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CONSTRUCTING LOW DEGREE HYPERBOLIC
SURFACES IN P3

BERNARD SHIFFMAN AND MIKHAIL ZAIDENBERG

Abstract. We describe a new method of constructing Kobayashi-hyperbolic

surfaces in complex projective 3-space based on deforming surfaces with a

“hyperbolic non-percolation” property. We use this method to show that

general small deformations of certain singular abelian surfaces of degree 8

are hyperbolic. We also show that a union of 15 planes in general position

in projective 3-space admits hyperbolic deformations.

1. Introduction

A compact complex manifold is hyperbolic in the sense of Kobayashi if every
holomorphic map from the complex line C to the manifold is constant, as is the
case for compact complex curves of genus ≥ 2. In 1970, S. Kobayashi conjectured
that generic hypersurfaces in Pn of sufficiently high degree are hyperbolic. Some
progress has been made towards this conjecture. Demailly and El Goul [DE], and
independently McQuillan [Mc] (with a slightly bigger degree estimate) proved
that a very generic surface of degree at least 21 in P3 is hyperbolic in the sense
of Kobayashi. Previously, Clemens [Cl] showed that very generic hypersurfaces
of degree d ≥ 2n − 1 contain no rational curves, which is a necessary condition
for hyperbolicity. Actually, for n ≥ 3, this also holds for d = 2n − 2, and very
generic hypersurfaces of degree d ≥ 2n − 1 contain neither rational nor elliptic
curves (Voisin [Vo]; see also [CR, CLR, Ei, Pa, Xu1, Xu2]). Thus it is natural to
suppose that 2n− 1 is the minimal degree for Kobayashi’s conjecture.

Many examples have been given of low degree hyperbolic projective hypersur-
faces (e.g., [SZ1, SZ2] and the references therein). The examples of hyperbolic
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surfaces in P3 of lowest degree found to date are of degree 8 and were discovered
independently by Duval [Du] and Fujimoto [Fu]. (A similar example of degree 10
was previously found by Shirosaki [Sh].)

In this paper, we provide a new approach to constructing hyperbolic surfaces
in P3, giving another example of degree 8. Although this example is considerably
more complicated than the Duval-Fujimoto example, we hope that our technique
can be applied in the future to construct examples of lower degree. We also
show that certain small deformations of 15 planes in general position in P3 are
hyperbolic surfaces.

Our technique involves showing that small deformations Xt of certain singular
surfaces X0 ⊂ P3 are hyperbolic. The surfaces X0 that we deform, while not
hyperbolic, satisfy a “hyperbolic non-percolation” property. In particular, we
consider surfaces X0 with “double curve” S̄; i.e., the singular locus of X0 is a
1-dimensional subvariety S̄, and X0 has two branches at general points of S̄. If
nearby surfaces in a linear pencil {Xt} were not hyperbolic, then we can find a
sequence tn → 0 and a sequence of Brody curves ftn

: C → Xtn
converging to

a Brody curve f : C → X0. Recall that a Brody curve in a Hermitian complex
manifold M is a non-constant entire holomorphic curve g : C → M such that
‖g′(ζ)‖ is bounded above by ‖g′(0)‖. Brody [Br] proved that a compact complex
manifold is hyperbolic iff it does not contain any Brody curves.

Our approach is to show using Hurwitz’s theorem that either

• f(C) ⊂ S̄ \ {pj}, where the pj are the multiple points of S̄, or
• f(C) ⊂ (X0 \ S̄) ∪D, where D is a finite subset of S̄.

We say that X0 \ S̄ has the property of hyperbolic non-percolation through D if
there are no Brody curves g : C → (X0 \ S̄) ∪D. Hence, if in addition,

• S̄ \ {pj} is hyperbolic, and
• X0 \ S̄ has the property of hyperbolic non-percolation through D,

then small deformations Xt are hyperbolic. We illustrate our construction with
two examples.

2. Deformation of 15 planes

In 1989, the second author [Za] showed that the complements of certain smooth,
irreducible small deformations of 5 lines in P2 are complete hyperbolic and hy-
perbolically embedded. We begin by using our technique to give, as a parallel
example, hyperbolic deformations of 15 planes in general position in P3.



CONSTRUCTING LOW DEGREE HYPERBOLIC SURFACES IN P3 379

Let Lj , j = 1, . . . , 15, be linear functions on C4 defining hyperplanes

Hj := {z ∈ P3 : Lj(z) = 0}

in general position; i.e., any 4 of the Lj are linearly independent, or equivalently,
every point of P3 is contained in at most 3 of the Hj . Let D = {z ∈ P3 : Q(z) = 0}
be a general quintic, and consider the linear pencil of surfaces:

Gt =
{

∏15
j=1 Lj + tQ3 = 0

}

⊂ P3 .

Theorem 2.1. The surface Gt is hyperbolic for sufficiently small t 6= 0.

Proof. Suppose on the contrary that there exist tn → 0 such that Gtn is not
hyperbolic. Then we can find a sequence of Brody curves fn : C → Gtn with
sup ‖f ′n‖ = ‖f ′n(0)‖ = 1, where the norm is computed with respect to the Fubini-
Study metric on P3. Then we can choose a subsequence, which we also denote
by {fn}, converging to a Brody curve f : C →

⋃15
j=1 Hj . Assume without loss of

generality that f(C) ⊂ H15.
We first show that

(1) f(C) ⊂



H15 \
14
⋃

j=1

Hj



 ∪D .

To verify (1), suppose that D does not pass through any of the points Hi∩Hj∩
Hk (i, j, k distinct), and that on the contrary f(ζ0) ∈ Hk \D, where k 6= 15. Let
∆ be a small disk about ζ0 so that f(∆̄) does not intersect D; i.e., Q ◦ f(ζ) 6= 0
for ζ ∈ ∆̄. Hence

∏

j Lj ◦ fn(ζ) = −tnQ3 ◦ fn(ζ) 6= 0, ζ ∈ ∆, n ½ 0 .

Since Lk ◦ f(ζ0) = 0, it follows from Hurwitz’s Theorem that Lk ◦ f ≡ 0; i.e.,
f(C) ⊂ Hk ∩ H15. If j 6∈ {k, 15} and f(C) passes through the point pjk :=
Hj ∩Hk ∩H15 6∈ D, then by the above argument (replacing k with j), we again
conclude from Hurwitz’s Theorem that f(C) ⊂ {pjk}, contradicting the fact that
f is non-constant. Hence

f(C) ⊂ Hk ∩H15 \ {pjk : 1 ≤ j ≤ 14, j 6= k} ≈ P1 \ {13 points} ,

which implies that f is constant, a contradiction. Therefore (1) holds.
We assume that the curves D ∩ Hj are smooth (or have at most 4 double

points), so that the degree 5 curve D ∩H15 is hyperbolic and hence f(C) 6⊂ D.
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Then by the Cartan Second Main Theorem [Ca] (see also [Ko, §3.B]) applied to
the map f : C → H15 ≈ P2 and the 14 lines Hj ∩H15, we have

(2) (14− 3)Tf (r) ≤
14
∑

j=1

N2(Hj , r) + O(log Tf (r)) .

(Note that since Brody curves are of finite order ≤ 2, the inequality holds without
exceptional intervals.) As we have assumed that D does not pass through any of
the points Hi ∩Hj ∩Hk, (1) implies that

(3)
14
∑

j=1

N2(Hj , r) ≤ 2
14
∑

j=1

N1(Hj , r) ≤ 2N(D, r) .

Furthermore, by the Carlson-Griffiths First Main Theorem [CG] (see also [NO,
§5.2], [Ko, §8.4]) applied to the divisor D, we have

(4) N(D, r) ≤ 5Tf (r) + O(1) .

Combining the inequalities (2)–(4), we arrive at a contradiction.
£

Remark. In the second part of the proof of Theorem 2.1, we showed that the com-
plement of 14 general lines in P2 has the property of hyperbolic non-percolation
through (the intersection of these lines with) a general quintic. This should also
hold for fewer lines; e.g., an open problem is whether the complement of 5 general
lines in P2 has the property of hyperbolic non-percolation through a general sextic
curve. This would imply that a general small deformation of 6 planes in general
position in P3 is a hyperbolic sextic surface.

3. Deformation of a singular abelian surface

We now use our hyperbolic non-percolation technique to construct a new ex-
ample of a hyperbolic surface of degree 8. This time, instead of deforming a
reducible surface, we deform an irreducible surface X0 with self-intersections.

The surface X0 is described in [LB] and is defined as follows. Let A be a simple
abelian surface with an ample line bundle L → A of type (1, 4). Recall that an
abelian variety is said to be simple if it does not contain any proper abelian
subvariety. See [LB, p. 47] for the definition of line bundles of type (d1, d2) on an
abelian surface.

It follows from the Riemann-Roch Theorem and the Kodaira vanishing theorem
that h0(A, L) = χ(L) = 1

2L ·L = 4 and hence deg L := L ·L = 8 (see [LB, p. 289]).
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We let X0 = ϕL(A), where ϕL : A → P3 is the rational map defined by the linear
system |L|. We shall establish the following result:

Theorem 3.1. General small deformations of the surface X0 ⊂ P3 are hyperbolic
surfaces of degree 8.

We begin with the description of X0. By [LB, pp. 308–312], the surface X0 is
birational to A and is given by

X0 = {z ∈ P3 : Q = 0} ,

where

Q = λ1
2
(

z0
4z1

4 + z2
4z3

4
)

+ λ2
2
(

z0
4z2

4 + z1
4z3

4
)

+ λ3
2
(

z0
4z3

4 + z1
4z2

4
)

+2 λ1λ2

(

z0
2z1

2 + z2
2z3

2
) (

−z0
2z2

2 + z1
2z3

2
)

+2 λ1λ3

(

z0
2z1

2 − z2
2z3

2
) (

z0
2z3

2 − z1
2z2

2
)

+2 λ2λ3

(

z0
2z2

2 + z1
2z3

2
) (

z0
2z3

2 + z1
2z2

2
)

+ λ0
2z0

2z1
2z2

2z3
2 .

In fact, general choices of (λ0, . . . , λ3) ∈ C4 give singular abelian surfaces (see
Remark 3.3 in [LB, p. 301]).

Let Hj denotes the coordinate plane {zj = 0}, and let

pj := (δj
0 : δj

1 : δj
2 : δj

3) ∈ X0 (so that p0 = (1 : 0 : 0 : 0), etc.)

denote the vertices of the coordinate tetrahedron {H0, H1, H2, H3} (0 ≤ j ≤ 3).
The singular locus of X0 consists of 4 double curves S̄j := X0 ∩Hj , j = 0, 1, 2, 3.
The equation for, say, S̄3 ⊆ H3 is

−λ1z0
2z1

2 + λ2z0
2z2

2 + λ3z1
2z2

2 = 0 .

It is known [LB, p. 312] that S̄3 is an irreducible rational curve with 3 ordinary
double points at {p0, p1, p2}. Generic points of S̄3 are ordinary double points
of the surface X0; i.e., X0 is the union of two transversal smooth surface germs
at generic points of S̄3. The set of points of S̄3 which are not ordinary double
points of X0 consists of the 3 double points {p0, p1, p2} of S̄3 together with 12
smooth points of S̄3, which are pinch points of X0 (see [LB, p. 312]). The same
description applies to the other double curves S̄0, S̄1, S̄2.

We need to know the structure of X0 at the 4 vertices {pj}. Let S̄ =
⋃3

j=0 S̄j .
The singular set of S̄ consists of the 4 points {pj}. We shall show that each pj is an
ordinary 6-fold singularity of S̄; i.e., the germ of S̄ at pj consists of 6 smooth local
curves {Bi

j}1≤i≤6 with distinct tangents (j = 0, 1, 2, 3). For example, S̄1, S̄2, S̄3
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pass through p0, each contributing 2 local components of the germ of S̄ at p0. To
describe the tangents to the Bi

0, we write

µ1 =
√

λ1 , µ2 =
√

λ2 , µ3 =
√

−λ3 ,

and we use the affine coordinates

x = z1/z0, y = z2/z0, z = z3/z0

about p0 = (0, 0, 0). Then the 6 tangent lines are

`±1 = {x = 0 , µ2y = ±µ3z}, `±2 = {y = 0 , µ1x = ±µ3z}, `±3 = {z = 0 , µ1x = ±µ2y} ,

where the 2 lines `+j , `−j are tangent to S̄j at p0 (j = 1, 2, 3).

Lemma 3.2. Let 0 ≤ j ≤ 3. The germ of X0 at pj consists of 4 smooth surface
germs Y 1

j , . . . , Y 4
j . Each of these surfaces contains exactly 3 of the 6 components

B1
j , . . . B6

j of the germ of S̄ at pj, and each of these components Bk
j is contained

in exactly 2 of the Y i
j . The intersection of any 3 of the Y i

j is the germ of the point
pj.

Proof. Clearly, the orbit of p0 under Aut(X0) consists of the 4 vertices {pj}.
Thus it suffices to consider j = 0. As before, fix the affine coordinates

x = z1/z0, y = z2/z0, z = z3/z0

about p0. Then

Q = λ1
2
(

x4 + y4z4
)

+ λ2
2
(

y4 + x4z4
)

+ λ3
2
(

z4 + x4y4
)

+2 λ1λ2

(

x2 + y2z2
) (

−y2 + x2z2
)

+ 2 λ1λ3

(

x2 − y2z2
) (

z2 − x2y2
)

+2 λ2λ3

(

y2 + x2z2
) (

z2 + x2y2
)

+ λ0
2x2y2z2

= az4 + bz2 + c ,

where

a = λ2
2x4 + 2 λ2λ1x

2y2 + λ1
2y4 + 2 λ3λ2x

2 − 2 λ3λ1y
2 + λ3

2 ,

b = 2 λ3λ2x
4y2 + 2 λ3λ1x

2y4 + 2 λ2λ1x
4 − 2 λ2λ1y

4 + λ0
2x2y2 +2 λ3λ2y

2 +2λ3λ1x
2,

c = λ3
2x4y4 + 2 λ3λ2x

2y4 − 2 λ3λ1x
4y2 + λ2

2y4 − 2 λ2λ1x
2y2 + λ1

2x4

=
(

λ3x
2y2 − λ1x

2 + λ2y
2)2 .

We compute the discriminant

δ := b2 − 4ac = x2y2
(

16λ1λ2λ3
2 + · · ·

)

.
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Hence in the local ring 3O0 = C[[x, y, z]], we have the factorization Q = Q+Q−,
where

Q± =
√

a z2 +
b±

√
δ

2
√

a
= λ3z

2 + λ1x
2 + λ2y

2 ± 2
√

λ1λ2 xy + R3(Q±)

= (µ1x± µ2y)2 − (µ3z)2 + R3(Q±) .

Here, for any f ∈ 3O0, we let Rn(f) =
∑∞

k=n fk, where fk denotes the homoge-
neous terms of order k in the Taylor expansion of f .

It follows that the tangent cone of X0 at p0 is the union of the 4 planes (in
general position):

P++ = {µ1x + µ2y + µ3z = 0} ,

P+− = {µ1x + µ2y − µ3z = 0} ,

P−+ = {µ1x− µ2y + µ3z = 0} ,

P−− = {µ1x− µ2y − µ3z = 0} .

The planes P++ and P+− are tangent to {Q+ = 0}, while P−+ and P−− are
tangent to {Q− = 0}.

To show that Q+ and Q− are reducible in 3O0, we now expand Q = a′x4 +
b′x2 + c′, where

a′ = λ3
2y4 + 2 λ3λ2z

2y2 + λ2
2z4 − 2 λ3λ1y

2 + 2 λ2λ1z
2 + λ1

2 ,

b′ = 2 λ3λ1z
2y4 + 2 λ2λ1z

4y2 + 2 λ3λ2z
4 + 2 λ3λ2y

4 + λ0
2z2y2 + 2λ3λ1z

2 −2λ2λ1y
2,

c′ = λ1
2z4y4 − 2 λ3λ1z

4y2 − 2 λ2λ1z
2y4 + λ3

2z4 + 2 λ3λ2z
2y2 + λ2

2y4

=
(

−λ1z
2y2 + λ3z

2 + λ2y
2)2 .

Again we compute the discriminant

δ′ = b′2 − 4a′c′ = y2z2
(

−16λ1
2λ2λ3 + · · ·

)

.

Hence we have the factorization Q = Q′+Q′−, where

Q′± =
√

a′ x2 +
b′ ±

√
δ′

2
√

a′
= (µ1x)2 − (µ2y ± µ3z)2 + R3(Q′±) .

This time the planes P++ and P−− are tangent to {Q′+ = 0}, while P+− and
P−+ are tangent to {Q′− = 0}.

Since 3O0 is a unique factorization domain, Q+ and Q′+ must have a common
factor

Q++ = µ1x + µ2y + µ3z + R2(Q++)

with zero set tangent to the plane P++. By considering all such possible pairs,
we see that the germ of X0 at p0 consists of 4 smooth surfaces, each tangent to
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one of the planes P++, P+−, P−+, P−−. One easily checks that each of the lines
`±j is the intersection of exactly 2 of these planes, and each plane contains exactly
3 of the lines. The conclusion of the lemma immediately follows. £

We recall that a simple complex torus does not contain rational or elliptic
curves. Moreover, the following holds.

Proposition 3.3. Let f : C → T be a Brody curve in a simple complex 2-
dimensional torus T = C2/Λ. Then for any compact complex curve S in T , the
intersection f(C) ∩ S is infinite.

Proof. Assume without loss of generality that S is irreducible. The lift f̃ : C →
C2 of f is also a Brody curve and hence is given by degree 1 polynomials, as
observed in [Gr]. By a translation of coordinates, we may suppose that f̃ is linear
and hence f(C) is a subgroup of T . We first note that S is not contained in
any translate of f(C). For if on the contrary S′ := S + v ⊂ f(C), then f−1(S′),
being analytic and of positive dimension, must be all of C; i.e., S′ = f(C). Hence
S′, being a compact complex curve and a subgroup of T , must be a complex
1-dimensional subtorus of T , contradicting the assumption that T is simple.

Let Y denote the closure of f(C) in the metric topology on T . As T is a simple
Lie group and Y ⊆ T is a closed subgroup, we conclude that either Y = T or Y is
a real 3-subtorus of T . Choose new coordinates {z1 = x1 + iy1, z2 = x2 + iy2} in
C2 so that f(C) is the image of the axis {z1 = 0} via the projection τ : C2 → T ,
and in the latter case, Y is the image of {y1 = 0}.

Claim: S ∩ Y is nonempty.

Proof of the claim: We need to consider only the case where Y is a real 3-torus.
Notice that the universal cover of T \ Y can be identified with a strip in C2 = R4

between two parallel hyperplanes y1 = 0 and y1 = a > 0, and that y1 generates a
well-defined bounded harmonic function on T \Y . If S∩Y = ∅, then y1|S =const,
whence z1|S =const, so S is contained in a translate of f(C), which is impossible
as noted above. This completes the proof of the claim.

Now let ∆2
ε be a coordinate bidisk centered about a point s = (s1, s2) ∈ Y ∩S.

We may assume by our choice of coordinates in C2 that =s1 = 0 and

∆2
ε = ∆′ ×∆′′ = {(w1, w2) ∈ C2 : |wj − sj | < ε, j = 1, 2} τ

↪→ T .

We also have f(C) ∩∆2
ε = E ×∆′′, where E is a dense subset of the disk ∆′ if

Y = T , or is a dense subset of the real interval Iε := ∆′ ∩R if Y is a real 3-torus.
We observe that S 6⊃ {s1}×∆′′. Indeed, if on the contrary S contains the disk

{s1} × ∆′′, then a translate S′ of S contains a disk {s′1} × ∆′′ ⊂ f(C), so the
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analytic set f−1(S′) cannot be 0-dimensional. Hence f−1(S′) = C, or equivalently
f(C) ⊂ S′, and therefore Y = f(C) ⊂ S′, a contradiction.

Let ρ1 : ∆2
ε → ∆′ denote the projection to the z1-axis. Since S ∩ ({s1} ×∆′′)

must be 0-dimensional, it follows that ρ1(S ∩∆2
ε) contains a neighborhood of s1.

Since s1 is a cluster point of E, the set E ∩ ρ1(S ∩∆2
ε) must be infinite. Since

E ∩ ρ1(S ∩∆2
ε) = ρ1((E ×∆′′) ∩ S) = ρ1(f(C) ∩ S ∩∆2

ε) ,

it follows that f(C) ∩ S is also infinite. £

Remark. (i) Proposition 3.3 can be rephrased as follows: For any compact complex
curve S in a simple abelian surface T and for any divisor D on S, the complement
T\S has the property of hyperbolic non-percolation through D.

(ii) Note that if S were a rational or elliptic curve in a simple complex torus
T , then we would have a Brody curve f : C → S ⊂ T , and by the first paragraph
of the proof of Proposition 3.3, S must contain a translate of a subgroup of T ,
contradicting the assumption that T is simple.

Proof of Theorem 3.1. Let X∞ = {z ∈ P3 : F (z) = 0} be a general octic
surface and consider the linear pencil of surfaces

Xt = {z ∈ P3 : Q(z) + tF (z) = 0} .

Suppose on the contrary that Xtn is not hyperbolic for some sequence tn → 0.
Then as in the proof of Theorem 2.1, after passing to a subsequence of {tn}, we
can find a sequence of Brody curves fn : C → Xtn converging to a Brody curve
f : C → X0.

Claim: f(C) ⊂ (X0\S̄) ∪ (S̄ ∩X∞) ∪ Γ, where Γ is the set of 48 pinch points of
X0.

Proof of the claim: Suppose on the contrary that f(ζ0) = x0 ∈ S̄ \ (X∞ ∪Γ). We
first consider the case where x0 6∈ {p0, p1, p2, p3}, so that x0 is an ordinary double
point of X0. Choose a small neighborhood U ⊂ P3 \X∞ of x0 such that we have a
factorization Q|U = Q′Q′′, where Q′, Q′′ are holomorphic on U and vanish at x0;
hence X0 ∩ U consists of two components X ′ = {Q′ = 0}, X ′′ = {Q′′ = 0}. Let
∆ be a small disk about ζ0 such that f(∆̄) ⊂ U . Then (by the same argument
as in the proof of Theorem 2.1) for n sufficiently large, fn(∆) does not meet X0

and hence Q ◦ fn(ζ) 6= 0 for ζ ∈ ∆. Since f(ζ0) = x0 ∈ X ′ ∩ X ′′, it follows by
Hurwitz’s theorem applied to Q′◦fn and to Q′′◦fn that f(∆) ⊂ X ′∩X ′′ = S̄∩U ,
and thus f(C) ⊂ S̄. We shall complete this case below.



386 BERNARD SHIFFMAN AND MIKHAIL ZAIDENBERG

We now turn to the case x0 = pj (j = 0, 1, 2, 3). By virtue of Lemma 3.2, this
time X0 ∩ U consists of 4 components, and we conclude as above that f(C) is
contained in the intersection of these 4 components. But (by Lemma 3.2) this
intersection is the point pj , and hence f is constant, a contradiction.

Returning to the first case, we can now conclude that f : C → S̄\{p0, p1, p2, p3}.
However, the variety S̄ \ {p0, p1, p2, p3} consists of 4 components S̄j \ {pi : i 6= j},
0 ≤ j ≤ 3, each a P1 with 6 points (corresponding to the 3 double points of
Sj) punctured out. Again we conclude that f is constant, and this contradiction
completes the proof of the claim.

As the morphism ϕL : A → X0 is birational and proper, it provides a normal-
ization of X0. Let f̃ : C → A be the lift of f to the normalization, and let S :=
ϕ−1

L (S̄) ⊂ A. The image f̃(C) meets S inside the finite set D := S∩ϕ−1
L (X∞∪Γ).

Although f is a Brody curve, f̃ is not a priori Brody, but we can construct a
Brody curve from f̃ as follows. Let ∆n denote the disk of radius n about the
origin. By Brody’s reparametrization lemma [Br], we can find a sequence of
holomorphic maps

gn = f̃ ◦ ρn ◦ αn : ∆n → ˜f(C) ⊂ (A \ S) ∪D ,

with ||g′n(0)|| = c > 0 and ||g′n(ζ)|| ≤ n2c
n2−|ζ|2 , where αn is a suitably chosen

automorphism of ∆n and ρn(ζ) = rnζ, rn > 0 (see [Ko, (3.6.2), (3.6.4)], [NO,
(1.6.6)]). After passing to a subsequence, we may suppose that gn converges as
n →∞ to a Brody curve g : C → A.

By Proposition 3.3, g(C) ∩ S is infinite. Hence, there is a point ζ0 ∈ C such
that g(ζ0) ∈ S \ D. We choose a small disk ∆ about ζ0 such that gn(∆) does
not meet D and hence gn(∆) ⊂ A \ S for n ½ 0. We then conclude as before
by Hurwitz’s theorem that g(C) ⊂ S. But since A is a simple abelian variety, S

cannot be rational or elliptic. Thus g is constant, a contradiction.
Therefore, Xt is hyperbolic for t sufficiently small. £

Remark. Note that the only condition on X∞ is that it does not contain any of
the pj .

Acknowledgment. We are grateful to Gerd Dethloff for useful comments. We also
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Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St.

Martin d’Hères cédex, France
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