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ABSTRACT. In this paper we consider diffeomorphisms of C? of the special 
form F(z, W) = (w, --z + ~G(w)). For such maps the origin is a parabolic 
fixed point. Under certain hypotheses on G we prove the existence of a 
domain R c @ with 0 E aR and of invariant complex cnrves 20 = f(t) 
and zv = g(z), z E R, for F-l and F, such that Fhn(z,f(z)) t 0 and 
F”(z,g(z)) + 0 as n + co. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

The field of complex dynamics in several variables has dramatically developed 
in recent years. Global results in the theory, such as the study of the properties 
of Julia and Fatou sets are obtained in [BS], [FSl], [FS2], etc. Besides the global 
aspects, it is of interest to analyze the dynamics of holomorphic maps near fixed 
points. Results in this direction are obtained in [HP], [Ul], [U2], etc. We are 
interested in the local behavior of the iterates of holomorphic maps near certain 
fixed points. 

Let F : C2 -+ C2 be a diffeomorphism which fixes 0 and is holomorphic 
near 0, and let Xi, X2 be the eigenvalues of F’(0). If [Xi] < 1 < 1x21 then it 
is well known that for r sufficiently small the sets W&(O) = {(z,‘w) E d : 
llF”(z,w)II I: T for all n 2 0, limn-+cro F”(z,w) = 0) and W&(O) = {(.z, w) E 
d : ~\I?“(~.z,w)\\ < r for all 71 < 0, limn+_-m F”(z,20) = 0} are invariant com- 
plex one dimensional manifolds called the local stable manifold and local unstable 
manifold of F at 0. In the case when 1x1 I = 1 or 1x21 = 1 the above sets W&(O) 
and W&(O) are not necessarily manifolds anymore. 
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In this paper we study diffeomorphisms F of @ of the following special form 

(1.1) F(z,ur) = (w, -z + ~G(w)) , 

where G E @(Cc) is holomorphic near 0, G(0) = 0, G’(0) = 1. For such maps the 
origin is a fixed point, the eigenvalues of F’(0) are both equal to 1 and F’(0) is 

nondiagonalizable (thus equivalent to 
[ 1 i i ). The real two dimensional case 

(z, W) = (2, y) E lR2, F : IR2 + IFt2, G : W + JR, is studied in [F]. Under the 
assumption that G”(z) > 0 for z > 0, it is shown in [F] that there are functions 
f(z) and g(z) defined f or x 2 0 such that the unique stable/unstable manifolds 
of F in {(x, y) : x 2 0) are precisely the graphs of g/f. 

As described in [F], Section 2, maps F of form (1.1) have special symme- 
tries. They come from the fact that F = I o J, where I and J are the involu- 
tions I(z, W) = (w, z) and J(z, w) = (z, -w + 2G(z)), so I o F o I = F-l and 
J o F o J = F-l. Assuming for the moment that there are unique stable and 
unstable manifolds for F at 0, given by the graphs of the univalent (i.e. one-to- 
one holomorphic) functions g and f respectively, it follows that I maps the stable 
manifold of F to the stable manifold of F-‘, which is the unstable manifold of 
F; thus for every z there is a C such that (g(z),z) = I(z,g(z)) = (C, f(C)), so 
g = f-l. The same holds for J, so (z, -g(z) + 2G(z)) = J(z,g(z)) = (C, f(c)), 
and we conclude that 2G = f + f -‘. 

We now state the results of the paper; the proofs are given in section 2. One 
of our goals is to find suitable conditions on G which ensure, in the complex case, 
the existence of invariant complex curves w = f(z) and w = g(z) for F such that 
Fn(z, w) -+ 0 as n + --00 for (z, w) E {w = f(z)} and Fn(z, w) -+ 0 as n + oo 
for (z,w) E {w = g(z)}. 

We let Q c @ be a convex domain (not necessarily bounded) such that 0 E dR 
and we assume that the function G E C’(C) is holomorphic in a neighborhood of 
n and satisfies the following conditions 

(Cl) G(0) = 0, G’(0) = 1, fl & G(R). 
(C2) there exists (Y E (-7~/2,7r/2) ST_& that !R[ei*(G’(z) - l)] > 0 for z E R. 
(C3) there is a ruy L = {reiB : 0 < T 5 Q} c Cl such that G’(reis) E R for 

all 0 5 T < ru. 

For future references, let us denote by X(n,a) the class of functions G E 
C’(C) fl O(n) satisfying condition (Cl), (C2), and (C3) with 0 = 0 (i.e. the 
Taylor coefficients of G at 0 are real). 



DYNAMICS OF SOME DIFFEOMORPHISMS OF C* NEAR PARABOLIC FIXED POINTS87 

For the function F defined by (1.1) with G satisfying conditions (Cl), (C2) 
and (C3) we introduce the following sets: 

W;(O) = ((2,~) E C2 : F”(z,w) E R x 52 for all n 2 0, JFm F”(z,w) = 0) , 

W,(O) = {(z,w) E c2 : Fn(z,w) E R x R for all n 5 0, lim F”(z,w) = 0) . 
7L+-cc 

We have the following: 

Theorem 1.1. Let F, G and R be as above. There exists a function f univalent 
in R such that R c f(Q) and the functions f and g = f-l have the following 
properties: 

(i) the graphs {(z, g(z)) : z E f2) and {(z, f(z)) : z E Cl} of g and f are 
invariant under of F and F-l respectively, and Fn(z, g(z)) + 0, FPn(z, f(z)) + 
0, as n + 03, locally uniformly for z E R; 

(‘1 ‘f d’t’ ( 22 z con a aon C2) on G holds with (Y = 0 then WA(O) = graph g and 
W:(O) = graph f. 

Following the proof of this theorem in section 2 we make some remarks regard- 
ing the analyticity of f and g at the origin. 

We next apply Theorem 1.1 to the following general situation: G E C’(C) is 
holomorphic near 0 and it has the expansion 

(1.2) G(z) = z + azj+’ + h(z) , 

where a > 0, j > 1 and h(z) = ckZj+2 CX~Z~, ffk E R. 

Theorem 1.2. Let F : C2 + C2 be of form (1.1) with G as above. There exist a 
domain D c UZ and functions f, g holomorphic on D with the following properties: 

(i) 0 E dD, D as starlike with respect to 0, D C {z : 1 argzl < 7r/j} and the 
rays {z : 1 arg zI = r/j} are tangent to dD at 0; 

(ii) g(D) C D C f(D) and f o g = id on D (hence g is univalent on D); 
(iii) the graphs {(z, g(z)) : z E D} and {(z, f(z)) : z E D} are invariant under 

F and F-l respectively, and F”(z,g(z)) + 0, F-“(z, f(z)) + 0, as n + co, 
locally uniformly for z E D. 

Finally, we consider some Henon maps Fj of form (l.l), obtained for G(z) = 
Gj(z) = z + azj+‘, where j _> 1 and a > 0. For such maps we can use Theorem 
1.1 to obtain results of a global nature. We introduce the following domains 
D,, C @‘“: 

(1.3) Dk = rei4 : 0 < r < co, 
(2k - 1)” < ~ < (2k 

j 
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where lc E (0, 1, . . . . j - 1). Note that th e union U~~~ DI, equals the complex plane 
minus the union of j rays joining 0 to co. We have the following 

Theorem 1.3. In the above setting, there exist functions fk and Sk holomorphic 
on Dk, k E (0, 1, . . . . j - I}, with the follovling properties 

(i) gk(Dk) c D k C fk(Dk) (properly) and fk 0 gk = id 071 Dk; 

(ii) the graphs {(z,gk(z)) : z E ok} and {(z, d(z)) : 2 E Dk} are invariant 
under Fj and FJT’ respectively, and Fy(z,gk(z)) -+ 0, FjTn(z, fk(z)) + 0, as 
n + 00, locally uniformly for z E Dk; 

(iii) fk (exp (y) z) = exp (y) $0(z) for z E Do, and the same holds for 

Qk and go. 

This theorem improves a result of [F] (see the remark in section 2 which follows 
the proof of the theorem). 

2. PROOFS 

We will use the following classic results in geometric function theory (see [D]): 

Lemma 2.1. Let h be a holomorphic function in a neighborhood of the closed 
line segment [ZO, zl] c c. Then there exists a point 2 in the closed convex hull of 
the set h’([zo, zl]) such that h(zl) - h(zo) = Z(zl - zo). 

Lemma 2.2. (Noshiro-Warschawski Theorem) Let D C @ be a convex domain 
and let h be a holomorphic function in D satisfying X[ei*h’(z)] > 0 in D, for 
some CY E R. Then h is univalent in D. 

We also need the following lemma, which is essentially proved in [F] (note that 
we do not make any assumptions on the second derivative of II): 

Lemma 2.3. Let H : [0,x0] -+ IR be a continuously differentiable function sat- 
isfying H(0) = 0 and H’(x) > 1 for 0 < x < x0. Then the sequences of func- 
tions {h,}n>o and {Ic~}~,o given by hl = H, kl = H-l, h,+l = 2H - k,, 
k 7Lfl = (h,+l)-’ are well defined and satisfy the following conditions for all 
0 < x < 50: 

(i) 0 5 h,(x) 5 h,+l(x) I 2H(x); 
(ii) 0 5 k,+l(x) 5 k1z(x); 
(iii) if k(x) = limn_+m k,(x) then the sequence of iterates {kj}j>o converges 

pointwise to 0 on [0,x0] as j -+ 00. 

PROOF. An easy induction on n shows that {h,} and {&} are well defined and 
satisfy (i) and (ii). Clearly k(z) < 5 and I&(x) < 1 for all x E (0,x:0), so 
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j&(z) - kn(r’)] 2 ]Z - z’] and hence k is Lipschitz. Then for any z E (0,~) 
{kj(x)} decreases to 0, which is the only fixed point of k. cl 

Proof of Theorem 1.1. Let Pa be the half plane P, = {z E @ : R [ei” (z - l)] > 
0) and let D, be the disc D a = j(Pa), where j(z) = l/z (D, has 0 and 1 on its 
boundary and is tangent to dP, at 1). Set X, = sup{]z] : .z E Da} = l/coscw . 

We first construct by induction sequences of holomorphic functions {fn}n>o 
and {glz}+c with the following properties 

(2.1) 

fn E G(Q), fn(0) = 0, f;(O) = 1 

?R[eia(fA(z) - l)] > 0 for 2 E R 

fn : fl+ fnP2) is univalent, 0 c fn(0),fn(l) > L 

(2.2) 
Sn E m=% gn(O) = 0, g;(o) = 1 

A(z) E Da for 2 E fn(Q) 

gn : fn(fl2) -+ fl is the inverse of fn, gn(L) c L 

(2.3) 2G(z) = fn+l(z) +gn(z) for rz > 1 and z E s2 . 

These sequences are constructed in analogy to the real two dimensional case 

PI. 
Let fi = G. By Lemma 2.2 fi is univalent on a. Clearly conditions (C2) and 

(C3) imply that fl(L) 2 L, so f 1 satisfies (2.1). We assume now by induction 
that fn is defined so that it satisfies (2.1) and construct gn and fn+l such that 
(2.1), (2.2) and (2.3) hold. 

Let gn = (fn)-’ : fn(R) > Cl -+ 0. Then g:,(z) = l/fA(gn(z)) for z E fn(R), so 
g;(z) E D,. In order to show that gn extends holomorphically to a neighborhood 
of n it is enough to notice that for any < E an naf,(n) there is a disc A, centered 
at < such that gn extends holomorphically to A,. This follows since C = fn([) for 
some < E 80 and fn is univalent in a neighborhood of <, as f;(c) # 0. Clearly 

gn(0) = 0, g;(O) = I and gn( L) C L. We also have 

(2.4) 

for all? E R. Set fn(r) = epic fZ(reie) and &(T) = e-iog,(TezO), 0 5 T 5 TO. 

Then fn and & are real valued, fn(0) = &(O) = 0, z(r) 2 1 and & = (K)-‘. 
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We next define fn+i(z) = 2G(z) - gn(z). Then fn+i(0) = 0, fA+i(O)‘= 1 and 

f n+~ is holomorphic on n’, since G and gn are holomorphic on n. Now g;(z) E D, 
implies 3 [eiQ(gk(z) - l)] 5 0, so 

R [eia(fA+,(z) - l)] = 2R [ei”(G’(z) - l)] - !R [ei”(gk(z) - l)] > 0 , 

for z E 0. Thus fn+l is univalent in R and FL+,(r) 2 1, so fn+l([O,ro]) > [O,ro] 
and fn+l(L) > L. Finally we let < E dS1 and assume fn+l(C) E R. As gn(C) E n 
and R is convex it follows that G(C) = fn+l(C)/2+g,(C)/2 E R, which contradicts 
R C G(R). We conclude that R 2 fn+l(fl). 

Relation (2.4) now shows that {gn} is a normal family in 0 and so is {fn}, by 
(2.3). If we let G(r) = eeieG( reie) then &+1(r) = 2G(r) - &n(r), & = (Tn)-’ 
and, by (C2) and (C3), G’(r) > 1 for r E (0,~). Thus Lemma 2.3 implies that 
{ fn} increases to a function f and {&} decreases to a function 5 which satisfies 
gn(r) + 0 as 72 -+ 03, for all 0 < T < ro. It follows that any two subsequential 
limits of {fn} and {gn} respectively agree on L, so there are functions f and g 
holomorphic on R such that fn + f and gn + g locally uniformly in Cl. Since 

fl C f,(n), gn = (fn)-l and fn+l fg, = 2G we have R C f(Q), g = f-l 
and f + g = 2G on 0. By (2.4) ]g(z)] < X,Jz], so g, and hence f = 2G - g, 
extend continuously at 0 by f(0) = g(0) = 0. As g(R) C 0 the iterates {gn} 
form a normal family (in the larger sense that subsequences may diverge locally 
uniformly to infinity). But cn + 0 implies that g” + 0 locally uniformly on R. 

To prove conclusion (i) of the theorem we use the facts that f o g = id and 
f+g=2Gonfltoseethat 

F(z,g(z)) = (g(z), -z + 2G(g(z))) = (g(z),g’(z)) 

and 

F-‘(z, f(z)) = (2G(z) - f(z),z) = (g(z)>z) = (g(zLf(g(z))) 

for all z E R. We then get by induction that F”(z,g(z)) = (g”(z),g”+‘(z)) 

and F+‘(z, f(z)) = (g"(z), f (gn(z))), for z E s2 and for n > 0. Since g” -+ 0 
as n + 00, locally uniformly in R, and since f extends continuously at 0 by 
f(0) = 0, this shows that P(z,g(z)) + 0 and F+(z, f (z)) --+ 0 as n -+ 00, 
locally uniformly for z E R. 

Finally, to prove (ii) we assume that (Y = 0 and we notice by conclusion (i) 
that graph g c W$(O) and graph f C W,(O). Let P(z, w) = (z,, w,) for n E Z. 
Assuming that (z,w) E W,“,(O) and n > 0 we have 

Fn(z, w) = F(z,-I, G-1) = (w-1, g(wn-1) + f (w-1) - G-1) 
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so, since by (2.1) 8 j’(z) > 1 in fi, we see using Lemma 2.1 that there is p E C 

with !I?/3 > 1 such that 

f (wn) - .& = f(g(‘LU,-1) + f(w-1) - h-1) - w-1 

= f(s(wn-1)) + P(f(%-1) - G-1) - ‘wn-1 

= P(f(w-1) -G-1). 

Thus by induction we get If(w,) - z,I 2 If(w) - zI and since (z,, w,) + 0 and 
f is continuous at 0 we conclude that f(w) = z, so (z, w) E graph g. 

Similarly, if (z, w) E W$(O) and n < 0 we have jf(zn) - w,] 2 If(z) -WI, hence 
(z, w) E graph f and the theorem is completely proved. 

Remark. We now make some remarks on the analyticity off and g at 0. Without 
loss of generality we may assume that 0 = 0 in condition (C3), so G has the 
following expansion at 0 

G(z) = z + crj+izj+’ + crj+szj+’ + . . . , ‘Y~+~ # 0, 

where j 2 1 and Q, E R. 

If f and g are analytic at 0 we write 

f(z) = aiz + us22 + . . . , 

g(z) = =(z) - f(z) 
= (2 - Ui)Z - us22 - . . . + (2cyj+i - aj+i)zj+l + . . . ) 

expand g 0 f around 0 and use go f (z) = z to find a, inductively. Clearly al = 1. 
We first notice by induction on n that if n 2 2 and 2n - 1 < j + 1 then a, = 0. 

Indeed, the coefficient of z3 in the expansion of g o f is ag - 2~13 - a3 = 0, so 
~22 = 0; moreover, if n is such that 2n - 1 < j + 1 and us = . . . = u,_~ = 0 then 
the coefficient of z2+l in g o f is as+1 - nai - u2+1 = 0, so a, = 0. 

There are two cases: 
Case 1. j + 1 = 21, 2 2 1. By above f(z) = z + Q+~z’+~ + . . . . The coefficient 

of z21 in g 0 f is ~21 + 2~x2~ - a2l = 0, so crj+l = 0, a contradiction. Thus in the 
case when j + 1 is even there are no functions f, g holomorphic around 0 such 
that g = f-l and f + g = 2G. Consequently the functions f, g of Theorem 1.1 
do not extend analytically at 0. 

Case 2. j + 1 = 2Z- 1, 1 2 2. By above f(z) = z + alz’ + . . . , and computing 
the coefficients as indicated before it is not hard to see that UT = 2crj+i/l # 0 
and the coefficient of z21++’ in the expansion of g o f yields a formula for al+,, 
n > 0, of the type u~Q+~ = E(al, . . . . al+,_i; crk, k < 21 + n - 1). So a formal 
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power series at 0 exists for f (and hence for g) such that g = f-’ and f +g = 2G. 
Moreover the coefficients a, are real, since CY, are real. 

Remark. The proof of Theorem 1.1 shows that the operator T : X(&a) + 
X($ a), Tu = 2G -u-l is well defined and that f is a fixed point of T, obtained 
as the limit of {TnG},20 . 

Proof of Theorem 1.2. For T > 0 small enough we let 

S(T) = {z E Cc : IzI < T, ( argzl < n/j} , 

Q(r) = S(T)-j = {w E Cc : lzul > r-j, argue #x} , 

and we consider the holomorphic function 

(2.5) H(w) = [G (w-‘/j)]-’ = w - uj + O(lwl-i/j) , 

defined for w E Q(r). Here G has the form (1.2). We need the following 

Lemma 2.4. There exist positive constants ro and CO such that 

(i) roco > u(j + 1); 

(id Ih( < WI j+‘, /h’(z)1 < CoIzJj+‘, for z with IzI 5 ro; 
(iii) (H(w) - UJ + aj( < Colw(-l/j, for w E Q(q,); 

(iv) IH(w)J? > Iwl? - Colwl-l/j, for w E Q(rO). 

PROOF. By (1.2) and (2.5) one can clearly choose some constants TO, Co so that 
(i), (ii) and (iii) hold. If z = w-l/j for w E Q(ro) then 

IH(w = IG(z)I-(j-l) = -&(l - (j - l)azj + O(jzl’+‘))~ 

> & - O(lzl) = Iwl9 - o(lwl-q , 

so (iv) also holds for TO, Co suitably chosen. 

For 0 E (-$,$) we define 

(2.6) 

0 

(2.7) sl(9) = 
{ 

z=reid#O: cosj(+-@)>max ( CO pr, C(6)?-j ) 
4 + 1) )> 
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D= u R(B). 

Clearly 0 E L3D. Using the fact that a domain {r < p($)} is convex if and 
only if p2 + 2(p’)2 - /3P” 2 0 it is easy to see that R(B) is the intersection of 
two convex domains, hence it is convex. It follows that D is starlike with respect 
to 0, hence simply connected. Now dR has two tangents at 0, namely the rays 
{z : )argz -81 = $}. Th is implies that D & {z : 1 arg zI < r/j} and that the 
rays {z : 1 arg ZJ = n/j} are tangent to t3D at 0, so assertion (i) of the theorem 
holds. 

Lemma 2.5. G E X(0(19), -j6) and G(R(0)) > Cl(e) \ (0). 

PROOF. Recall the definition of X(R, (Y) from section 1, using the conditions (Cl), 
(C2), (C3). By (i) and (ii) of L emma 2.4 and by the definition (2.7) of n(0) we 
have that if z = rei+ E st(8) then IzI < TO and 

%[e-“je(G’(z) - l)] = a(j + l)!J? (zjemije) + !R(e-ijeh’(z) 

> a(j + l)rj cosj(4 - 0) - Corj+l > 0 , 

so (C2) holds. We now show that G(R(0)) > o(8) \ (0). This is equivalent to 
showing (since G is conjugated to H by w = z-j) that H(w(B)) 1 w(e), where 

w(e) = t-q-j = 
i 

w: %(weijs)>max 
( 

&i~i~,G(~))} . 

It suffices to prove that H(%(e))rlw(e) = 0. Let w E &J(e). Then 1201 2 C(e). 
We have two cases. 

Case 1. IR(weije) = ,&, IwI?. Then by (2.5) and by (iii) and (iv) of 
Lemma 2.4 we have 

?lJ (H(w)e+) < !R (w@) - aj cosje + Colwl-llj 

= &lwl+ - ajcosje + c,l~l- llj 

< &lme + -&) lwl-l/j - aj c0sje + col~l-l/j 

I $$jIH(w)l~ + c0 (1 + &) c(e)-l/j - f_2j cosje 

= -&IH(w)l~ ) 
the last equality following from the definition (2.6) of C(0). So H(w) is not in 

w(O). 
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Case 2. !R(weijs) = C(0). Then by (2.5) and (2.6) we get 

!R (H(w),+) < !R (we+) - aj cosjg + Co]w]-llj 

5 c(e) - aj~~~je+c~c(e)-~lj < c(e) , 

hence H(w) is not in w(g). 
We already proved that sZ(f3) is convex, so the proof of the lemma is complete 

once we notice that (0, z(e)] c R(g) n R, for some z(0) > 0. 0 

We now return to the proof of the theorem. By Theorem 1.1 there are univalent 
functions f,g : R(B) + fo(s2(f?)) and go = (foe)-’ satisfying conclusion (i) of 
Theorem 1.1. It follows from the proof of Theorem 1.1 and from Lemma 2.3 that 
for 8, 8' E (-g,g) we have fe = for and go = gel on n(g) II a(#) n JR. Since 
D is simply connected we conclude that there are holomorphic functions f and 
g defined on D such that f = f~ and g = go on R(g) for all 0 E (- $, $). Now 
s(D) = ue g(w)) c ue w) = D an d since fe o go = id and fe + go = 2G on 
Q(g) it follows that fog = id and f +g = 2G on D. Since (go)” t 0 on R(0) we 
see that g” t 0 pointwise on D, and hence locally uniformly on D, by Montel’s 
theorem. Assertion (iii) of the theorem is now proved as in Theorem 1.1. 

Remark. The domain D constructed here has maximal aperture at 0, in the sense 
that G doesn’t satisfy condition (C2) on domains with aperture larger than 27r/j. 
Indeed, if z = rei4 is such that 141 = r/j then for any (Y E (-~/2,7r/2) we have 

9? [ei*(G’(z) - l)] 5 -u(j + l)rj cos (Y + Corj+’ < 0 , 

provided that Car < u(j + 1) cos (Y. 

Proof of Theorem 1.3. We fix k E (0, . . . . j - 1) and consider the following rays 

Lk={rexp(y): O<r<m} . 

We also define, for ,8 E (O,r/j), 

R(k,P) = 
{ 

rei4 : 0 < T < co, (2k j ‘jr +/kg++/3 . 
I 

we have Lk C R(k,,B) for every p, UBE(c,lrIjJ R(k,@) = Dk, where Dk is 
defined by (1.3). Also, if (Y = 7r/2 - j,8 then cr E (-7r/2,7r/2) and Gj satisfies 
IR[ei”((Gj)‘(z) - l)] > 0 f or z E fl(k,p). We claim that R(k,,@ C G,(R(k,@), 
for all ,f3. Indeed, if we write dR(k, p) = R_ U R+, where q!~__ = (2k - l)r/j + ,f?, 
g5+ = 2kn/j + p, R- = { rexp(iq%_)}, R+ = {rexp(i$+)}, then (R_)j+’ is a 
ray lying in the half plane H_ = {z : 4_ - T < arg z < +_}, so Gj(R_) c 
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R_ + (R_)j+' & H-. Similarly, Gj(R+) c R+ + (R+)j+l C H+, where H+ = 
{.z : qb+ < arg z < c$+ + .rr}, and the claim is proved. 

By Theorem 1.1 there are univalent functions fk,a : R(k,,/?) + fk,p(Q(k,p)) 
and gk,p = (fk,a)-’ satisfying conclusion (i) of Theorem 1.1. As the rays LI, 
are invariant for Gj, it follows from the proof of Theorem 1.1 that they will be 
hVxiant for fk,fl and gk,fl as Well and that all the functions d,# agree on LI, and 
all the functions gk,fl agree on Lk. Thus there are holomorphic functions fk and 
Sk defined on Dk so that fk,@ = fk and gk,J = gk on R(k,P), for all p. As in the 
proof of Theorem 1.2 we have gk(Dk) C Dk and fk 0 gk = id on Dk. Assuming 
for a contradiction that Sk(&) = Dk (Or fk(&) = Dk) we get fk(Dk) = Dk (or 
gk(Dk) = Dk) and 2Gj(Dk) & fk(&) +gk(Dk) = Dk, so Gj(Dk) C Dk, which is 
false. 

Finally, as Gj(exp(2krilj)z) = exp(2ki/j)Gj(z), z E Do, it follows easily 
from the uniqueness part (conclusion (ii)) of Theorem 1.1 that 

fk(ex@kri/j)z) = “XP(2hi/j)fO(Z) , 

gk(ex@k~i/j)z) = exP(2~~i/j)gO(z) , 

for z E DO. The rest of the assertions of Theorem 1.3 follow directly from Theorem 
1.1. 

Remark. In [F], Theorem 4, the author considers the real Henon map F(z, y) = 
(y, -CC + 2G(y)), obtained for G(z) = z + z 2. He shows, via real methods, that 
the functions g(x) and f(z), defined for x > 0 and whose graphs give the sta- 
ble/unstable manifolds of F in {(x, y) : x 2 0}, are real analytic on (0, c~) and 
the radii of convergence of their Taylor series at x0 E (0, co) are x0; thus f and 
g are analytic on the right half plane {!J?z > 0). Theorem 1.3 shows that these 
functions f and g are actually analytic on the slit plane C \ {z 5 0). 
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