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ABSTRACT. We study certain twisted sums of Orlics spaces with non-trivial 
type which can be viewed as Fenchel-Orlicz spaces on R2. We then show that 
a large class of Fenchel-Orlicz spaces on R" can be renormed to have property 
(M). In particular this gives a new construction of the twisted Hilbert space 
22 and shows it has property (M), after an appropriate renorming. 

1. INTRODUCTION 

A twisted sum 2 of two Banach spaces X and Y is defined (see [ll]) through 
a short exact sequence: 0 --+ X -+ Z -+ Y -+ 0. These short exact se- 
quences in the category of (quasi-)Banach spaces are considered naturally in the 
investigation of three space properties (a property P in the category of quasi- 
Banach spaces is called a three space property if for every short exact sequence 
as above, 2 has property P whenever X and Y have it). The roots of this the- 
ory go to Enflo, Lindenstrauss and Pisier’s solution [3] to Palais’ problem: the 
property of being isomorphic to a Hilbert space is not a three space property. 
The first systematic study of twisted sums of quasi-Banach spaces appears in 
[ll]. In that paper twisted sums of quasi-Banach spaces X and Y are associ- 
ated to quasi- linear maps from Y to X and the Banach spaces Z,, 1 < p < 00, 
are studied as examples of twisted sums of %‘s. In particular, Z’s is a reflexive 
Banach space with a basis which has a closed subspace X isometric to e.2 with 
&/X also isometric to &. 2s is isomorphic to its dual, yet 2, is not isomorphic 
t0 e,. Furthermore, 27s has no complemented subspace with an unconditional 
basis: in particular it has no complemented subspace isomorphic to 1s. 2s has 
an unconditional finite dimensional Schauder decomposition into two dimensional 
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spaces (2-UFDD), yet Johnson, Lindenstrauss and Schechtman [6] showed that 
it fails to have local unconditional structure (l.u.st.). Twisted sums appear also 
in a natural way in complex interpolation [9]. There are several open problems 
on twisted sums and in particular on 22, (see [8]), which make the study of these 
spaces very interesting. 

We will use the class of Fenchel-Orlicz spaces. These spaces were introduced 
by Turett [16] and they form a natural generalization of Orlicz spaces. A main 
difference between Orlicz spaces and Fenchel-Orlicz spaces is the replacement 
of the Orlicz function defined on R+ by a Young’s function defined on a given 
normed linear space. The elements of a Fenchel-Orlicz sequence space will then 
be sequences in the given normed linear space. 

Property (M) was introduced in [lo] as a tool in the study of M-ideals of 
compact operators. In that paper it is proved that for a separable Banach space 
X, the compact operators form an M-ideal in the space of bounded operators if 
and only if X has property (M) and there is a sequence of compact operators K, 
such that K, + I strongly, K; + I strongly and lirn+,_= ]]1- 2K,]( = 1. For a 
detailed study of M-ideals we refer to [5]. 

We now give a brief overview of the paper. In Section 2 we introduce quasi- 
convex functions. A function on R” is quasi-convex if and only if it is equivalent 
to a convex function (Proposition 2.1). We construct a large class of examples of 
quasi-convex maps on R2(Theorem 2.3). In Section 3 we show how quasi-convex 
maps can replace Young’s functions in generating Fenchel-Orlicz spaces on R”. 
The main result of the section is that a twisted sum of an Orlicz space with type 
p > 1 with itself can be represented as a Fenchel-Orlicz space over R2 (Theorem 
3.1). This includes the case of the spaces Z,, 1 < p < co. In Section 4 we use 
a method of [lo] to prove that if 4 is a Young’s function on R” which is 0 only 
at 0, then the Fenchel-Orlicz space h+ can be renormed to have property (M) 
(Theorem 4.1). Combining results of the last two sections we see that the spaces 
Z,, 1 < p < co, have property (M) after renorming. 

2. QUASI-CONVEX MAPS 

Let R+ ( respectively R+) denote the set of non-negative (respectively ex- 
tended) real numbers. 

Definition 1. A function 4 : R” --+ R+ is quasi-convex if there exists L > 0 such 
that for every zi,x2 E R” and for every Xi, X2 E [0, l] with Xi + X2 = 1 we have 
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Note that quasi-convex maps can be defined on a vector space and that quasi- 
norms are quasi-convex. The reader should also note that the name quasiconvex is 
used in the literature with different meanings. In order to give a characterization 
of quasi-convex maps on R” we introduce an equivalence relation, standard in 
the study of Orlicz spaces (cf. [12]). 

Definition 2. Two functions $ and $ : R” -+ R+ are equivalent (4 N $) if there 
exists M > 0 such that h+(z) 5 Q(x) 5 M$(x) for all x E R”. 

We shall say that two functions are equivalent on a set B if the above in- 
equalities hold for all x E B. We recall that the convex envelope of a function 
4 : R” + R+ is defined by: 

co4(t) dZf inf{C ai4(ti) : t = C aiti, where ti E R”, C ai = 1, ai 2 0). 

It is easy to see that 

l co 4(t) < 4(t) for all t E R” and 
l if $I : R” -+ R+ is a convex function with $(t) 2 4(t) for all t E R”, then 

$~(t) <co4(t) for all t E R”. 

Proposition 2.1. Let 4 : R” + R+. The following are equivalent: 

1. C$ is quasi-convex. 
2. f#lNCOCp. 
3. There exists 1c, : R” -+ R+ convex such that 4 N $. 

PROOF. 1+2. Suppose 4 is quasi-convex. It suffices to show that there exists 

M > 0 such that 4 5 Mco$. Note that the quasi-convexity of 4 gives that for 
every IV 2 2 there exists LN > 0 such that for every {ti}E1 in R” and for every 
{Xi}Er in [0, l] with C,“=, Xi = 1 we have: 

(1) 
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The proof goes by induction upon N. For example, for N = 3: 

9 (&di) = 4 (a + (A2 + As) ( (X2;A3)t2 + (A22A3)t3)) 
I h4(tl) + (X2 + X3)4 

(X2X:&f3 

I L(Xl$(h) + L(X2qqt2) + X3dt3))) 

, where L3 = L2. 

Note that co (M4) = M co $I. We will show 4 5 co (M$) with M = L,+l. Let 
tER”andletai>O,i=l,..., m such that Cy=“=, q = 1 and Cy=“=, a& = t. The 

point (t,CLl ai(L,+1q5(ti))) = CL1 ai(ti, L,+l+(ti)) is contained inside the 
convex hull of {(ti, L,+l4(ti))ji = 1,. . . , m}. Therefore, by Caratheodory’s Theo- 
rem (see for example [15]), there exist n+l indices il, . . . , in+1 and Xl,. . . , &+I 2 
0 with CyIt Xi = 1 such that: 

n+l 
t=xXjti, and 

j=l 

(2) 
n+l 

c XjLn+lcb(hj) 5 5 dn+144~i). 
j=l i=l 

By applying (1) for N = n + 1 we see that 

?Z+1 

4(t) L Ln+l(C QfwiJ )I 
j=l 

Hence, by (2) we get 

By taking the infimum over all convex combinations t = xi aiti we get 4(t) I 

co (Ln+lW). 

2+3 is trivial, just let +!J = COG. 

3+-l. Suppose T,!I is convex and let M > 0 such that &q(z) I+(z) L M$J(z) for 

all 1~ E R”. Then: 

4(hs1+ X222) - < Md(k~l+ X2z2) I M(h$~(zl) + X274(52)) 

I hif2(JW(a) + A2+(22)). 
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Thus 4 is quasi-convex. cl 

The next theorem will give examples of quasi-convex functions on R2 (which 
are not convex). These examples will play an important role in the next section. 
We recall that 4 is an Orlicz function if it is a convex, non-decreasing function 
on [0, oo) such that 4(O) = 0 and limt_,m 4(t) = 00. For more information on 
Orlicz spaces see [12]. The functions we shall consider will be finite valued and 
non-degenerate, that is 0 only at 0. We say 4 satisfies the As condition at zero if 
lim sup Z-+0 # < cc and, respectively, 4 satisfies the As condition if there exists 

C > 0 such that for all z 1 0, $(2x) 5 C+(z). W e wilt extend an Orhcz function 

on the whole real line by 4(z) = 4(--z) if z < 0 and, abusing the language, we 
will still call the extension an Orlicz function. We start with the following simple 

Observation 2.2. Let 4 be an Orlicz function such that 

(3) 

Then 

$(Xs) 3p > 1, 3M > 0 such that V’x E (0, l], Vs > 0, - 
X&$(s) I M. 

(4) 3M’ > 0 such that VX E (0, l],VY > 0 we have 4(X\ log(X)\y) < 
X4(Y) - 

Indeed, suppose (3) holds. Note that for X E [O, 11, X( log X( E [O, i]. 
if X E (0, l] and Y > 0 we have: 

M'. 

Therefore 

+(‘I log ‘b) = dxl log ‘b) 
MY) 

. xp-l( log X(P < MS < co - 

where S = s~p~e[~,~~ XP-‘I log X]P. We are now ready to state the main result of 
this section. 

Theorem 2.3. Let C$ be an Orlicz function satisfying (3) and the A2 condition. 
Let 8 : R -+ R be a Lipschitz map. Then Q : R2 -+ R+ defined by 

i 

+(Y) + 4(x - Ye(b $1 
@(CY) = 4(x) 

, ifs f 0 
7 ify=O 

is quasi-convex. 

PROOF. By Observation 2.2 the hypothesis (3) gives (4). Using the As condition 
and the increasingness of 4 one can easily prove that there exists C > 0 such that 
for all z, y E R we have 

(5) 4(x + Y) 2 C(dJ(r) + 4(Y)) 
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and that for all B > 0 there exists CB > 0 such that for 

(6) +(Bz) 5 cB$(z). 

Let ti = (xi, yi) E R2 and Xi E [0, 11, i = 1,2 with Xr + 

all 2 2 0 

X2 = 1. Without loss of 

generality we may assume that Xryr # 0 and X2ys # 0. Then 

using (5). For the last term in the sum we apply the inequality 

lwog $1 + seoog $ - (t + 4eoog ,t : s, )t I KCISI + 14) 

where K is the Lipschitz constant of 0. This inequality shows that the map 

t H te(log h) is quasi-additive (see [ll], Theorem 3.7). Since 4 is increasing on 
the positive axis, we obtain: 

2 2 2 2 

@(C &ti) I 4(x &Yi) + C$ C&Xi - C xiyie 
i=l i=l ( i=l i=l ( 1) 

log - 
,X,‘Yil 

+Cd(&yil) 
i=l 

2 

( 

2 2 

5 (1-t CCK) C Xi$(Yi) + C4 C AXi - C xiYie log - 
i=l i=l i=l ( 1) lAiYii 
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by using the convexity of q5 and (6). Thus, 

I (I+ CCK) C b$(yi) + C2$ 
i=l 

i=l 

i=l 

By applying (4) to the last term we obtain 

i=l 

< max(1 + CC, + C’CKM’, C2) k Ai@ 
2=1 
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which ends the proof. q  

Remark. If C+ is an Orlicz space with type greater than 1 then there exists an 
Orlicz function JJ satisfying (3) and the Az condition such that 4 coincides with 

$ on 10, 11. 
Indeed, it is well-known that the space C+ has non-trivial type if and only if 

‘~4 > 1 and & < 00, where cr+ and ,& are the lower and the upper indices: 

cl@ = sup{q; 4(W - 
o<“& 6(X)t* 

< oo} and 

& = inf{q; inf 9W > 0) 
o<x,t<1 qb(X)tq 

(cf. [13] p.140 and [12] p.143). Moreover, & < 00 is equivalent to 4 satisfying 
the Az condition at zero (see [12]). Note that CY+ > 1 means: 

(7) 
$(Xs) !lp > 1, 3M > 0 such that V’x E (O,l], t/s E (0, l], - 

Ar@(s) < M. 

Define 

4(x) ax) = { qj(l)xq 

,ifx<l 
,ifx>l 

where q = max{ $!$, p} and #( 1) denotes the left derivative of 4 at 1. Clearly 4 

is Orlicz. Since $ satisfies the Az condition at zero, I$ satisfies the Az condition 
(note that we don’t use the full assumption of the existence of type for this part 
of the argument). Let us check that 4 satisfies (3). Let X E (0,l) and s E (0, w). 
If s 5 1 the inequality in (3) is given by (7). If s > 1 we consider two cases: if 
Xs < 1 then 

i(xy)= 4?Xs) < (Xs)pM6(1) _ M < j,,J 

XV(s) XP$(l)sQ - xp+( 1)sq se-P - 

and if Xs > 1 then 

j&) = 4(l)(xs)q = x4-p < 1 

XWs) xpc#( 1)sq - 

Clearly if an Orlicz function 4 satisfies (3) and the As condition, then C+ has 
non-trivial type. Finally, we note that Theorem 2.3 implies that for an Orlicz 
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space 14 with non-trivial type, there exists an Orlicz function 4 generating C+ 
such that @ : R2 -+ R+ defined by 

G(x,y) = ( J(Y) + & - YV% h)) Y if Y z 0 
‘\ (1 

.“, 
4X 7 ify=O 

is quasi-convex. 

3. TWISTED SUMS AND FENCHEL-ORLICZ SPACES 

Let coo denote the space of real sequences with finite support. Let B : R + R 
be a Lipschitz map. Let 4 be an Orlicz function satisfying the A2 condition such 
that C, has non-trivial type. Let ]] . 114 denote the norm of the Orlicz space C4: 

II( = inf{p > 0 : C $ (5) I 1). 
n 

Let F : COO --+ COO be defined by: 

(log “‘“$:;“l”) , if yn # 0 

7 if yn = 0 

F(Xy) = XF(y) and 

llF(x + Y) - F(x) - F(Y)II 5 ~(1141 + Ilvll) 

where c is a constant independent of x and y. We define a quasi-norm on coo x COO 

by 

Il(~n~Y7JnlI = Il(YnMlcb + II( - WY?nM&~ 

‘The twisted sum 1+ eF C4 is defined as the compietion of coo x coo with respect to 
the quasi-norm ]I . )I. In other words, Cb eF C, consists of all sequences (x,, y,), 
such that ]](x,, y,),]] < co. The fact that e, eF e, is a Banach space follows 
from Theorem 2.6 in [7] which implies that a twisted sum of two B-convex Banach 
spaces is (after renorming) a B-convex Banach space and Pisier’s result [14] that 
a Banach space X has type greater than 1 if and only if it is B-convex. 
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We set (cf. [12]) 

(8) e, = {(x:, . . . , $)k; 3p > 0 such that < oo) 

and for (xc:,... , xz)k E [Q, we define 

llbk.. . , x;)kll@ = inf{p > 0 : c @ 

k 

Then I* is a vector space and (C,, 11 . II ) + is called a Fenchel-Orlicz space. If 
3 is finite on R”, CQ is complete in 11 . Ilip (see Corollary 2.23 in [IS]). For a 
detailed study of (more general) Fenchel-Orlicz spaces and their completeness we 
refer to Turett [16]. Note that for n = 1 we retrieve the Orlicz spaces. We also 
define ha to be the vector subspace of f?a consisting of all sequences (J$, . . . , z;)k 
such that XI, a($(~:, . . . , xg)) < 03 for every p > 0. With a slight abuse of 
notation we will use (8) to define !+ for any quasi-convex function @ : R” + R+; 
similarly for h@. We will say that a quasi-convex map @ : R” + R+ satisfies the 
A, condition if there exists M > 0 such that +(2x) < M@(x) for all x E R”. 
Nnte that if 6 . l?” 2 R is 2 nllz4&Pn”~mv DTron fllnrtinn T&h q(j) = 0 and I.““., YllUY II z . A., r ‘“+ yUU”‘-C”“vL’n ._VbII IUIILYI”‘I 

lb+ @(tx) = CC for all z E R” \ (0) then Proposition 2.1 implies that, as sets, 

(9) & = GoQ and h@ = h,,@. 

The main result of this section is: 

Theorem 3.1. If C$ is an Orlicz space with non-trivial type then the twisted sum 
C$ eF Cb is a Fenchel-O&z space on R 2. More precisely, there exists a Young’s 
junction 9 on R” such that .& BF C, = I* ias sets) and the identity map is an 
isomorphism. 

The rest of this section will be devoted to the proof of this result. By Theorem 
2.3 and the remarks following it we see that, without loss of generality, we may 
assume that Cp satisfies the AZ condition and that the map + : R2 --+ R+ defined 

by 

{ 

~(Y)+~J(x-YW~~)) , ify#O @(XlY) = (p(x) 

7 ify=O 

is quasi-convex. We shall show that the function 9 = co Q, is a Young’s function 
on R2 with the property mentioned in the theorem. 

We first prove the set equality between the two spaces. We start with a 

Remark. @ satisfies the A2 condition. 
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Conversely, if (zj, yj)j is such that S(p) < 00 then 

and thus (zj, yj)j E be. Moreover, note that for Il(yj)jllb > 0 we have 

(II) II(%Y&ll < 00 if and only if (ll(~jhll~ < 00 an4 S(ll(~~)jll~) < 00. 

We now show that e+$,f+ = IQ as sets. Let (zj, yj)j E 14 eF &. Then 
II(zj,yj))II < co, which implies (yj)j E &. If J((yj)jll+, > 0 then by (11) we get 
S(ll(yj)jll+,) < 00. This shows that (zj,yj)j E CG. If II(yj)jll~ = 0 then (zj)j E f$ 
and again (zj, yj)j E CG. Hence, by (9), (zj, yj)j E Cq. Conversely if (zj, yj)j E 
Cq, by (9) and (lo), (zj, yj)j E hi, which implies (yj)j E &. If (yj)j # 0 then 

S(ll(~dAld < 00. Therefore IIh,~~lj)ll < ooand(zj,yj)j EC4$F&.If(yj)j=0 
then (zj)j E Q, and again (zj, yj)j E C+ eF C+. 

Note that Q is a finite Young’s function and thus IQ is a Banach space. Indeed, 
we only need to show that 

t’ii& @(r(z, Y)) = CO, for all (2, y) E R2 \ {(O,O)} 

since then Proposition 2.1 will give the same result for 9. Let (z, y) # (0,O). If 
y # 0 then Q(t(z, y)) 2 4(ty) + 00 as t -+ 00 since q5 is an Orlicz function. If 
y = 0 then 2 # 0 and @(t(x, y)) = $~(t 2 + 00 as t -+ cc since q5 is an Orlicz ) 
function. 

The next two propositions will show that the identity mapping is an isomor- 
phism between Q, eF & and C*. 

Proposition 3.2. Let X be a sequence space, complete in )) . ))I and \I . \)2, such 
that the coordinate functionals are continuous. Then the identity z : (X, II . 111) -+ 
(X, 1) . 112) is an isomorphism. 

PROOF. It is easy to see that (X, 1). II1 + 11. II ) 2 is complete. Therefore the identity 
maps 

21 : (X, II . III + II . 112) -+ W, II . 111) and 22 : (X, II . Ill + II 112) + (X, II . lb) 
are continuous and, hence, by the Inverse Mapping Theorem, isomorphisms. 
Therefore a = 22 o tT1 is an isomorphism. cl 

Proposition 3.3. The coordinate functionals on Q$,Q, and e, are continti- 
ous. 



TWISTED SUMS, FENCHEL-ORLICZ SPACES AND PROPERTY (M) 117 

PROOF. In both cases we will show that projections Pi((zj, yj)j) = (z~i,yi) are 
continuous for all i. The result will follow immediately since the coordinate 
functionals on 2-dimensional Banach spaces are continuous. 

For CQ, note that if II(zj,yj)jllu = 1 then by the continuity of \Ir we get 
Cj \k(zj, yj) 2 1 and hence Q(zi, yi) 5 1 for all i. Therefore, for all i, (zi, yi) E 

{(zc,~) E R2; Q(x,y) I I} w K is a bounded set and thus the projection Pi is h’ h 
continuous since all norm-topologies on a 2-dimensional Banach space are equiv- 
alent. 

For C4 eFQ, we show that there exists A4 such that if II(~j,yj)jll 5 1 then 
@‘(xi, yi) < M. The boundedness of the set ((2, y) E R2; ip(x, y) 5 M} finishes 
the proof as before. Indeed, note that if II(zj,yj))jJI 5 1 then S(ll(yj)jll+) 5 1. 
Moreover, if C is given by (5) and K is the Lipschitz constant of 0 then 

@(G, Yi) I S(l) = c $(Yj) + c 4 (Xj - YjO (log l~(y&~~+) 

+yje 
( 

lig “‘;;Ylld. j - yjo (Log h)) 

i(YnM4 
5 ci(Y~)+cc~(‘i-Yie(log ly,[ 

j j 3 
)) 

+~~~~lY~~~~~ll~Y~~~ll~l~ 

I Cl+ CMI(YnMld + Cc 4CYjKlog II(YnM) 
j 

L (1+C)+CCd) 
j ( Il(yy; II4 lKYnMl&~% l\w#J) 

L 1+C+M’CC$ 
j (II, i II ) 

Fn $K ll(Yn)nlldJ 

where M’ is given by (4). Thus, if CK is given by (6), we have: 

@(Xi,&) 5 l+c+hf'ccK~$ 
j (llCYL4) 

5 l+C+ibf’CCK. 

The proof of the proposition is complete. 0 

This concludes the proof of Theorem 3.1. In particular, by choosing $(x) = Iz(P 
for 1 < p < 00 and 0 to be the identity map, we see that the spaces 2, introduced 
in [ll] can be viewed as Fenchel-Orlicz spaces. 
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We end this section with two questions which arise naturally, in view of The- 
orem 3.1: For what Banach spaces X can a twisted sum of X with itself be 
represented as a Fenchel-Orlicz space? Note that this can not be done for X = 1, 
as Cl eF Cl is not a Banach space. If & is an Orlicz space with non-trivial type for 
which quasi-linear maps G is the twisted sum C+ eG C& a Fenchel-Orlicz space? 

4. FENCHEL-ORLICZ SPACES WITH PROPERTY (M) 

Recall the definition of property (M) [lo] (see also [5]): 

Definition 4. A Banach space X has property (M) if whenever u,v E X with 

11~11 = llvll and (4 is a weakly null sequence in X then 

lim sup 1121 + 2,II = lim sup ]]v + 2, ]I 
Tz+cc n-30 

A large class of spaces with property (M) can be generated as follows: Let 
tnk)k be a sequence of natural numbers. For every k let Nk be a norm on RQ+ 
such that 

and 

Nk(I,O,. . . ,o) = 1. 

Define inductively a sequence of norms on R” with s = C?, ni by: 

&*N2(21,22,..., GL,+n,) =~2(~l(0,~l,...,~,l),Znl+lr'.',2n1+n2) 

and once N1 * . . . * Nk-1 is defined, 

N1 *...*N1,(21,...,sCtln,) = 

NI;(N1*...*Nk-1(21,...,zC~~:‘Li),~C~~:n.+1,...,ZCk= ) 1 l’L% 
It can be easily checked that each Nl *. . * Nk is a norm. For a sequence of finite 

sequences 5 = ((&)Y$, (&)&+l,. . . , (ti)~iL:+,, . . . ) let 

IINK =~~P(NI*...*N~)(I~,...,I=,“=~~~) 

and let &(Nk) be the space of all sequences of finite sequences < such that 

IIElln~N,j < 00. Then II . ILqNkj is a norm and &(Nk) is a Banach space. De- 

fine h(Nk) to be the closed linear span of the basis vectors (ek)k in i(Nk). A 
simple gliding hump argument shows that A( Nk) has property (M) (see [lo]). The 
above technique is used in [lo] to show that the closed linear span of the basis of 



TWISTED SUMS, FENCHEL-ORLICZ SPACES AND PROPERTY (M) 119 

modular spaces can be renormed to have property (M). If Nk = N for all k we 
write i(N) for A(Nk) and A(N) for h(Nk). 

For the rest of the section n E N will be fixed and for Fenchel-Orlicz spaces 
C+ on R” we shall assume that the Young’s function + is finite and 0 only at 0. 
Our main result in this section is the following 

Theorem 4.1. Every Fenchel-Orlicz space ha on R” can be equivalently renormed 
to have property (M). 

The theorem will be proved once we show that if @ : R” + R+ is a Young’s 
function there exists a norm N on R”+l such that .!!a = A(N) (and thus h* = 
A(N) ). Sufficient conditions for this last claim are given in the following 

Lemma 4.2. If @ is a Young’s function on R” and N is a norm on R”+l such 
that 

0 5 x0 5 z; =+ N(zo, x1,. . . ,G) IW&W.-.,GJ 

and 

then & = A(N). 

N(l, x1,. . . ,z,) = 1 + @(xi,. . . ,z,) 

PROOF. Let (xi,. . . ,z;)k E A(N) with II(zi,.. .,~~)kll~(~) 5 1. Let h be the 
first index such that (zk, . . . , CC:) # 0. For k > h + 1 we have 

,N * -;.(&. . . , xc;, . . . ,Ic;, . . . ,i$) 

k 

= Nc*N(x;,... 

..‘7 N*... 

2 N*-*N(x; ,..., x;_J(l+Q(x; ,..., x;)). 

The inequality holds as + is increasing on each ray starting from 0 and 

llkh . . . , xc;)kll&(N) 2 1. Thus, 

fiw::. . .,xZ) + 1) < 0;) 
k=l 
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Conversely, if (xi, . . . , z;)k @ i(N) then there exists h such that 

L 
* A+;, . . . , CI$) > 1. By a similar argument we see that 

h 

fiu a XL,.. .,$)+1)=(x 
k=h+l 

which concludes the proof. q  

The next Proposition 4.3 and Lemmas 4.7 and 4.8 show how the conditions of 
Lemma 4.2 can be satisfied. Let B(z, r) denote the ball in R” (with the Euclidean 
norm 11 . 112 ) centered at z with radius r. 

Proposition 4.3. If 4 : R” + R+ is a Young’s function there exists Q : 
B(0, 1) -+ R+ convex, even, C1 on B(0, 1) \ (0) with @ N 4 on B(O,l). 

We begin the proof of the proposition with 

Observation 4.4. If 4 : R” + R+ is a Young’s function there exists 4 : R” + R+ 
continuous, equal to 4 on B(0, 1) such that 

Indeed, just let 

The proof of the proposition will follow from the next two lemmas. 

Lemma 4.5. 1f 4 : R” + R+ is continuous and 4(x) = 0 H x = 0 then there 
exists 4 : Rn -+ R+, which is C1 on Rn \ (0) with i4 5 4 5 24. 

PROOF. As 4 is continuous 

1 

.I IB(z, r)I B(z,r) 
4 + 4(x) as r + 0. 

Hence Vx E R” \ {0}, there exists r(x) > 0 such that 

l for 0 < r < r(x) we have i4 2 & ~Bcz,Tj 4 I 24, and 
l the map x F-+ r(x) is continuous. 
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Moreover there exists a function T, which is C1 on R” \ {0}, such that 0 < i’(z) 5 
r(z). Indeed, if 

f(x) = mini+), 9 E B(O, &) \ BP, &)} for x E B(O, f) \ B(O, &) 
then fi, the restriction off to the positive xi axis, is a positive step function and 
we can easily choose a C1 function g on the positive xi axis such that 0 < g < fi. 
Then the radial extension of g gives such an ?. 
Define 

Clearly 6 satisfies the properties required in the conclusion of the lemma. 0 

Note also that if in the previous lemma 4 is even, so is 4. Moreover (b satisfies 
the growth condition (12), if 4 does. 

The next lemma follows the idea of Corollary 3.1 in [4] (for a similar result in 
the infinite dimensional case see [2]). 

Lemma 4.6. Let p E R”. Let f : R” + R be diflerentiable on R” \ {p], 
continuous at p, with limllzllz_+m ,,z,,z m = 00. Then cof is C1 on R” \ {p} . 

PROOF. Let z E R”\(p). By Th eorem 2.1 in [4] there exist q 5 n+l, Xi,. . . , X, > 
0 and ~1,. . . , xq E R” such that: 

CO f(X) = 2 Xif(Xi) with 2 Xix; = xand eXi=l 
i=l i=l i=l 

As x # p we may assume, without loss of generality, that xi # p. Let Ui be a 
small neighborhood of x1. For xi E Ul consider x’ = XIX: + Cnzt &xi. Then 
U = {x’]x\ E VI} is a neighborhood of x. We can choose VI small enough such 
that p $ U and p $l_Jl. Let h : U + Ul by h(x’) = xi. Clearly h is CL. 

co f(x’) 5 Xif(xi) + 2 Xif(xi) = Xif(h(x’)) + e Xif(xi) 
i=2 i=2 

The right hand side is a C1 function of x’ on U, call it ~(5’). Note that s(x) = 
co f(x). Hence: 

(13) s(y) - s(x) > cof(y) - cof(x), for all y E U 

Recall that for a convex function V+!J on R” the subdifferential of $ is a map 
all, : R” + P(R”) g iven by x* E 8$(x) if $(z) 2 $(x) + (x*,2 - x) for all z. As 
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x is in the interior of the domain of cof we have that &of(x) is nonempty (see 
[15], Theorem 23.4). Note that if z* E &of(x) then (13) shows that x* = Vs(x). 
Hence &of(x) is a singleton and therefore cof(x) is differentiable at x (see [15], 
Theorem 25.1). Hence co f is differentiable on R” \ {p}. The conclusion of the 
lemma follows once we notice that if a finite convex function on R.” is differentiable 
on a set then its gradient is continuous on that set (see [15], Theorem 25.5). 0 

PROOF OF PROPOSITION 4.3. Let @ = (coJ)]u(o,i) be the restriction of co4 on 

B(0, l), with 4 given by Lemma 4.5 satisfying growth condition (12): smoothness 
of Cp is provided by Lemma (4.6) and equivalence to (b on the unit ball is obvious. 

0 

Lemma 4.7. Let 4 : B(O,l) + R+ be conuez, even and C1 on B(0, 1) \ (0) 
such that 4(x) = 0 if and only if x = 0. Then there exists a Young’s function 
6: R” + R+, which coincides with 4 on a neighborhood of 0, such that 

l V/s E R” the map t H F is decreasing on (O,OCI) and 

0 2 * limt+, 7 isanomonR”. 

PROOF. For all (Y > 0 small enough $-l({c~}) is an n - 1 dimensional closed 
submanifold of B(0, 1). Such an (Y will be chosen later on. Let 1 . la be the 
Minkowski norm of the set @l([O, c~]). Then 1 . IQ is C1 on R” \ (0) since 4 is. 
An easy calculation shows that 

(14) VI. la(x) = (vd;x),x) V$(x), for all x E R” with 1x1, = I 

where (., .) denotes the Euclidean inner product on R”. Indeed, for x E R” \ {0}, 
1x1, = h where 4(X(x)x) = cr. Thus, 

VI. la(x) = -&) VA(x) = -IxfpX(x). 

By differentiating $(X(x)x) = CY with respect to xj we obtain 
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Thus 

and therefore 

VI. la(x) = -1x1; ( lx,a w&-) ,x) O+ k 1 ( ) 
XI 

Ixla 
(VQ-) ,x)v4 k ( ) 

which gives (14) for 1x1, = 1. Let M = suplzl~~,(V~(x),x). Then for every x 
with 1x1, = 1 and for every u E R” such that (VI . la(x),u) > 0 we have 

(V4(x), 4 I M(VI . Ia 4 

Thus, for all such x and u we have 

(15) Q&(x) I &(W. la)(x) 

where D, is the directional derivative in the direction of IL. 
Define 4 on R” by: 

J(x) = { f(;&, - 1) 1 ftkl,a;el 

Condition (15) provides the convexity of 4. Clearly 4 is a Young’s function and 
coincides with 4 in a neighborhood of 0. 

Fix x E R” \ (0). We want to show that the mapping 

t++ 
i 

F 
lfa+lll(ltzl,-1) 

,ifO<t<T;i; 

t ,iftZ & 

is decreasing. As the map is continuous, it suffices to show it is decreasing on 
(0, k) and on (&, co). Since 4 is convex and d(O) = 0 there exists T = r(x) 

such that t I+ q is decreasing on (0,7(x)) with 0 < r(x) 2 & and 

7$x) = *. By compactness of B(O, 1) and the continuity of r and 4 we have 

infllvl12=+ 4(r(y)y) > 0. If 

(16) 
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hence $(T(z)z) > cr and thus \~(z)zJJ\~ > 1. Therefore & < T(X) and t !+ q 
is decreasing on (0, &-). 

Note that l+“+M~‘s’n-l) = w + Mlz(, is decreasing as a function of t 
exactly when 1 + cr - A4 > 0. Thus it suffices to have A4 5 1. But 

M= 

since SUPI~I~ =1 Dh q+(z) is an increasing function of IY and supI,IO=r 112(12 -+ 0 
as (Y -+ 0. In particular (Y can be chosen such that (16) holds and M < 1. Then 
t t-+ q is decreasing \y’x E R”. 

Finally, note that 

2 I-+ lim 
t+03 

’ + ;@‘) = MIxI, 

is a norm on R”. 

Lemma 4.8. Let 4 : R” -+ R+ be a Young’s function such that 

l Vx E R” the map t I+ F is decreasing on (0, oo) and 
0 x ++ lirnt+= q isanormonR”. 

Then 

N(XO,Xl,...,Xn) = 

{ 

Jxo\(l + 4 (y&y), if x0 # 0 
limt+s It\(l+ 4 (T)) ifxo = 0 

is a norm on R”+l such that 

0 

and 

N(1, Xl, *. .,%)=1+4(x1 ,..., XT%>. 
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PROOF. We only need to check the triangle inequality for N. Let 2 = (zc, 21,. . . , 2,) 
andY=(Yu,Yi ,..., yn)ER”+l. 

If 20 > 0 and yu > 0 

N(z+Y)=(zo+Yo) 1+4 -&-q-&+...,- ( ( 21 +Yl zn + yn 

20 + Yo )) 

= ~o+yo+(zo+yo)~ _%&“l”;;‘“” +_!!!?__yl~~~~~y~ 
( x0 + Yo yo ) 

I zO+YO+.,~(“l~-~D’“~) +yo~(yl~-;~y~) 

= N(z) + NY) 

by the convexity of 4. 
If 20 > 0 and yo = 0 

N(z + y) I N(zo - e, zi, . . . ,2,) + N(e, ~1,. . . , yn), for all E E (0,x0) 

by the previous case. Letting E -+ 0, by the continuity of N we obtain the desired 
inequality. 

Finally, if ze > 0 and yn < 0 we may assume 0 5 zo + Yo < 20. Then, by the 
properties of 4 and the previous case we have 

N(z+y) I N(20,21+y1,...,2,+y,) 

5 N(s) + W, ~1,. . . , in) 

i N(~)+N(IYoI,Y~,...,Y,)=N(~)+N(Y) 

which concludes the proof. 0 

The proof of theorem 4.1 is now complete. Theorems 3.1 and 4.1 give imme- 
diately the following 

Corollary 4.9. Let l+ be an O&z space with non-trivial type. Then the twisted 
sum C$ eF C4 can be equivalently renormed to have property (M). 

In particular, the spaces Z,, 1 < p < 00, have property (M) after renorming. 
We end this section with an application of the previous corollary and Theorem 

2.4 in [lo]. Recall that if X is a Banach space and E is a subspace of X then 
E is called an M-ideal in X (see [l]) if X* can be decomposed as an ei-sum 
X’ = El @I V for some closed subspace V of X*. For a Banach space X let 
L(X) denote the algebra of all bounded operators on X and K(X) the ideal of 
compact operators. 
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Corollary 4.10. Let C+ be an 0rlic.z space with non-trivial type. Then 14 (jjF C+ 
can be renormed so that Ic(C+ eF C,) is an M-ideal in C(C+ eF Q,). 
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