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Abstract. The main goal of this paper is to study singularities of generic

lightcone Gauss maps and lightcone pedal surfaces of spacelike curves in

Minkowski 4-space. To do this, we first construct lightcone height functions

and extended lightcone height functions, and then show the relations be-

tween singularities of generic lightcone Gauss maps(resp. lightcone pedal

surfaces) and that of lightcone height functions(resp. extended lightcone

height functions). In addition some geometric properties of the spacelike

curves are studied from geometrical point of view.

1. Introduction

The study of Minkowski 4-space has produced fruitful results, see for example
[5, 6, 7, 8]. Motivated by the study of generic lightcone Gauss maps of space-
like curves in Minkowski 4-space, and completing the study of submanifolds in
Minkowski 4-space from the singularity theory point of view, we develop the study
of singularities of generic lightcone Gauss maps and lightcone pedal surfaces of
spacelike curves in Minkowski 4-space. To do this we need to work out local
differential geometry tools for the spacelike curves similar to those of curves in
Euclidean space[1, 2, 3, 4]. As it was expected, the situation presents certain
peculiarities when it is compared with the Euclidean space and the Minkowski
3-space. For instance, the dimension of lightlike normal vector space is 2, then
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there exist many lightcone Gauss maps and lightcone pedal curves. For some
basic notions in Lorentzian geometry, see [9].

The paper is organized as follows:
The rest of this section introduces the basic notions of Minkowski 4-space, after

these basic notions, we give the local differential geometry of spacelike curves and
the main results of this paper. Section 2 first constructs the lightcone height
functions, which are useful tools for the study of singularities of lightcone Gauss
maps, and then shows the relations between singularities of lightcone Gauss maps
and that of lightcone height functions. Sections 3 and 4 give the proofs of the
main results of this paper.

Let R4 = {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ R} be a 4-dimensional vector space.
For any two vectors x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) in R4, the pseudo
scalar product of x and y is defined by 〈x, y〉 = −x1y1 + x2y2 + x3y3 + x4y4. We
call (R4, 〈, 〉) a Minkowski 4-space and denote it by R4

1.

We say that a vector x in R4
1\{0} is a spacelike vector, a lightlike vector or

a timelike vector if 〈x, x〉 is positive, zero, negative respectively. For a vector
n ∈ R4

1 and a real number c, a hyperplane with pseudo normal n is defined by
LHP (n, c) = {x ∈ R4

1|〈x, n〉 = c}. The norm of a vector x ∈ R4
1 is defined

by ‖x‖ =
√
|〈x, x〉|. For any two vectors x, y in R4

1, we say that x is pseudo-
perpendicular to y if 〈x, y〉 = 0.

An orientation and a timelike orientation of R4
1 are fixed(i.e., a 4-volume form

dV , and future time-like vector field, have been chosen). Let γ : I → R4
1 be a

smooth regular curve in R4
1 (i.e.,γ̇(t) 6= 0 for any t ∈ I), where I is an open interval.

We say that a smooth regular curve γ is a spacelike curve if 〈γ̇(t), γ̇(t)〉 > 0 for
any t ∈ I. The arclength of a spacelike curve γ, measured from γ(t0)(t0 ∈ I), is

s(t) =
∫ t

t0

‖γ̇(t)‖ dt.

Then a parameter s is determined such that ‖γ′(s)‖ = 1, where γ′(s) = dγ/ds(s).
Consequently we say that a spacelike curve γ is parameterized by arclength if
‖γ′(s)‖ = 1. Throughout the rest of this paper s is assumed arclength parameter.
Let t(s) denote γ′(s). We call t(s) a unit tangent vector of γ at s. The signature
of x is defined to be

δ(x) = sign(x) =





1 x : spacelike;

0 x : lightlike;

−1 x : timelike .
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For any x1, x2,x3 ∈ R4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣

−e1, e2, e3, e4

x1
1, x2

1, x3
1, x4

1

x1
2, x2

2, x3
2, x4

2

x1
3, x2

3, x3
3, x4

3

∣∣∣∣∣∣∣∣

=


−

∣∣∣∣∣∣

x2
1, x3

1, x4
1

x2
2, x3

2, x4
2

x2
3, x3

3, x4
3

∣∣∣∣∣∣
,−

∣∣∣∣∣∣

x1
1, x3

1, x4
1

x1
2, x3

2, x4
2

x1
3, x3

3, x4
3

∣∣∣∣∣∣
,

∣∣∣∣∣∣

x1
1, x2

1, x4
1

x1
2, x2

2, x4
2

x1
3, x2

3, x4
3

∣∣∣∣∣∣
,−

∣∣∣∣∣∣

x1
1, x2

1, x3
1

x1
2, x2

2, x3
2

x1
3, x2

3, x3
3

∣∣∣∣∣∣




where xi = (x1
i , x

2
i , x

3
i , x

4
i ).

For a unit speed spacelike curve γ : I → R4
1 with ‖γ′′(s)‖ 6= 0 and

||n′1(s) + δ1k1(s)t(s)|| 6= 0, then we can construct a pseudo-orthogonal frame
{t(s), n1(s), n2(s), n3(s)}, which satisfies the following Frenet-Serret type formu-
lae, of R4

1 along γ.





t(s) = γ′(s);
t′(s) = k1(s)n1(s);
n′1(s) = −δ1k1(s)t(s) + k2(s)n2(s);
n′2(s) = δ3k2(s)n1(s) + k3(s)n3(s);
n′3(s) = δ1k3(s)n2(s),

where k1(s) = ||γ′′(s)||, n1(s) = γ′′(s)
k1(s)

, n2(s) = n′
1(s)+δ1k1(s)t(s)

||n′
1(s)+δ1k1(s)t(s)|| ,

n3(s) = t(s)∧n1(s)∧n2(s), and δi = δ(ni(s)) (i = 1, 2, 3). This is the fundamen-
tal formula for the study of generic curves in R3

1; It is, however, useless at the point
γ(s) with ||n′1(s)+δ1k1(s)t(s)|| = 0. We now denote A(s) = n′1(s)+δ1k1(s)t(s)(s)
and C(s) = t(s) ∧ n1(s) ∧ A(s). If k2(s) = 0, then A(s) is a lightlike vector, so
that any pseudo perpendicular vector in the plane normal to t and n1 is parallel
to A(s).

On the other hand, there exists a lightlike vector B(s) such that 〈A(s), B(s)〉 =
1, 〈t(s), B(s)〉 = 0, 〈n1(s), B(s)〉 = 0 and {t(s), n1(s), A(s), B(s)} is a basis of
R4

1.
Let

LCp = {x = (x1, x2, x3, x4) ∈ R4
1| − (x1 − p1)2 +

4∑

i=2

(xi − pi)2 = 0}

and

S2
+ = {x ∈ LC0|x = (1, x2, x3, x4)},
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where p = (p1, p2, p3, p4) ∈ R4
1. We call LC∗p = LCp \{p} a lightcone at the vertex

p and S2
+ a lightlike unite sphere. If x = (x1, x2, x3, x4) is in LC∗0 , we then have

x̃ = (1, x2/x1, x3/x1, x4/x1) ∈ S2
+.

If k2(s) 6= 0, for any vector v = (λ1n1 + µ1n2 + η1n3)(s) ∈ S2
+ ∩Nsγ, then

{
δ1λ

2
1 + δ2µ

2
1 + δ3η

2
1 = 0;

λ1n11(s) + µ1n21(s) + η1n31(s) = 1.

Thus locally there exist f1 and g1 such that v = (±λ1n1 +f(λ1)n2 +g(λ1)n3)(s).
where λ1 ∈ R, na = (na1, na2, na3, na4)( a = 1, 2, 3).

If k2(s) = 0, for any vector v = (λ2n1 + µ2A + η2B)(s) ∈ S2
+ ∩Nsγ, we have

{
λ2

2 + 2µ2η2 = 0;
λ2n11(s) + µ2A1(s) + η2B1(s) = 1.

Thus locally there exist f2 and g2 such that v = (±λ2n1 +f2(λ2)A+g2(λ2)B)(s),
where λ2 ∈ R, n1 = (n11, n12, n13, n14), A = (A1, A2, A3, A4) B = (B1, B2, B3, B4).
When n1 is a spacelike vector, for any vector

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s), k2(s) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s), k2(s) = 0.

in S2
+ ∩ Nsγ, there exists a rotation map ρ : S2

+ ∩ Nsγ → S2
+ ∩ Nsγ such that

ρ(v0) = Ã± C(s).
We define surface

LGσ
γ : I × R→ S2

+,

by

LGσ
γ (s, λ) =

{
(σλn1 + f1(λ)n2 + g1(λ)n3)(s), k2(s) 6= 0;
(σλn1 + f2(λ)A + g2(λ)B)(s), k2(s) = 0.

and surface
LP σ

γ : I × R→ LC∗0 ,

by
LP σ

γ (s, λ) = 〈γ(s), ρ(v(s, λ))〉v(s, λ),

where

v(s, λ) =
{

(σλn1 + f1(λ)n2 + g1(λ)n3)(s), k2(s) 6= 0;
(σλn1 + f2(λ)A + g2(λ)B)(s), k2(s) = 0.

We call LGσ
γ the lightcone Gauss surface of γ, LP σ

γ the lightcone pedal surface
of γ. In fact, for any fixed η0 ∈ R, LGσ

γ (−, η0), denoted by LGσ
γ,η0

is a lightcone
Gauss map and LPσ

γ (−, η0), denoted by LP σ
γ,η0

is a lightcone pedal curve of γ.

The study of lightcone Gauss surface of γ is of course a very interesting aspect
of the situation, from which one may deduce deep results concerning the curve
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γ. In the next step, we shall study that surface. Classically, starting with curve
theory, we shall consider the lightcone Gauss map in this paper.

Let F : R4
1 → R be a submersion and γ a unit speed spacelike curve. We say

that γ and F−1(0) have k-point contact at s0 provided the function g(s) = F ◦γ(s)
satisfies g(s0) = g′(s0) = · · · = g(k−1)(s0) = 0 and g(k)(s0) 6= 0. Dropping the
condition g(k)(s0) 6= 0 we say that there is at least k-point contact.

Let γ : S1 → R4
1 be a spacelike curve with k1(s) 6= 0. We consider the following

properties of γ.

(A1) The number of points at which γ and hyperplane have 4-point contact is
finite.

(A2) There is no point at which γ and hyperplane have at least 5-point contact.
Our main results are the following.
Theorem A Let Im(S1,R4

1) be a space of spacelike curves equipped with Whit-
ney C∞-topology. Then the set of spacelike curves that satisfy (A1) and (A2) is
a residual set in Im(S1,R4

1).

cusp cuspidal edge swallowtail

Theorem B Under the assumptions of (A1) and (A2),
(a) The lightcone Gauss map LGσ

γ,η0
of γ has a cusp point at s0 if and only if

k2(s0) = 0.

(b) The lightcone pedal surface LPσ
γ is locally diffeomorphic to the cuspidal

edage if and only if γ and hyperplane LHP (ρ(vσ
0 ), cσ

0 ) have 3-point contact.
(c) The lightcone pedal surface LP σ

γ is locally diffeomorphic to the swallowtail
if and only if k2(s0) = 0 (or γ and hyperplane LHP (ρ(vσ

0 ), cσ
0 ) have 4-point

contact).
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Here

vσ
0 =

{
(σλn1 + f1(λ)n2 + g1(λ)n3)(s0), k2(s0) 6= 0;
(σλn1 + f2(λ)A + g2(λ)B)(s0), k2(s0) = 0,

cσ
0 = 〈γ(s0), ρ(vσ

0 )〉 and σ = + or −.

2. Lightcone height function on spacelike curve in R4
1

We first define a function

H : I × S2
+ ∩Nγ → R

by H(s,v) = 〈γ(s), ρ(v)〉. We call it the lightcone height function of γ. For any
fixed v0 ∈ S2

+ ∩ Nγ, we let hv0(s) denote H(s, v0). Then we have the following
proposition.

Proposition 2.1. Let γ : I → R4
1 be a unit speed spacelike curve with k1(s) 6= 0.

Then:
(1) h′v0

(s0) = 0 if and only if ρ(v0) ∈ Ns0γ.

(2) h′v0
(s0) = h′′v0

(s0) = 0 if and only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

or ρ(v0) = B̃(s0).
(3) h′v0

(s0) = h′′v0
(s0) = h′′′v0

(s0) = 0 if and only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

and k2(s0) = 0.

(4) h′v0
(s0) = h′′v0

(s0) = · · · = h
(4)
v0 (s0) = 0 if and only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

and k2(s0) = 〈A′(s0), A(s0)〉 = 0.

Proof. (1) h′v0
(s0) = 0 if and only if 〈γ′(s0), ρ(v0)〉 = 〈t(s0), ρ(v0)〉 = 0, which

is equivalent to ρ(v0) ∈ Ns0γ.

(2) h′v0
(s0) = h′′v0

(s0) = 0 if and only if 〈γ′(s0), ρ(v0)〉 = 〈γ′′(s0), ρ(v0)〉 = 0,

which is equivalent to ρ(v0) 6∈ 〈t(s0), n1(s0)〉R. If n1 is a timelike vector, then
n2 and n3 are spacelike vector. On the other hand, ρ(v0) ∈ S2

+ ∩ Nγ, this is a
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contradiction. So n1 is not a timelike vector. Thus h′v0
(s0) = h′′v0

(s0) = 0 if and
only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

or ρ(v0) = B̃(s0).
(3) If k2 6= 0, then A(s0) is not a lightlike vector. On the other hand, h′v0

(s0) =
h′′v0

(s0) = h′′′v0
(s0) = 0 if and only if 〈(δ1k

2
1t + k1

′n1 − k1k2n2)(s0), ρ(v0)〉 =
k1k2δ2(s0) = 0, it’s a contradiction. So k2(s0) = 0. Thus h′v0

(s0) = h′′v0
(s0) =

h′′′v0
(s0) = 0 if and only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

and k2(s0) = 0.

(4) h
(4)
v0 (s0) = 0 if and only if 〈γ(4)(s0), ρ(v0)〉 = 〈(3δ1k1k1

′t + (δ1k
3
1 + k1

′′ +
δ3k1k

2
2)n1 + (−2k

′
1k2 − k1k

′
2)n2 + k1k2k3n3)(s0), ρ(v0)〉 = 0, by (1), (2) and (3),

h′v0
(s0) = h′′v0

(s0) = · · · = h
(4)
v0 (s0) = 0 if and only if

v0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

and k2(s0) = 〈A′(s0), A(s0)〉 = 0. ¤

Proposition 2.2. Let γ : I → R4
1 be a unit speed spacelike curve. If H is the

lightcone height function of γ. Then the following conditions are equivalent:
(1) s0 is a singularity of the lightcone Gauss map LG±γ,η0

.

(2) h′′′v0
(s0) = 0 for v0 = LG±γ,η0

(s0).
(3) k2(s0) = 0 and v0 = LG±γ,η0

(s0).

Proof. Let BH = {v ∈ S2
+ | h′v(s) = h′′v(s) = 0}. By Proposition 2.1. Then BH

can be written as BH = {v ∈ S2
+ | v}, where

v =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s), k2(s) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s), k2(s) = 0.

or ρ(v) = B̃(s). Thus BH can be identified with LG±γ,η0
from singularity theory

viewpoint, which means (1) is equivalent to (2).
By Proposition 2.1, (2) is equivalent to (3). ¤

Proposition 2.3. Let γ : I → R4
1 be a unit speed spacelike curve. Then:

(1) The lightcone Gauss map LGσ
γ,η0

is constant if and only if γ ⊂ LHP (vσ, cσ).
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(2) Both maps, LG+
γ,η0

and LG−γ,η0
, are constant if and only if γ is a plane

curve.
Here

vσ =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s), k2(s) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s), k2(s) = 0.

cσ = 〈γ(s), vσ〉 is constant, and σ = + or −.

Proof. (1) If LGσ
γ,η0

is constant, then

d〈γ, LGσ
γ,η0

〉 = 〈dγ, LGσ
γ,η0

〉+ 〈γ, d(LGσ
γ,η0

)〉 = 0.

Therefore 〈γ, LGσ
γ,η0

〉 = cσ is constant, which means that γ ⊂ LHP (vσ, cσ).
Conversely, If γ ⊂ LHP (vσ, cσ), then 〈γ, dLGσ

γ,η0
〉 = 0, thus LGσ

γ,η0
is constant.

(2) Since v+ and v− are linearly independent, LHP (v−, c−) and LHP (v+, c+)
intersect transversally. By (1), both maps, LG+

γ,η0
and LG−γ,η0

, are constant if
and only if γ(s) ⊂ LHP (v+, c+) ∩ LHP (v−, c−) is a plane curve. ¤

For a unit speed spacelike curve γ : I → R4
1, we now define extended lightcone

height function H̃ : I×LC∗0 ∩Nγ → R by H̃(s, v) = H(s, ṽ)−v1 = 〈γ(s), ρ(ṽ)〉−
v1 where H is the lightcone height function of γ. For any v0 in LC∗0 ∩ Nγ, let
h̃v0(s) denote H̃(s,v0). Then we have the following lemma.

Lemma 2.4. Let γ : I → R4
1 be a unit speed spacelike curve with k1(s) 6= 0. Then

γ and the hyperplane LHP (ρ(v±0 ), c±0 ) have 4-point contact at s0 if and only if
k2(s0) = 0 and 〈A′(s0), A(s0)〉 6= 0, where

v±0 =
{

(σλ0n1 + f1(λ0)n2 + g1(λ0)n3)(s0), k2(s0) 6= 0;
(σλ0n1 + f2(λ0)A + g2(λ0)B)(s0), k2(s0) = 0.

and c±0 = 〈γ(s0), ρ(v±0 )〉.

3. Unfoldings of functions of one-variable

In this section we use some general results of the singularity theory for function
germs. Details can be found in [3]. Let F : (R× Rr, (s0, x0)) → R be a function
germ. We call F an r-parameter unfolding of f where f(s) = F (s, x0). We say
that f has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k and f (k+1)(s0) 6= 0.

Let j(k−1)( ∂F
∂xi

(s, x0))(s0) =
∑k−1

j=1 αjis
j for i = 1, . . . , r, where jk−1 denotes the

(k−1)-jet. F is called a (p) versal unfolding (resp. versal) if the (k−1)×r (resp.
k×r) matrix of coefficients (αji) (resp. (α0i, αji)) has rank k−1(k−1 ≤ r)(resp.
k(k ≤ r)), where α0i = ∂F

∂xi
(s0, x0). Before proceeding further, it is convenient to

introduce two important sets concerning the unfoldings. The bifurcation set of
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F is the set BF = {x ∈ Rr|∂F
∂s = ∂2F

∂2s = 0 at (s, x)}. The discriminant set of
F is the set DF = {x ∈ Rr|F = ∂F

∂s = 0 at (s, x)}. Then we have the following
well-known result[4].

Theorem 3.1. Let F : (R×Rr, (s0, x0)) → R be a r-parameter unfolding of f(s),
which has Ak-singularity at s0.
(1) Suppose that F is a (p) versal unfolding.

(a) If k = 2, then BF is locally diffeomorphic to {0} × Rr−1.

(b) If k = 3, then BF is locally diffeomorphic to C × Rr−2.

(2) Suppose that F is a versal unfolding.
(a) If k = 1, then DF is locally diffeomorphic to {0} × Rr−1.

(b) If k = 2, then DF is locally diffeomorphic to C × Rr−2.

(c) If k = 3, then DF is locally diffeomorphic to SW × Rr−3.

Here, SW = {(x1, x2, x3)|x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swal-
lowtail and C = {(x1, x2)|x1

2 = x2
3} is the ordinary cusp.

Theorem 3.2. Let γ : I → R4
1 be a unit speed spacelike curve with k1(s) 6= 0, H

the lightcone height function of γ and H̃ the extended lightcone height function.
(1) If h(s) has Ak-singularity (k = 2, 3) at s0, then H is the (p) versal unfolding

of h.

We consider the point (s,v) ∈ I × LC∗0 ∩Nsγ such that H̃(s,v) = 0.

(2) If h̃(s) has Ak-singularity (k = 1, 2, 3) at s0, then H̃ is the versal unfolding
of h̃.

Proof. Let LC∗+ = {v = (v1, v2, v3, v4) ∈ LC∗0 | v1 > 0}; ρ(v) = (v1, v2, v3, v4) ∈
LC∗+; γ(s) = (x1(s), x2(s), x3(s), x4(s)). We define a function H̄ : I×LC∗+ → R by
H̄(s, v) = 〈γ(s), ρ(v)〉. Since H̄ |I×S2

+∩Nγ= H, it is sufficient to verify that H̄ is
the (p) versal unfolding of h̄(s) = H̄(s, v0). In fact, since ρ(v) ∈ LC∗+, H̄(s, v) =
−

√
v2
2 + v2

3 + v2
4x1(s) + v2x2(s) + v3x3(s) + v4x4(s). ∂H̄

∂v2
= −v2

v1
x1(s) + x2(s),

∂H̄
∂v3

= x3(s)− ( v3
v1

)x1(s), ∂H̄
∂v4

= x4(s)− ( v4
v1

)x1(s), the 3-jet at s0 of ∂H̄
∂v2

, ∂H̄
∂v3

and
∂H̄
∂v4

are

(sx
′
2 + 1

2s2x
′′
2 + 1

6s3x
′′′
2 )− ( v2

v1
)(sx

′
1 + 1

2s2x
′′
1 + 1

6s3x
′′′
1 ),

(sx
′
3 + 1

2s2x
′′
3 + 1

6s3x
′′′
3 )− ( v3

v1
)(sx

′
1 + 1

2s2x
′′
1 + 1

6s3x
′′′
1 ),

(sx
′
4 + 1

2s2x
′′
4 + 1

6s3x
′′′
4 )− ( v4

v1
)(sx

′
1 + 1

2s2x
′′
1 + 1

6s3x
′′′
1 ).

h̄(s) has A2-singularity at s0 if and only if ρ(v0) = λ(n2(s0)± n3(s0)), λ 6= 0
and k2(s0) 6= 0. When h̄ has A2-singularity at s0, we require matrix (x

′
2(s) −

( v2
v1

)x
′
1(s), x

′
3(s) − ( v3

v1
)x
′
1(s), x

′
4(s) − (v4

v1
)x
′
1(s)) to have rank 1. In fact, Since
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ρ(v) = λ(n2 ± n3), k1k2 6= 0, the determinant of following 3× 3 matrix∣∣∣∣∣∣∣

x
′
2 − ( v2

v1
)x
′
1 x

′
3 − ( v3

v1
)x
′
1 x

′
4 − (v4

v1
)x
′
1

1
2x

′′
2 − ( v2

2v1
)x
′′
1

1
2x

′′
3 − ( v3

2v1
)x
′′
1

1
2x

′′
4 − ( v4

2v1
)x
′′
1

1
6x

′′′
2 ( v2

6v1
)x
′′′
1

1
6x

′′′
3 − ( v3

6v1
)x
′′′
1

1
6x

′′′
4 − ( v4

6v1
)x
′′′
1

∣∣∣∣∣∣∣

=
1

12v1

∣∣∣∣∣∣∣∣

v1 v2 v3 v4

x
′
1 x

′
2 x

′
3 x

′
4

x
′′
1 x

′′
2 x

′′
3 x

′′
4

x
′′′
1 x

′′′
2 x

′′′
3 x

′′′
4

∣∣∣∣∣∣∣∣
=

k2
1k2

12v1
〈ρ(v),n3〉

is ± δ3λk2
1k2

12v1
6= 0, which means that the rank of the above matrix is 3. Whence H̄

is the (p) versal unfolding of h̄(s) = H̄(s,v0). Similarly for others. ¤

By Proposition 2.1, Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. If hv and h̃w have Ak-singularity(k = 2, 3). Then:
(1) When k = 2, BH is locally diffeomorphic to 0×R, DH̃ is locally diffeomor-

phic to C × R.

(2) When k = 3, BH is locally diffeomorphic to C. DH̃ is locally diffeomorphic
to SW.

By Proposition 2.1 and Theorem 3.3, we get the Theorem B.

4. Generic properties of spacelike curves

In this section we consider the notion of Lorentzian Monge-Taylor map of
a spacelike curve in Minkowski 4-space. Let γ : I → R4

1 be a regular space-
like curve in Minkowski 4-space where I is an open connected subset of unit
circle S1. We now choose a smooth family of unit vectors nj(t), it is pseudo
perpendicular to the unit tangent vector t(t) of γ at t, so ‖nj(t)‖ = 1 and
〈nj(t), t(t)〉 = 0 for all t ∈ I. Such nj(t) can be obtained as following: consider
the smooth map t : I → S3

1 which takes t to the unit tangent vector t(t), if V

is a vector in S3
1 , we can obtain the vector field nj(t) by pseudo-orthogonally

projecting V onto each of the pseudo normal space and normalizing. Thus
nj(t) = V−〈V,t(t)〉t(t)

‖V−〈V,t(t)〉t(t)‖ . ni(t) is obtained similarly:

ni(t) =
W − 〈W,nj(t)〉nj(t)− 〈W, t(t)〉t(t)
‖W − 〈W,nj(t)〉nj(t)− 〈W, t(t)〉t(t)‖ ,

where W ∈ H3(H3 = {p ∈ R4
1|〈p, p〉 = −1}). Let nk(t) = t(t) ∧ nj(t) ∧ ni(t).

We use the pseudo perpendicular lines spanned by t(t), nj(t),ni(t), nk(t) as axes
at γ(t) with the unit points on the axes corresponding to the four given vectors.
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Note that the curve γ is not necessarily unit speed with γ(t0) = 0. We can
write γ(I) locally as (gt(ξ), ξ, ft(ξ), lt(ξ) with j1ft(0) = j1gt(0) = j1lt(0) = 0.

If Vk denotes the space of polynomials in ξ of degree ≥ 2 and ≤ k, then we
have a map, the Monge-Taylor map for the spacelike curve γ, µγ : I → Vk ×
Vk × Vk by µγ(t) = (jkft(0), jkgt(0), jklt(0)). Vk × Vk × Vk can be identified with
Rk−1

1 × Rk−1
1 × Rk−1

1 = R3k−3
1 via the coordinate (a2, ..., ak, b2, ..., bk, c2, ..., ck).

Of course µγ depends rather heavily on our choice of unit normals nj(t) and

ni(t). Here ai = f
(i)
t (0)

i! , bi = g
(i)
t (0)

i! , ci = l
(i)
t (0)

i! (2 ≤ i ≤ k), that is Vk × Vk ×
Vk = {(a2ξ

2 + a3ξ
3 + · · · + akξk), (b2ξ

2 + b3ξ
3 + · · · + bkξk), (c2ξ

2 + c3ξ
3 + · · · +

ckξk)}. Let Pk denote the set of maps ψ : R4
1 → R4

1 of the form ψ(x, y, z, w) =
((ψ1(x, y, z, w), ψ2(x, y, z, w), ψ3(x, y, z, w), ψ4(x, y, z, w)), where ψi(x, y, z, w) is a
polynomial in x, y, z, w of degree ≤ k. An element ψ ∈ Pk is determined by
the coefficients of the various monomials xiyjzmwn occurring in ψ1, ψ2, ψ3, ψ4.

There are altogether (k+4)!
4!k! monomials xiyjzmwn of degree ≤ k, so that Pk can

be thought as a Minkowski space R
(k+4)!
4!k!

1 . It is this space that will provide the
required deformations of the curve.

To simplify matters we now assume that the curve γ is compact, that is
I = S1. The identity map 1R4

1
: R4

1 → R4
1 is of course an element of Pk(k ≥ 1).

By using compactness of γ, it is easy to see that there is an open neighbor-
hood U of 1R4

1
in Pk with the property that if ψ ∈ U, then the linear map

Tψ(γ(t)) : R4
1 → R4

1; v 7−→ Dψ(γ(t)) · v satisfies that it takes a timelike vec-
tor(resp. a spacelike vector) to a timelike vector (resp. a spacelike vector), where
Dψ(γ(t)) denotes the derivative of ψ at γ(t). If we deform the original curve by
the map ψ, then we can also obtain the required two new smooth family of normal
vectors niψ(t),njψ(t) as follows. Since the map ψ : R4

1 → R4
1 is a diffeomorphism

on some open set containing γ(I), vectors nj(t), ni(t) will be sent to some new vec-
tors Dψ(γ(t))nj(t), Dψ(γ(t))ni(t), which will be neither zero nor tangent to ψ◦γ

at t. Pseudo-orthogonally project Dψ(γ(t))nj(t), Dψ(γ(t))ni(t) onto the pseudo-
normal space to ψ ◦ γ at t and normalize, then we get
njψ(t) = Dψ(γ(t))nj(t)−〈Dψ(γ(t))nj(t),tψ〉tψ

‖Dψ(γ(t))nj(t)−〈Dψ(ψ(t))njt),tψ〉tψ‖ , 〈njψ(t), njψ(t)〉 = 1,

niψ(t) =
Dψ(γ(t))ni(t)− 〈Dψ(γ(t))ni(t),njψ〉njψ − 〈Dψ(γ(t))ni(t), tψ〉tψ
‖Dψ(γ(t))ni(t)− 〈Dψ(γ(t))ni(t), njψ〉njψ − 〈Dψ(γ(t))ni(t), tψ‖

and 〈niψ(t), niψ(t)〉 = −1, where tψ denotes the tangent vector of the curve ψ ◦γ

at t. Assuming as before that I = S1, we choose an open neighborhood U of
1I ∈ Pk consisting of polynomial maps which map an open set containing γ(S1)
diffeomorphic to its image. We have now shown that there is a smooth map
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µ : S1 × U → Vk × Vk × Vk

defined by µ(−, ψ) = Monge-Taylor map for the curve ψ ◦ γ using the family of
pseudo-normal vectors njψ(t) and niψ(t). By the same arguments as in the
proof of Theorem 9.9 in [4], we have the following theorem.

Theorem 4.1. Let Q be a manifold in Vk ×Vk ×Vk = R3k−3
1 . For some open set

U1 ⊂ U containing identity map, the map µ : S1 × U1 → Vk × Vk × Vk defined by
µ(t, ψ) = µψ◦γ(t) is transverse to Q(In fact, µ is a submersion, so that Q does
not enter the argument at all).

A straightforward computation shows the following lemma. The computations
are rather long and tedious, so we omit the details.

Lemma 4.2. Let γ be a unit speed spacelike curve defined by

γ(t) = (gt(ξ), ξ, ft(ξ), lt(ξ)) = (b2ξ
2+b3ξ

3+· · · , ξ, a2ξ
2+a3ξ

3+· · · , c2ξ
2+c3ξ

3+· · · )
with ξ(t0) = 0 and k1(t0) 6= 0. We let Nij = i!j!(aiaj − bibj + cicj). Then:

(1) f1(a2, a3, b2, b3, c2, c3) = 0 at t0 if and only if k2(t0) = 0, where f1 =
N2

32 + N3
22 −N33N22.

(2) f2(a2, a3, a4, b2, b3, b4, c2, c3, c4) = 0 at t0 if and only if 〈A′, A〉(t0) = 0,

where f2 = N3
22N34 − 2N32N

2
22N33 + N22N32[3N2

32 − N22(N42 + N33) − N3
22] −

N32N
3
22N31 −N2

22N32N42 + 2N3
32N22 −N32N22[3N2

32 −N22(N42 + N33)−N3
22] +

N2
32N

2
22N21 −N4

22N41 + 2N32N
3
22N31 −N2

22N21[3N2
32 −N22(N42 + N33)−N3

22] +
N32N

4
22N11.

Here, ξ is the coordinate along the t-direction, ft(ξ) is the coordinate along the
nj-direction, gt(ξ) is the coordinate along the ni-direction, lt(ξ) is the coordinate
along the nk-direction.

Lemma 4.3. We consider smooth maps ρi : V4 × V4 × V4 = R9 → R(i = 1, 2)
given by




ρ1 = N2
32 + N3

22 −N33N22;

ρ2 = N3
22N34 − 2N32N

2
22N33 + N22N32[3N2

32 −N22(N42 + N33)−N3
22]

−N32N
3
22N31 −N2

22N32N42 + 2N3
32N22

−N32N22[3N2
32 −N22(N42 + N33)−N3

22] + N2
32N

2
22N21

−N4
22N41 + 2N32N

3
22N31 −N2

22N21[3N2
32 −N22(N42 + N33)−N3

22]

+N32N
4
22N11.

Then the set Q1 = {(a2, a3, a4, b2, b3, b4, c2, c3, c4) ∈ R9 | ρ1 = ρ2 = 0} is a
codimension two submanifold in R9.
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An ordinary(resp. degenerate) vertex is a point p = γ(t0) of a spacelike curve
γ, for which there exists a hyperplane having 4-(resp. at least 5-) point contact
with the curve for t = t0. We say γ has a vertex at t0, or at p.

We now give the proof of Theorem A.

Proof. Suppose we are given any regular spacelike curve γ : S1 → R4
1. Applying

Theorem 4.1 to the map µ with Q the submanifold of degenerate vertexes proves
that a dense set of curves have only ordinary vertexes. Further taking k = 4 and
Q to be the submanifold of f1(t) = 0. Then the vertexes of ψ ◦ γ correspond to
points t with µ(t, ψ) ∈ Q. However, again by Theorem 4.1, we know that for a
dense set of ψ ∈ U1 the map µ(−, ψ) = ν is transverse to Q. Consequently the
set ν−1(Q) of the ordinary vertexes is finite for a dense set of ψ ∈ U1, whence the
result.

We now have to prove that these properties are open. We first show that
this is so for the property of only having ordinary vertexes. Let Q denote the
set f1 = f2 = 0 in V4 × V4 × V4(degenerate vertexes). Thus Q is closed. Let
γ̃ : S1 × U → R4

1 be a family of curves with γ̃0 = γ̃(−, 0) having only ordinary
vertexes. Let µ : S1 × U → Vk × Vk × Vk be the corresponding family of Monge-
Taylor map. Then the compactness of S1, together with the fact that µ0 =
µ(−, 0) is transverse to Q(misses Q in fact), implies by [4, Proposition 8.23] that
µ(S1 × {u}) misses Q for u in some open neighborhood U ′ of 0. Hence nearby
curves γ̃u in the family also possess no degenerate vertex.

It remains to show that, in fact, the property of having finitely many ordinary
vertexes and no degenerate vertex is open. First note that, if γ has an ordinary
vertex at t ∈ S1, then the image of the map µ : S1 → V4 × V4 × V4 meets the
submanifold of f1 = 0 at µ(t) and is transverse to this submanifold.

Let γ̃ : S1 × U → R4
1 be a family of curves with γ̃0 having finitely many

ordinary vertexes, and no degenerate vertex, so that µ(−, 0) is transverse to the
submanifold of f1 = 0. Since transversality is an open condition when the source
is compact and the relevant submanifold are closed[4, Proposition 8.23], it follows
that ν = µ(−, u) : S1 → V4 × V4 × V4 will also transverse to that submanifold for
all u in some neighborhood U1 of 0 ∈ U. Consequently, if Q is that submanifold,
the set ν−1(Q) of ordinary vertexes of γ̃u is finite and there is no degenerate
vertex. This proves the result. ¤

The authors would like to express their deep thanks to the referee for giving
them suggestions to improve the paper.



710 L.L. KONG, R.M. GAO, D.H. PEI, AND J. H. ZHANG

References

[1] J. W. Bruce, On singularities, envelopes and elementary differential geometry, Math. Proc.

Cambridge Philos. Soc. 89 (1981), 43–48.

[2] J. W. Bruce and P. J. Giblin, Generic curves and surfaces, J. London Math. Soc. 24 (1981),

555–561.

[3] J. W. Bruce and P. J. Giblin, Generic geometry, Amer. Math. Monthly, 90 (1983), 529–545.

[4] J. W. Bruce and P. J. Giblin, Curves and singularities(second edition), Cambridge Univer-

sity Press, 1992.

[5] S. Izumiya, D. Pei and T. Sano, The lightcone Gauss map and the lightcone developable of

a spacelike curve in Minkowski 3-space, Glasg. Math. J. 42 (2000), 75–89.

[6] S. Izumiya, D. Pei and M. C. Romero-Fuster, The lightcone Gauss map of a spacelike surface

in Minkowski 4-space, Asian J. Math. 8 (2004), 511–530.

[7] L. L. Kong and D. H. Pei, Singularities of de Sitter Gauss map of timelike hypersurface in

Minkowski 4-space, Sci. China Ser. A, 51(2) (2008), 241–249.

[8] L. L. Kong and D. H. Pei, Singularities of tangent lightcone map of a timelike surface in

Minkowski 4-space, Tohoku Math. J. 61(2009), 455–473.

[9] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

[10] I. Porteous, The normal singularities of a submanifold, J. Differential Geometry, 5 (1971),

543–564.

[11] Jian-hua Zhang and Dong-he Pei, The Lightcone Gauss Map of a Spacelike Curve in

Minkowski 4-space, J. Xinjiang Univ. Natur. Sci. 23 (2006), 284–289.

Received December 15, 2008

Revsied version received June 18, 2009

(Lingling Kong) School of Mathematics and Statistics, Northeast Normal Univer-

sity, Changchun 130024, P.R.China

E-mail address: KongLL111@nenu.edu.cn

(Ruimei Gao) School of Mathematics and Statistics, Northeast Normal University,

Changchun 130024, P.R.China

E-mail address: gaorm135@nenu.edu.cn

(Donghe Pei) School of Mathematics and Statistics, Northeast Normal University,

Changchun 130024, P.R.China

E-mail address: peidh340@nenu.edu.cn

(Jianhua Zhang) Department of Mathematics, Yili Teacher’s College ,Yili 835000,

P.R.China


