48)-(1.49)

has at least one positive eigenvalue A;.

ProoOF: (i) The operator A : H}(Q) — H~1(Q) is defined by the quadratic

form

= Ou Ou
(Au,v) = /Q [ Z ajk(?—mj@—a:k +cuv] dz (1.59)

A is continuous, self-adjoint and positive definite linear operator when (E1)-
(E3) hold. Thus the function g : Hj(2) — R defined by g(u) = (Au,u) is
continuous, convex and weakly l.s.c. on H}(Q). Moreover from (E1)-(E3) and

the assumptions on 2 there exists a ¢; > 0 such that
2
g(u) > c1 |ull; 5 (1.60)

where ||u[|, , is the usual norm on Hg ().

Define B : H}(Q) — L?(Q) by Bu(z) = b(z)u(z). B is a continuous linear
operator with ||Bul| < [|b|, [lu]l < [Ibll [lu|l; » where || ||, is the usual norm
on L*>(1).

Thus B : H} (2) — H~1(Q) is compact as the imbedding i : H}(Q) — L*(Q)
and its dual i* : L2(Q2) — H—1(Q) are compact. Hence the functional (Bu,u) is
weakly continuous on Hg (). The coercivity of G now follows from (1.60) just

as in the proof of 1.7.1.
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(ii) follows by a direct computation

(iii) v is a critical point of G(.; p) if and only if it is a solution of

Au = (,LL— /buz) bu. (1.61)

When v is nonzero then it is a solution of Au = ABu with [ bv? = p — \. Since

v is H}(Q), then v is a (weak) solution of

_Z %(%k%) = M—c)v subject to (1.49).
gk

The right hand side here is in L? and thus v lies in H?(Q). Hence v is a
solution of (1.48)-(1.49) which lies in D 4. The rest of this theorem follows,
mutatis mutandis, as in theorem 1.7.1. O

The criterion in (vii) for this problem to have a positive eigenvalue is non-

constructive, so the following lemma is helpful.
Lemma 1.8.2 When (E/) holds, there exists w in H§(Q) such that [ bw? > 0.

Proor: When (E4) holds, there exists a §; > 0 such that B; = {z € Q : b(z) >

41} has positive Lebesgue measure. For 0 < § < d1, let

@< { 1 b@) >0 and dx,00) > 5
Xo\T) =1 0  otherwise

Then for § < d2 (say) this function is non-zero on a set of positive measure.
Let p. for € > 0, be the usual regularizing approximate identity with respect to
convolution - which will be indicated by . Then for € < 2, pe * x5 will be a
function in C§°(2) and pe * x5 — x5 as € = 0 in L*(2). Thus lim,_,¢+ [ b(p *

xs)? = [ bx} > 0. Take w = p * x5 for € small enough and the lemma holds. O
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Corollary 1.8.3 When (E1)-(E4) hold, then there is a least positive eigenvalue
A1 of (1.48)-(1.49). When pu > A1, then G(.;u) is minimized on HL(Q) at an

eigenfunction corresponding to this eigenvalue.

Successive eigenvalues, and corresponding eigenfunctions of (1.48) can be
obtained by minimizing G(.; u), for u large enough, on subspaces on H}(Q).
Let {e1,...,es} be a set of eigenfunctions of (1.48)-(1.49) corresponding to

eigenvalues 0 < A1 < A2 <--- < Ay and obeying
/bejek =djp for 1 <j, k< J (1.62)

Such sets are called b-orthonormal. Let W; = {u € Hj(Q) : [beju=0for 1 <
j < J} and consider the problem (Q, ;) of minimizing G(,;p) on W; and

finding

as(p) = inf G(u;p). (1.63)

Theorem 1.8.4 Assume (E1)-(E4) hold, G(.; u) is defined by (1.54) and Wy
as above. If there exists w in W obeying [bw? > 0, then there ezists a least
positive eigenvalue \jy1 of (1.48)-(1.49) corresponding to an eigenfunction

ejt+1 in Wy. Moreover (i)

(o if p < Agt1
ay(p) = { — 2= As41)? ifp> A

and (i) when p > Ajy1, this infimum is attained at an eigenfunction corre-

sponding to Ajy1.
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PROOF: The proof is similar to that of theorem 1.6.1, adapted to this func-
tional. The argument that Aji; exists is similar to that of (vi) of theorem
1.7.1. O

Again a Morse theory for this problem can be developed.

Lemma 1.8.5 Assume (E1)-(E4) hold and G(.; u) is defined by (1.54). Then

DG(.;p) is G-differentiable on HE(Q) and for any u, h in Hg(S2)

D2G(u; p)h = Ah + (/bu2 —u) bh+2(/buh) bu. (1.64)

PROOF: The only nonlinear term in (1.56) is NM(u) = ([ bu?)bu. A direct

calculation shows that N is G-differentiable on Hg () with

DN(u)h = 2(/buh) bu + (/b«ﬁ) bh.

This leads to (1.64). O
The (Hessian) quadratic form associated with the second derivative of this

functional is @, : H}(Q) — R with

<D2g(u§ N)ha h>

(AR, h) + (/bu2—p) /bh2+2(/buh)2. (1.65)

This functional fits into the framework described in section 1.3 with H =

Qu(h)

L*(Q), X = Hj(Q),and A = A+ ([ bu® — p)B+2P. Here P : Hj(Q) — L*(Q)
is defined by

Phz) = ( / buh) b(z)u(a) (1.66)
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Take B = B, then the inequality (1.15) follows from (1.60).

Theorem 1.8.6 Assume (E1)-(E3) hold and v is a non-degenerate critical

point of G(.; ) in HL(Q), then

(i) v = 0 is a nondegenerate critical point of G(.; ) if and only if u is not

an eigenvalue of (1.48)-(1.49).

(ii) When v = (u — N\)Y/2e with 0 < X\ < p, then v is nondegenerate if and

only if X is a simple eigenvalue of (1.48)-(1.49).

Proor: This follows from (1.64) and theorem 1.3.1 just as was done in the
proof of theorem (1.30). O
To actually evaluate the Morse index of a critical point, stronger assumptions
on b are needed. We shall require
(E5): b(z) > 0, a.e. on Q and the distinct eigenvalues of (1.48)-(1.49) are
ordered.

When (E5) holds, then (A4) holds on H(f2) and the following result holds.

Theorem 1.8.7 Assume (E1)-(E5) hold and v is a critical point of G(,; ) on

HY(Q). Then the Morse index of v is finite, and

(i) if v =0, then the Morse index of 0 is 0 when p < Ay and it is

2on;<p MUA;) when > Ay where m(X;) = dim N(A = A;B).

(i) if v = (u— X\;j)*/%e;, then its Morse index is 0 if j = 1 and

j—1

Zm()\k) when j > 1.

k=1
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PROOF: (i) When v = 0, then Qo(h) = (Ah, h) — u [ bh?%.

Applying theorem 1.3.2, the Morse index of this is finite and equals the
number of eigenvalues, counting multiplicity, or (A, B) which are less than pu.
Thus (i) follows.

(ii) when v = (u — X;)*/2e;, then [bv® = pu— A, so

Quit) = (A, by =5 [ 012 +20u = 0 [ besh?.

Applying theorem 1.3.2 again (ii) follows. O
These results show that the comments at the end of section 1.5 on the
behavior of the bifurcation diagram carry over to this problem. In particular
when p increases through an eigenvalue A;, a branch of eigenfunctions of (1.48)-
(1.49) that is diffeomorphic to an (m();) — 1)-dimensional sphere bifurcates

from the zero branch and the Morse index of 0 increases by m(\;).
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