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ON A CLASS OF COMPACTA 

Karol Borsuk 

ABSTRACT. Using the notion of nearly extendable maps which 
has been introduced in [5], in connection with the theory of 
fixed points, a class of compacta (called NE-sets) is defined and 
investigated. This class is more general than the class of all 
approximative absolute neighborhood retracts (called 
AANR-sets), but it is less general than the class of all movable 
compacta. 

1. Introduction. It is well known that if the shape of a compactum X is trivial 

and if X has a sufficiently regular topological structure (in particular, if X G ANR), 

then each map f:X--> X has a fixed point. But an analogous statement fails if one 

omits the hypothesis that the structure of X is regular. However, the hypothesis on the 

regular structure of X can be omitted if we restrict, in an appropriate way, the class of 

considered maps. In [5], a class of nearly extendable maps (called NE-maps) is 

introduced and it is shown there that 

(1.1) For every compactum X with trivial shape, every NE-map f:X--> X has a 

fixed point. 

The class of NE-maps is quite large. In particular, it is known (see [ 5 ] ) that 

(1.2) If at least one of the compacta X,Y is an ANR-set, then every map f:X --> Y 

is an NE-map. 

In the present note, we define and study a class of compacta (called NE-sets) 

given by the following 

(1.3) DEFINITION. A compactum X is said to be an NE-set if every map of X 

into any compacturn Y is an NE-map (see Section 2 for the definition of NE-maps). 

It follows from (1.2) that every (compact) ANR-space is an NE-set. But the class 

of NE-sets is much more general than the class of all ANR's. Observe that (1.1) implies 

that every NE-set with a trivial shape has the fixed point property. 

By a map we understand here a continuous function, and a space always means a 

metrizable space. By AR-sets and ANR-sets we understand compact absolute retracts 
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and compact absolute neighborhood retracts, respectively. 

2. Some properties of NE-maps. A map f of a compacturn X into another 

compacturn Y is said to be an NE-map if there exist AR-spaces M and N containing X 

and Y, respectively, and there is a map f:M --> N satisfying the condition 

(2.1) fix) = f(x) for every x C X, 

and such that 

(2.2) For every e > 0, there is a neighborhood U of X in M such that, for every 

neighborhood V of Y in N, there is a map g:U • V with p(f(x),g(x)) < e for every 

xCU. 

One shows (see [5]) that the choice of spaces M,N CAR containing X and Y, 

respectively, and also the choice of a map f:M--> N satisfying (2.1) are immaterial. 

Moreover, it is shown in [5] that' 

(2.3) If at least one of the maps f:X•Y and g:Y-> Z is an NE-map, then 

gf: X --> Z is an NE-map. 

(2.4) For every compacta X,Y, the set of all NE-maps f:X • Y is closed in the 

functional space yX. 
(2.5) If X,Y are compacta and if all values of a map f:X-->Y belong to an 

ANR-set A C Y, then f is an NE-map. 

3. Some properties of NE-sets. The following propositions are direct 

consequences of (2.3): 

(3.1) X is an NE-set if and only if the identity map ix:X • X is an NE-map. 
(3.2) Y is an NE-set if and only if for every compacturn X all maps f.'X--> Y are 

NE-maps. 

Now let us formulate a condition which characterizes NE-sets among all 

compacta. 

(3.3) CONDITION. There exists an AR-space M containing X and such that, for 

every e > 0, there is a neighborhood U of X in M and a map g:U• X such that 

p(x,g(x)) % e for every x CU. 

(3.4) REMARK. Notice that the choice of an AR-space M containing X is 

inessential in (3.3). In fact, if M' is another AR-space containing X, then there exists a 

map 

a'M' •M 
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such that a(x) = x for every x G X. If e, U and g:U • X are as in condition (3.3), then 

there exists a neighborhood U' of X in M' such that a(U') C U and p(x',a(x')) < e for 

every x' G U '. Setting 

g '('x') = ga(x') for every • G U',' 

one gets a map g' :U' --> X such that 

p(x' ,g'(x)) = p(x' ,ga(x')) •< p(x' ,a(x' )) + p(a(>• ),ga(x')) < 2e, 

because p(x' ,o•(x' )) • e and p(o•(x'),gce(x' )) < e. 

Now let us prove the following 

(3.5) THEOREM. A compacturn X is an NE-set if and only if X satisfies 

condition (3.3). 

PROOF. It is clear that (3.3) implies that the identity map ix:X-• X is an 

NE-map, and we infer by (3.1) that X G NE. 

On the other hand, if X is an NE-set, then the identity map ix:X-•X is an 

NE-map. Assume that X C M G AR. Then, for each e > 0 and n = 1,2 .... , there exists a 

neighborhood U n of X in M and a map fn:Un -> Un+ 1 such that 

p(X,fn(X)) < e' 2 -n for every x G U n. 
Moreover, we can assume that Un+ 1 C U n for n = 1,2 .... and that 

oo 

X= ch U n. n=l 

Setting 

gn = fnfn-1 "'fl (x) for every x • U 1 , 

one gets a sequence of maps gn:U1 --• Un+ 1 uniformly converging to a map g:U n --• X 
which staisfies the inequality 

oo 

O(x,g(x))• E e-2 -n=eforeveryxGU 1. n=l 

Thus condition (3.3) is satisfied and the proof of theorem (3.5) is completed. 

4. NE-sets and a class of compacta introduced by M. R Clapp. One sees easily 

that, for compacta X, condition (3.3) is equivalent to the following one: 

(4.1) CONDITION. For every homeomorphism h which maps X onto a subset 

h(X) of a metric space M, there exists, for each e > 0, a neighborhood U of h(X) in M 

and a map g:U -> h(X) such that p(y,g(y)) < e for every y • h(X). 

Compacta satisfying condition (4.1) were introduced and studied by M. H. Clapp 

[7]. By theorem (3.5), these compacta are the same as NE-sets. Thus several results 

due to M. H. Clapp imply some properties of NE-sets. In particular, the approximative 
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absolute neighborhood retracts (i.e., AANR-sets in the sense of A. Gmurczyk, see [8] 

and also [1 1]) are a special kind of the NE-sets (see [7], p. 1 18). Moreover, if 2cQ 
denotes the space of all non-empty compacta lying in the Hilbert cube Q which is 

metrized by the metric of continuity Pc(See [1], p. 169), we get (see [7], p. 122)the 
following proposition' 

(4.2) The NE-sets coincide with the homeomorphic images of compacta 

belonging to the closure of the subset of 27 consisting of all polyhedra. 
5. NE-sets which are not AANR's. It is known that all the Betti numbers of each 

AANR-set are finite (see [8], p. 14). Aowever, there exist NE-sets for which some 

Betti numbers are infinite. This follows from examples due to M. H. Clapp (see [7], p. 

199). Moreover, we have the following 

(5.1) THEOREM. Every locally connected plane continuum is an NE-set. 

PROOF. Let X be a locally connected continuum contained in the plane E 2. 
Since an empty set is an NE-set, we may assume that X :/: •J. For any given e • 0, there 

exists a positive number r/• 0 such that 

(5.2) Every subset of X with diameter K r/is contained in a locally connected 

subcontinuum of X with diameter K 72 e. 

Consider, in E 2, a square M containing X in its interior and let M 1 ,M2,...,M n be a 
system of squares with diameters • 72 r/such that M = M 1 O M 2 O --- O M n and such 

that, for i :/: j, the interiors of M i and of Mj are disjoint. We can order these squares so 
that there are natural number k •< m •< n such that: 

M i C X for i • k, 

Mi :/: M i • X:/:• for k•<i •< m, 
M i A X= • form Ki•<n. 
Then, the set 

O M i A=i•< m 
is a polyhedron containing X in its interior. If k •< i •< m, then the interior of M i has a 

point a i C M\X. It follows that the set 
m 

U = A\ __O k (a i) i = 

is a neighborhood of X in M. 

Let oe i denote the projection of M i \ (a i) onto the boundary B i of the square M i 
(for k •< i •< m). Then 
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p(oq(x),x) < « r/< 1A e for every x c Mi\(ai). 

Using (5.2), one sees easily (see [10], p. 347) that there exists a map/•i:Bi--* X 
such that /•i(x) = x if x C B i C• X, and p(/•i(x),x) < « e for every point x • B i. Setting 

g(x) = x for every point x • Mi, where i < k, 
g(x) /•ioq(x) for every x • Mi\(ai), where k •< i •< m, 

one gets a map g:U -> X satisfying the condition 

p(g(x),x) < e for every x • U. 

Hence condition (3.3) is satisfied and we infer, by theorem (3.5), that X is an 
NE-set. 

Now let us give a simple example of a plane continuum that is not an NE-set. 

(5.3) EXAMPLE. Consider the subset X of the plane consisting of all points 

(0,x 2) with -1 •< x 2 •< 2 and of all points (Xl, sin xX-t with 0 < x 1 •< 1. Suppose that X 
is an NE-set; then, by (3.5), condition (3.3) must be satisfied. Consequently, there 

exists, in any space M CAR containing X, a neighborhood U of X and a map g:U -> X 
such that 

p(x,g(x)) < « for every x • U. 

Then, in the component of U containing X, there is an arc L with endpoints 

a = (0,2) and b--(1,0). It follows that g(L) is a locally connected continuum in X 

which contains both points g(a) and g(b). Since p(a,g(a)) < 1/2 and p(b,g(b)) < 1A, we 

see at once that such a locally connected continuum does not exist. Hence the 

supposition X • NE fails. 

Let us add that, by virtue of (1.1), any compactum with trivial shape and 
without the fixed point property is not an NE-set. 

6. NE-sets with trivial shape. We know already that each AANR-set is an NE-set 

and that the converse is not true. The situation,however, is different among compacta 
with trivial shape. 

(6.1) THEOREM. Every NE-set with trivial shape is an AANR-set. 

PROOF. Let X be an NE-set with trivial shape. Then there exists (see [9], p. 92 

and also [6], p. 182) a sequence of AR-sets M = M 1 D M 2 D --. such that 
oo 

(6.2) X= c3 M n' n=l 

Since X, as an NE-set, satisfies condition (3.3), we infer, by remark (3.4), that, 

for every e > 0, there exists a neighborhood U of X in M and a map g: U -> X such that 
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p(x,g(x)) < e for every x • U. 

By (6.2), there is an index n e such that Mne CU. Since Mne •AR, there is a 
retraction r:M -• Mne. Setting 

fix) = gr(x) for every x • M, 

one gets a map f:M -• X satisfying the condition p(x,f(x)) < e for every x • X, since if 

x • X, then r(x) = x and consequently 

p(x,f(x)) = p(x,g(x)) < e. 

Using remark (4.2), we conclude that X • AANR and (6. l) is proved. 

It is well known (see [4], p. 274) that compacta with trivial shape are the same 

as fundamental absolute retracts, i.e., FAR-sets. More general is the class of 

fundamental absolute neighborhood retracts, i.e., FANR-sets. 

(6.3) PROBLEM. Does there exist among FANR-sets an NE-set which is not an 

AANR-set? 

7. Neighborhood retracts of NE-sets. Recall that a set Y C X is said to be a 

neighborhood retract of X (see [2], p. 14) if there exists a neighborhood W of Y in X 

and a retraction r:W -• Y. 

(7. l) THEOREM. Every neighborhood retract of an NE-set is an NE-set. 

PROOF. Let M be an AR-space containing X • NE and let Y C X be a retract of 

a neighborhood W of Y in X. Consider a retraction r:W-• Y, and let e be a positive 

number. Then there is a neighborhood W o C W of Y in X such that 

(7.2) p(y,r(y)) < ¾2 e for every y • W o. 

Moreover, there is a positive number •7 < V2 e such that 

(7.3) If x G X, y G Y and p(x,y) < rbthen x G W o- 
Since X, as an NE-set, satisfies condition (3.3), there exists a neighborhood U of 

X in M and a map f:U -> X such that 

(7.4) p(x,f(x)) < •7 for every x G U. 

It follows, by (7.3) and (7.4), that there exists a neighborhood V C U of Y in M 

such that f(V) C W o. Setting g(y) = rf(y) for every y G V, one gets a map g:V --> Y 
such that 

p(y,g(y)) •< p(y,f(y)) + p(f(y),rf(y)) < r/+ V2 e < e. 

Thus we have shown that condition (3.3) (in which X is replaced by Y and U by V) is 

satisfied. By theorem (3.5), Y is an NE-set. 
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(7.5) COROLLARY. Every retract of an NE-set is an NE-set. 

8. Movability of NE-sets. The property of the movability (see [3], p. 142) is a 

shape invariant which eliminates the most complicated global singularities of 

compacta. Let us prove the following 

(8.1) THEOREM. Every NE-set is movable. 

PROOF. Assume that X is an NE-set lying in the Hilbert cube Q. If U is a 

neighborhood of X in Q, then there is an e • 0 and a neighborhood W of X in Q such 

that if x G W, y G Q and p(x,y) < e, then the segment [x,y] with endpoints x,y lies in 

U. Since X is an NE-set, there exists a neighborhood U o C W of X in Q such that, for 

every neighborhood V of X in Q, there is a map g:U o -• V such that p(x,g(x)) < e for 

every x G U o. Then [x,g(x)] C U, and we infer that g is homotopic, in U, to the 

inclusion i:U o --> U. Hence X is movable. 
9. Cartesian product of NE-sets. Let us establish the following 

(9.1) THEOREM. The Cartesian product X = X 1 X X 2 X '" 4: • is an NE-set if 
and only if X n • NE for every n = 1,2 ..... 

PROOF. Since X n is homeomorphic with a retract of X, we see, by (7.5), that 

X G NE implies X n • NE for every n = 1,2 ..... 

Assume now that X n G NE for n = 1,2,.... Let M n be an AR-space containing X n. 

Then M= M 1 X M 2 • "- is an AR-space containing X. We may assume that the 

diameter of M n is • n -2. Then the distance in the space M may be given by the 
formula 

t • p(yn,Y•n). (9.2) P((Y 1 ,Y2,'"),(Y• ,Y 2,'")) = 1 
Since X =/= 0, we can select a point a n in each X n. Then, for every e • 0, there 

exists an index k = k(e) such that 

2; n-2 < « e. 
n=k+ 1 

Setting 

so(y) = (yl,...,Yk,ak+l,ak+2,...) for every y = (Y 1,Y2,'") • M, 

one gets a map so:M -> M satisfying the condition 

(9.3) p(y,•y)) • « e for every y • M. 

Since X n G NE, we infer by (3.3) that there exists a neighborhood U n of X n in M 

and a map gn:Un -> X n such that 
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1 
(9.4) p(yn,gn(Yn )) < 2-k e for every Yn G U n. 
Then the set U = U 1 X "- X U k X Mk+ 1 X Mk+ 2 X "- is a neighborhood of X 

in M and the formula 

g(y) = •o(gl(Yl),g2(Y2),... ) for every y -- (Yl ,Y2,'") G U 
defines a map g:U -> X, because 

g(Y) = (gl (Yl),'-',gk(Yk),ak+l ,ak+2,---) G X. 
Moreover, we conclude from (9.2), (9.3) and (9.4) that 

p(•o(y),g(y)) 

= P((Y 1 ,-",Yk,ak+ 1 ,ak+2,'-'),(g(Y 1 ),'" ,gk(Yk),ak+ 1 ,ak+2 .... )) 
k 1 1 

= 23 p(yn,gn(Yn) ) < k- 2--•-e = -• e. n=l 

It follows, by (9.3), that 

p(y,g(y)) •< p(y,•o(y)) + p(•o(y),g(y)) < e for every point y G U. 

Thus the condition (3.3) is satisfied, whence X G NE and the proof of theorem 

(9.1) is complete. 

10. Suspension of NE-sets. Let us show that the class of NE-sets is closed with 

respect to the operation of the suspension. 

(10.1) THEOREM. The suspension of every NE-set is an NE-set. (The referee 

points out that this theorem can be reversed. Indeed, it follows from (7.1)that if the 

suspension of a compacturn X is an NE-set, then X is also an NE-set. (Editor)). 

PROOF. Let Qo denote the subset of the Hilbert space consisting of all points 

Y = (Yl,Y2,.-.) with lynl •< 1 for n = 1,2,..., and let M denote the set of all points 
n 

y G Qo with yl = 0. Then M is an AR-space homeomorphic to Qo' Let/3 denote the 
diameter of M. We may assume that X CM. Setting 

a = (-1,0,0,...), b = (1,0,0 .... ), 

let us assign, to every set Z C M, the suspension Z of it, which we define as the union 

of all the segments [az] and [bz] with z G Z. Then the suspension X of X is contained 

in M CAR. 

Now let us consider a positive number e and let r• be a positive number < 1 so 

small that 
1 1 

(10.2) r• <'2 -e and r•-b <2 -e 
Setting 

•o(t) =-1 for-1 •< t •<-1 + r/, 
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1 

•o(t) --T-• t for-1 + rt ( t( 1 
•o(t)-- 1 forl-r/•t•l, 

we get a map •o:(-1,1) -• (-1,1) such that: 

(10.3) •o(t) •<0 for-1 •< t •< 0,•0) = 0, and •t) •>0 for 0•<t•< 1, 
1 

(10.4) It -•t)l <•'• for every t G (-1,1). 
Since X G NE, we infer by (3.3) that there is a neighborhood U of X in M and a 

map g:U • X such that 

(10.5) p(y,g(y)) < 6 for every point y G U. 

Let us denote by A the set consisting of all the points (Yl,Y2 ,'") G M with 

Yl •<-l+r/, and by B the set of all the points(Yl,Y2 .... )GMwithYl •>l-r/'Nøtice 
that (10.2) implies that the diameters of A and of B are less than 6. 

Setting 

W=ACJBCJU, 

one gets a neighborhood of X in M. 

Now let us define, for every point y = (Yl,Y2 ,"') G W, a point fly) given by the 
formulas: 

(10.6) f(y)--aify 1 •<-1 +r/, 

(10.7) f(y)=bify 1 •>l-r/, 

(10.8) f(y)=-•(Yl)a+(1 +•(yl))-g(0,Y2,Y3,...) if-1 +r/<y 1 •<0, 

(10.9) f(y) = •Yl)b + (1 - •(yl))-g(0,Y2,Y3,...) if 0 • Yl < 1 - r/. 

If y G U\(A D B), then -1 + r/< Yl < 1 - r/ and g(0,Y2,Y3,...) = x G X. If Yl •< 0, 
then ½ffyl ) •< 0 and we infer by (10.8) that 

f(y) =-½ffYl)a + (1 + •(yl))X G [axl. 

Ify 1 •> 0, then •o(y 1) •> 0 and we infer by (10.9) that 

f(y) = •(Yl)b + (1 - •o(yl))X G [bx]. 

It follows, by virtue of (10.6) and (10.7), that f:W • X. 

Moreover, f is continuous, because if y = (Yl,Y2 .... ) G W and Yl = -1 + r/, then 

•o(y 1) -- -1 and -½ffYl)a + ( 1 + •o(y 1))'g(0,Y2,Y3,...) = a. And if Yl = 1 - r/, then •o(y 1) = 

1 and •Yl)b + (1 - •o(yl)) X g(0,Y2,Y3,...) = b. Finally, if Yl = 0, then •yl ) = 0 and 
both formulas (10.8) and 10.9) coincide. 

Furthermore, if y G A, then f(y) = a G A and we infer that p(y,f(y)) < 6, because 

the diameter of A is less that •. Similarly, if y G B, then p(y,f(y)) < 6. If, however, the 
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point y = (Yl,Y2,--') belongs to U\(A tO B), then we see, by (10.8) (if Yl •< 0) or by 

(10.9) (ify 1 •> 0), that 

p(y,f(y)) •< p((0,Y2,Y3,...),g(0,Y2,Y3,...)) < e. 

Thus we have shown that f:W --> X is a map satisfying the condition/•(y,f(y)) < e 

for every point y C W. Consequently, X satisfies condition (3.3) and (10.1) is proved. 

11. Components of an NE-set. A relation between the NE-property of a 

compacturn and of its components is given by the following 

(1 1.1) TrtEOREM. A compacturn whose every component is an NE-set is an 

NE-set. 

PROOF. Assume that X is a compacturn, X C M CAR and let e be a positive 

number. By our hypothesis, there exists, for every component A of X, a neighborhood 

W A of A in M such that, for every neighborhood V of X in M, there is a map 

gA:WA -> V satisfying the condition 

p(x,gA(x)) < e for every x C W A- 

Since W A can be replaced by any smalled neighborhood of A, we may assume 

that W A is open (in M) and that its boundary 
-- 

B A = W A \ W A 
lies in M\X. Since X is compact, there exists a finite system A1,A2,...,A n of 
components of X such that 

n 

U = tO WAi i=l 

is a neighborhood of X in M. Setting 
k-1-- 

U k = WAk \j=k 5 WAj for k = 1,2,...,n, 
we get a system of open subsets of M such that 

n 

U= tO Uk, U kCwAkfork=l,2,...,n k=l and 

Ukf3Uk, =½ fork•k'. 
It follows that the formula 

g(x) = gAk(X) for every x • U k, k = 1,2,...,n 
defines a map g:U -> V satisfying the condition 

p(x,g(x)) < e for every x • U. 

Since U is a neighborhood of X, we infer that the identity map ix:X--> X is an 

NE-map. By (3.1), we get X C NE. 
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Theorems (5.1) and (11.1) imply the following 

(11.2) COROLLARY. Every plane compacturn with locally connected 

components is an NE-set. 

Now let us show that 

(11.3) There exist NE-sets for which not every component is an NE-set. 

In order to see this, consider the continuum X defined as example (5.3) and 

observe that for every e > 0 there exists a neighborhood U e of X in the plane E 2 and a 
map fe:Ue --> E 2 such that fe(X) is an arc lying in E 2 \X and p(fe(x),x) < e for every 
xGU 6. 

It follows easily that there exists, in E2\X, a sequence of disjoint arcs L 1,L2,... 
such that 

Y=XU u L i i=l 

is a compacturn with the property that, for every positive e, there is a natural number 

n satisfying the following condition: there exists a neighborhood V e of Y in E 2 and a 
n 

retraction r e of V e to the set U L i with p(x,re(x)) < e for every y C V e. By theorem i=l 

(3.5), Y is an NE-set. dowever its component X is not an NE-set. 

12. Addition of NE-sets. Notice that the plane continuum X considered in 

example (5.3) is the union of the segment X 1 with endpoints (0,1) and (0,2), and the 

closure X 2 of the diagram of the function y = sin3 where 0 < x •< 1. It is clear that 
both sets X 1 and X 2 are NE-sets, but their union X is not an NE-set though the set 

X 1 N X 2 consists of only one point (0,1). Thus, a theorem similar to well-known 
theorems on the union of two ANR-sets or two FANR-sets is not true for NE-sets. 

However, we have the following 

(12.1) THEOREM. Suppose X= X! tl X 2, where X 1, X 2 are compacta and 

X! • X 2 consists of only one point a. The following implications hold: 

If X • NE, then X 1, X 2 are NE-sets. 

If X], X 2 G NE and X is locally contractible at the point a, then X G NE. 

PROOF. Since X i (for i = 1,2) is a retract of X, the first part of theorem (12.1) is 
a direct consequence of corollary (7.5). 

Passing to the second part, observe that the hypothesis that X is locally 

contractible at the point a means that, for every e> 0, there exists a closed 

neighborhood U of a in X, and a map 
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such that 

and 

qv:U X (0,1) -• X 

•o(x,0)=a, •x,1)=x for everyxGU, 

1 

p(•o(x,t),a) <•-e for every (x,t) G U X (0,1). 

It is clear that there exist compacta A,B C X such that A is a neighborhood of a 

in X and U (3 X TU C B C X \ A. Then there is a map 

o•:U -> (0,1) 

such that 

Setting 

o•(x) = 0 for x c A, and o•(x) = 1 for x G B. 

½(x) = •o(x,o•(x)) for x G U, ½(x) = x for x G X \ U, 

we get a map ½:X -> X such that 

½(x) = a for every x G A, 

½(x) = x for every x G X \ U, 

O(x,½(x)) < 21---e for every x G X. 
Moreover, there is a positive number r• < e such that 

(12.2) Ifx 1 GXl, x 2GX 2andp(xl,x2) Kr/, thenxl,x 2GA. 
If XiG NE for i = 1,2, then there exists a neighborhood V i of X i in 54, and a map 

fi:Vi -> X i such that 

p(fi(y),y) <•r/for every y G V i. 
Observe that if y G V 1 (3 V2, then 

P(fl(Y),f2(Y)) •< P(fl (Y),Y) + P(Y,f2(Y)) < 7, 

and since fl(y) G X 1 and f2(y) G X2, we infer, by (12.2), that both points fl(Y), f2(Y) 
belong to A. It follows that setting 

f(y) = •bfi(y) for every y G Vi, i = 1,2, 

we get a map f of the neighborhood V = V 1 [_J V 2 of X in M into X such that, for 

every point y G V i (where i = 1,2), one has 

P(Y'f(Y)) = P(Y,½fi(Y)) •< P(Y,fi(Y)) + P(fi(Y),½fi(Y) ) < e. 
Hence X satisfies condition (3.3) and, consequently, X is an NE-set. 
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