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POLYNOMIAL RINGS AND Hi-LOCAL RINGS (II) 
S. McAdam and L. J. Ratlift, Jr. 1 

ABSTRACT Four theorems concerning when 

Dk= R [X 1 ..... Xk] (M,X 1 ..... Xk ) (k>0)is an H i -local ring 
are proved, where (R,M) is a local ring. Many corollaries of the 

theorems are given, and two of the theorems are generalized to 

Rees localities. Finally, a condition for certain localities 

of D k to satisfy the first chain condition, when D k is H i, is 
proved. 

1. Introduction. All rings in this paper are assu•ned to be commutative with an 

identity element. The undefined terminology is the same as that in [4]. 

Let (R,M) and D k be as above, and let a = altitude R. In [11] a number of 

results concerning when D k is an Hi-local ring (see (2.3) for the definition) were 

proved. In this paper we add four new theorems and many corollaries concerning this, 

and we extend two of the new theorems to Rees localities. Then a result concerning 

when certain localities of D k satisfy the first chain condition (f.c.c.) is proved, when 

it is assumed that D k 'is H i . 

In Section 2 we prove our first four theorems (2.6), (2.14), (2.24), and (2.27). 

(2.6) shows that D 1 is H i if and only if R is H i and i+l 9•s(D 1)-(a+l}, 
where S(Dl)={n; there exists a maximal chain of prime ideals in D 1 of 

length n}. (2.14) extends (2.6) to D k (k > 1). One corollary of(2.14) shows that if 

/• is the least element in s(D 1) and if D 1 is H i , for some i</•-l, then, for 

all h•>0 , D h is H o ..... H i (2.20). A closely related result shows that if there 

exists k>0 such that D k is H1,...,H i, then, for all h•>0,D h is H o,...,H i . On 

the other extreme, if 9* is the greates. t element in s(D1)-(a+l} , then, for all 

h •> 0, D h is H•/_ 1 + h '"',Ha + h (2.24). Also, if there exists k>0 such that D k is 
Hi,...,Ha+k_l, then, for all h• >- k, Dk+ h is Hi+h,...,Ha+k+ h (2.30). (Thus a sort of 
symmetry of results is established.) The final theorem in Section 2 shows that 
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if D k is H i and Hi+j(for some k>0, i•>0, and l•<j•<k), then D k 
is Hi,...,H i + j (2.27). Numerous corollaries of all four theorems are given in Section 
2. 

In Section 3 we generalize (2.6) to principal Rees localities œ (R,bR) (see((3.1)) 

in (3.3). The theorem shows that if D 1 is H i and R is a local domain, then every 

principal Rees locality of R is H i (3.4). (3.7) shows that if R has the property 

that n + 1 Cs (D1) if and only if n Cs (R), then a strong converse of (3.3.1) holds, 

and so a good generalization of (2.6) to principal Rees localities of R holds. (3.8) 

gives an application of (2.14) to more general Rees localities. 

In Section 4 it is first shown that if R is H i , then, for all prime 

ideals p in R such that heightp=i,Rp is Hj, for all j•>2i-a(4.1). Applying 
this, it is shown that if, for some i•> 0 and all k•> 0, D k is Ho,...,Hi, then, for 

all h •> 0 and for all height •<i prime ideals P in D h, (D h) p satisfies 

the f.c.c. (4.4). Seven applications of (4.4), using results in Section 2, are given in 

(4.5). In (4.7) and (4.8) the other extreme (D h is H i + h,...,Ha + h, for all h •> 0) is 
considered, and it is shown that, for all prime ideals p in R such that 

height p •> i - 1 , R/p satisfies the second chain condition. 

In Section 5 two remarks are given which have the effect of greatly extending 

and generalizing the results in this paper. Namely, the results continue to hold if: 

(a) D k is replaced by (R k) N, where R k = R IX 1,...,X k] and N is a maximal ideal 

in R k such that N (3R = M; and, (b) R is replaced by a quasi-local ring S which 
contains and is integral over R and is such that minimal prime ideals in S lie over 

minimal prime ideals in R. 

A few of the results in [ 11 ] are quoted in the body of this paper, so as to make it 

reasonably self-contained. 

2. Four theorems. In this section we will prove our first four theorems 

concerning when certain localities of R [X1,...,X k] (R a local ring 

and k •> 1) are H i . Before proving the first of these (2.6), a number of preliminary 
results are needed. We begin by fixing some notation which we constantly use. 

(2.1) NOTATION. Throughout this paper, the following notation is fixed.' 

(R,M) is a local ring, and altitude R = a>0; h,i,j, and k are non-negative 

integers; D k = R[X 1,...,X k] (M,X1,...,Xk), where the X i are indeterminates (D o = R); 
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and, s(L) ={n; there exists a maximal chain of prime ideals of length n in L }, 

•vhere L is a local ring. 

The above notation is slightly different from that in [1 1], since we here 

define D O = R, and we use the more intuitive s (R), rather than the c(R) of[ 1 1 ]. 

The following fact is used in the proof of (2.2): If P C P1 C "- C Pn C Q is a 

saturated chain of prime ideals in a Noetherian ring, then there is such a chain 

PcQ1 c..-CQnCQ such that height Qi --- height P+i, for i =1 .... ,n [3, Lemma 
1]. 

(2.2) LEMMA. The following statements hold for a local ring (R,M) .' 

(2.2.1) n Cs(R) if and only if there exists a prime ideal p in R such 

that height p = n -1 and depth p = l . 

(2.2.2) If n G s (R), then n-3k G s(Dlc), for each k > O. 

(2.2.3) nG s(D 1) if and only if n-3k-lG S(Dk), for k > O. 
PROOF. (2.2.1) If there exists a prime ideal p in R such that 

heightp=n-1 and depthp= 1, then clearly nGs(R). Conversely, if nGs(R), 

then it is an immediate consequence of [3, Lemma 1] that there is a prime 

ideal p in R such that heightp=n-1 and depthp=l . 

(2.2.2) Since height pD k = height p and depth pD k = depth p + k, for each 

prime ideal p in R, (2.2.2) follows from (2.2.1). 

(2.2.3) is proved in [1 1, (2.4)], q.e.d. 

To prove (2.6), the following definition, remark, and lemma are needed. 

(2.3) DEFINITION. A ring A is said to be an Hi-ring (or, A is said to be Hi) 

in case, for each height i prime ideal p in A, depth p = altitudeA -/(that is, height 

p + depth p = altitude A). 

Many properties of Hi-local domains are given in [5] and [6], and most of these 
results have been generalized to local rings in [ 13 ]. Most of the results on these rings 

which are needed in what follows are summarized in the following remark. 

(2.4) REMARK. The following statements hold for a local ring (R,M): 

(2.4.1) Clearly R is H i , for all i •> a - 1 (vaculously, for i > a). 

(2.4.2) R is H i if and only if, for all height j (j •<i) prime ideals p in R, 

R/p is H i_j and either depthp=a-j or depthp•<i-j [13,(2.4) 1. 
(2.4.3) D 1 is H i if and only if R is H i _1 and H i and, for 

each height i-1 prime ideal p in R, all maximal ideals in the integral closure 
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of R/p have the same height (= altitude R/p = a - i + 1) [13, (3.7)]. 

(2.4.4) For k>0,D k+l is H i if and only if D k is H i_l and H i[11, 
(2.5)1. 

We adopt the convention that the statement that a local ring is Hg with 
g < 0 says nothing about the ring (it is vacuously true). 

(2.5) LEMMA. The following statements hold for a local ring (R,M): 

(2.5.1) If n Gs(R), then either R isn't Hn_ 1 or n = a. 

(2.5.2) If R is H i and isn't H i_ 1' then i Gs (R). 
(2.5.3) Assume R is H i and 0 < i < a. Then R is Hi_ 1 if and only if i ½ s(R). 

PROOF. (2.5.1) Assume that n G s (R). Then, by (2.2.1), there exists a prime 

ideal p in R such that heightp =n-1 and depth p=l. Therefore, if n-•a, 

then height p + depth p = n < a, so R isn't H n_ 1 ß 

(2.5.2) Assume that R is H i and isn't Hi _ 1 ß Then, by (2.4.2), there exists a 
prime ideal p in R such that heightp =i-1 and depthp=l,hence iGs(R). 

(2.5.3) If R isn't H i_l, then iGs(R) (2.5.2). Conversely, if iGs(R), 

then R isn't H i_ 1 (2.5.1), since i < a, q.e.d. 

We can now prove the first main result in this paper. 

(2.6) THEOREM. D I is H i if and only if R is H i and 

i-t- ] ½ s ( O i ) - (a -t- 1}. 
PROOF. Assume first that D 1 is H i . Then R is H i (2.4.3). Suppose 

that i + 1 G s (D 1) -{a + 1 }. Then, by (2.5.1) applied 

to D1 ' i+l =a+l (since D 1 is H i and altitudeD 1 =a+l); contradiction. 

Therefore i+ 1 •s(D1)- {a + 1}. 

Conversely, assume that R is H i and i + 1 ½ s (D 1) -(a + 1} . To show 

that D 1 is H i , it may be assumed by (2.4.1), that i < a. Consider a height i prime 
ideal P in R[X] with P C N = (M,X) R [X] . We must show that height N/P = a+l-i. 

Let height N/P = d, so i+dGs(D 1 )' Then d4 = 1, since i+ 1Cs(D 1 ), •s(D 1 )- { a+ 1), and i<a. 

Let p=PChR. If P=pR[X], then height p =height P--i, so, since R is H i, 
d = height N/P - depth p + 1 = a - i + I , as desired. On the other hand, 

if P-• p R [X] , then height p = height P- 1 = i- 1 . Since d > 1 , by [1, Theorem 3] 

applied to R/p, there are infinitely many prime ideals q in R such 

that pCq,heightq/p =1, and depthq=d-1. Then, for some such q, height 
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q = height p+l = i, by [1, Theorem 1]. Therefore, since R is 

H i,d-1 =depthq =a-i,andso d =a-i+l,q.e.d. 

(2.6) will be generalized in (2.14). 

(2.7) REMARK. D 1 is H i if and only if R is H i and i + k ½ s (D k) -{a + k}, for 
some k > 0 (respectively, for all k >• 0). 

PROOF. Clear by (2.6) and (2.2.3), q.e.d. 

To prove another corollary to (2.6), we recall the following definitions. 

(2.8) DEFINITION. Let A be a ring. 

(2.8.1) A satisfies the first chain condition for prime ideals (f.c.c.) in case every 

maximal chain of prime ideals in A has length equal to altitude A. 

(2.8.2) A satisfies the second chain condition for prime ideals (s.c.c.) in case, for 

each minimal prime ideal z in A, depth z = altitude A and every integral extension 

domain of A/z satisfies the f.c.c. 

(2.8.3) A satisfies the chain condition for prime ideals (c.c.) in case, for each 

pair of prime ideals P C Q in A, (A/P)Q/p satisfies the s.c.c. 
(2.9) COROLLARY. If R satisfies the f.c.c., then{i ; i •- 1Gs (D1)}={i ,'D 1 isn't 

Hi}t3 { a }. 

PROOF. Since R is Hi, for all i •> 0, (2.6) says that i is in the set on the left 
side of the equation exactly when it is in the set on the fight side, q.e.d. 

For another corollary to (2.6), let C be the class of local rings R which satisfy 

the condition: n G s (R) if and only if n + 1 G s (D1). This is an important class, 
since it is known [12,(4.1)] that RGC if any of the following hold: R is 

complete; R is Henselian; R satisfies the s.c.c.; or, R= L [X] (N,X), 
where (L,N) is a local ring and X is an indeterminate. (Actually, [12, (4.1)] only 

says that such local domains are in C. But if R is such a local ring (complete, 

Henselian, etc.), then, for each minimal prime ideal z in R, R/z is also such a ring, 

hence R/zGC; and nGs(R) if and only if nGs(R/z), for some such z. 

Therefore such local rings are also in C .) (It should also be noted that the definition 

of C given above is equivalent to the definition of C given in [ 11 ] preceding (2.19). 

This follows from (2.2.1), (2.2.2), and the fact that n G c (R)(with c (R) as in [1 1, 

(2.3.t)]) if and only if n+l Gs(D 1) [12,(a)•*(f)]. (Again, [12,(a)*}(f)] only 
says the equality holds for local domains, but n G c (R) if and only if n G c (R/z), 
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for some minimal prime ideal z in R [11, (2.3.1)]; and, as already noted, this also 

holds for s (D 1) . Thus [12, (a) *• (f)] holds for the local ring case.)) 

(2.10) COROLLARY. If R GC, then D 1 is H i if and only if R is H i and 
i ½ s(R)- (a 7. 

PROOF. Clear by (2.6) and the definition of C, q.e.d. 

(2.11) COROLLARY. If D] is Hi_ 1 and Hi4-] but not H i, then i4-]•s(D 1) but 

PROOF. By (2.4.3), R is H i_ 1 and H i . Therefore, since R is H i and D 1 isn't 

Hi,i+lCs(D 1) (2.6). Further, i<a, since D 1 isn't H i, so, since R is Hi_ l, i•s(R) (2.5.1), 
q.e.d. 

(2.12) REMARK. (2.12.1) If the hypothesis of (2.11) holds for some local 

ring R, and if the Upper Conjecture (that is,( n + 1 ;n Cs (R)} C 

{ m; m • s(D1)} _C{n+l; n• s(R)} CJ {2}) holds, then i = 1 . (See [2, Propositions 3.3 
and 3.7] for more information on the Upper Conjecture.) 

(2.12.2) If R is as in [4, Example 2, pp. 203-205] in the case m=0, 

then D 1 is H o and H 2,but isn't H 1. 

(2.12.3) Since R is Hi_ 2 and H i in (2.11), by (2.4.3), (2.2.1) implies 
that i-1 and i+l are not in s(R)-(a}. 

The following lemma, which is needed for the proof of (2.14), is an easy 

corollary of (2.5.2). 

(2.13) LEMMA. Assume that R is H i and h <i. If none of h 4-1 ..... i are 

in s(R)-{a}, then R is Hh,H h 4-1 ..... Hi. 
PROOF. This follows immediately from repeated applications of (2.5.2), q.e.d. 

A characterization of when D k is H i can be given using (2.4.3) and (2.4.4). The 
following result, which generalizes (2.6), gives another characterization. 

(2.14) THEOREM. For k>•l,D k is H i if and only if R is H i and none 

of i- k 4- 2 ,i- k 4- 3 ..... i4-1 are in s (Dl) -{a 4-1}. 
PROOF. For k = 1 , this is (2.6). 

For k> 1, by repeated applications of (2.4.4), D k is H i if and only 

if D 1 is H i_k+l,...,Hi. By(2.6), this happens exactly when R is Hj and j+l is 
not in s(D 1)-{a+l}, for j =i-k+l, i-k+2,...,i. Of course, this implies 

that R is Hi and none of i-k+2 ..... i+l are in s(D 1)-{a+17. 
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For the converse, assume that R is H i and that none of i-k + 2,...,i + 1 are 

in s(D 1)-{a+l}. Then, by (2.6), D 1 is H i. Also, none of i-k+2,...,i+l are 

in s(D1)-{a+l} , so D 1 is Hi_k+l,...,Hi(2.13). Therefore, by (2.4.4),D k is 
H i ,q.e.d. 

The following result generalizes (2.10). 

(2.15) COROLLARY. Assume that R C C. Then, for each k >• l , D k is H i if 

and only if R is H i and i- k ¾- I ..... i •s(R)-(a} . 
PROOF. This is clear by (2.14) and the definition of C, q.e.d. 

(2.14) affords an alternate proof to the following known result. 

(2.16) COROLLARY. (cf [13, (3.10)].) If Da_ 1 is Ha_ l, then R satisfies the 
s.c.c. (and conversely). 

PROOF. If D a _ 1 is H a _ 1 , then 2,...,a ½ s (D 1) , by (2.14). Therefore, since 
0,1•s(D1), s(D 1) ={a+l} hence D 1 satisfies the f.c.c., so R satisfies the s.c.c. [7, 
Theorem 2.21 ]. The converse follows from [7, Theorem 2.6], q.e.d. 

The following corollary sharpens [1 1, (3.1) and (3.2)]. 

(2.17) COROLLARY. If, for some k >•l and i•<k, D k is H i , then, for 

all h >•O,D h is H o ..... H i . 

PROOF. By (2.14), R is H i and none if i-k+2,...,i+l are in s(D1)-{a+l}. 

Since i- k + 2 •< 2, and since j½s(D1), for j•<l (since a>0), we 
have j ½ s (D 1) -{a + 1} , for all j •< i + 1 . Therefore, by (2.2.2), j • s (R) -{a}, for all 
j •<i. Hence, by (2.13), R is Hi, for all j •<i, so the corollary holds for h = 0. 
For h>•l and j•<i,we have that R is Hj andj+l •<i+l,sobywhatwasnoted 
above, none of j-h+2,...•j+l are in s(D1)-{a+l). Therefore D h is Hi(2.14), 
q.e.d. 

(2.18) REMARK. Since a>0, 0,1 .... ,k½s(Dk), by (2.2.3), since 1 Cs(D1). 
This, together with (2.13), (2.4.3), and (2.4.4), affords an alternate proof of (2.17). 

(2.19) DEFINITION. Let œ and g denote, respectively, the least and the 

greatest element in s(D 1) -{a+l}. (If s(D 1) ={a+l ), let œ = 9 = oo.) 

If s(D1)={a+l}, then D 1 satisfies the f.c.c., so R satisfies the s.c.c. [7, 

Theorem 2.21], hence, for all k>•0 and i>•0, D k is H i [7, Theorem 2.6]. 
Therefore, in what follows it will be assumed that œ 4= oo 4= 9; 

hence 1 <œ•<9 •<a(2-18). 
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(2.20) COROLLARY. With œ •< a as in (2.19), if i < œ - 1 and if D 1 is H i, then, 
for all h>•O, D h is H o ..... H i. 

PROOF. By (2.14), R is H i . Ifil<i, then j+l<œ, so j+l ½s(D1)-{a+l}. 

Therefore, by (2.2.2), j • s(R) -{a}, for j •<i. Thus, by (2.13), R is Hj , for allj •<i. 
For h>• 1 and j •<i, since R is Hj and j-h+2,...d+l are all less than i+l (and 
hence notin s(D 1) -{a+l}), D h is Hj (2.14), q.e.d. 

(2.21) REMARK. Let œ•<a be as in (2.19), and assume that there 

exist k>• 1 and i<œ+k-2 such that D k is H i . Then the following statements 
hold: 

(2.21.1) For all h >• 0, D h is Ho,...,H i . 

(2.21.2) For all h•l, D h isn't Hœ+h_ 2. 

(2.21.3) If i> 0, then the H-Conjecture (that is, if R is an Hl-local domain, 
then R satisfies the f.c.c.) fails. 

(2.21.4) If s(D 1) ={œ,a+l}(so œ = •/) and D 1 is Hœ_ 2, then, for all h•l, D h is 

Ho,...,Hœ_ 2, Hœ+h_ 1 .... ,Ha+ h and isn't Hœ_i,...,Hœ+h_ 2 . 
PROOF. (2.21.1) If k = 1 , then the conclusion follows from (2.20), so assume 

that k>l. Then D 1 is Hi_k+l,...,H i (2.4.4) and i-k+l<œ-l. Therefore D 1 is 

Ho,...,Hi_k+ 1 ..... H i (2.20). Therefore, by (2.23.1) below, for all h•>0, D h is 

H o .... ,H i. 
(2.21.2) By (2.2.3), œ+h-1 is the least element in s(Dh)-{a+h}. Therefore, 

since œ+h-1 <a+h, D h isn't Hœ+h_ 2 (2.5.1). 

(2.21.3) By (2.21.1) and (2.21.2), D 2 is H 1 and isn't Hœ. Now there exists a 

minimal prime ideal z in D 2 such that D2/z is H 1 and isn't Hœ (by (2.4.2), 

since D 2 is also Ho). Hence, since œ •> 2 (2.18), the H-Conjecture fails. 

(2.21.4) By (2.20), D h is H o ..... Hœ_ 2 . By (2.24) 

below, D h is Hœ+h_ 1 .... ,Ha+ h. By (2.21.2) D 1 isn't Hœ_ 1 . Therefore, by 

(2.4.4), D h isn't Hœ_ 1,...,Hœ+h_ 2 , q.e.d. 
(2.23.1) below is closely related to (2.20). The following remark will be used in 

the proof of (2.23). 

(2.22) REMARK. The following statements are equivalent: R is Ho; 

D k is H o,forsome k>•l ;D k is H o,forallk•>0. 

PROOF. Since the minimal prime ideals in D k are the ideals zD k , where z is 
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a minimal prime ideal in R, and since depth zD k = depth z + k, the conclusion easily 
follows, q.e.d. 

The following result gives some further information which is closely related to 

(2.17), (2.20), and (2.21.1). 

(2.23) PROPOSITION. (2.23.1) If there exist k•>l and i•>l such 

that D k is H I ..... H i , then, for all h •> O, D h is Ho,H 1 ..... H i . 

(2.23.2) If there exist k•>l and i•>l such that D k is H k ..... Hk4_ i , then, for 
all h •> O , D h is H o ..... Hk4_ i. 

PROOF. (2.23.1) If D k is H1, then Dk_ 1 is H o and H 1 (2.4.4), so DhiS Ho, for 
all h•0 (2.22). Therefore, if D k is H 1,...,Hi, then D k is Ho,...,H i. Thus, if 0•h<3c, then 
D h is H o ..... H/(2.4.4). Also, for h = k+l, D h is H 1 .... ,H i (2.4.4), hence D h is Ho,...,H / . 
Therefore the conclusion follows from repetitions of this last step. 

(2.23.2) By (2.17), if D k is Hk, then D k is Ho,...,Hk, so the conclusion 
follows from (2.23.1), q.e.d. 

In (2.20) and (2.21) we considered what can be said when œ is the least element 

in s(D1)-(a+l}. In the next theorem we will now consider what can be said 

when •/ is the greatest element in s(D 1 ) - (a+l} . 

(2.24) THEOREM. (cf [12, (5.6)].)If •l•<a is as in (2.19), then, for 

all k •> O, D k is H•i_14_ k ..... Hay_ k and isn't H•i_24_ k . Conversely, if there 
exists k•> l such that D k is Hn• k ..... Ha_t_ k and isn't Hn_l•k, then n-t-1 is the 
largest element in s(D 1) - {a4-1 }. 

PROOF. By [12, (5.6)], if •/ is the largest element in s(D1) -(a+l}, 

then D 1 is H•/,...,Ha+ 1 . Therefore D 2 is H•/+i,...,Ha+ 1 (2.4.4), and D 2 is Ha+ 2 . 
Repeating this, it follows that, for all k •> 1, D k is H•/_l+k,...,Ha+ k . 
Finally, R is H•/_ 1 .... ,H a (2.4.3), and D k isn't H9•_2+k (2.2). 

Conversely, D 1 is Hn+l,...,Ha+ 1 and isn't Hn, by repeated use of (2.4.4). 

Therefore, by (2.5.2), n+l G s(D1). Also, since D 1 is Hn+l,...,Ha+l, n+l is the 
largest element in s(D 1) - {a+l}, by (2.2.1), q.e.d. 

The following corollary can be extended (with suitable assumptions) to local 

rings, much as in [13, (3.14)]. It can also be extended to quasi-local rings which 

contain and are integral over a local ring, much as in [13, (2.17) and (3.20)]. 

However, we content ourselves with the domain case here. Before stating the 
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corollary, we first recall a definition. 

(2.25) DEFINITION. A ring A is said to be a Ci-ring (or, A is said to be C i) 

in case A is Hi,Hi+ 1 and, for each height i prime ideal p in A, all maximal ideals 
in the integral closure of A/p have the same height (= altitude A/p = altitude A - i). 

(2.26) COROLLARY. Assume that (R,M) is a local domain with quotient 

field F. If •l•<a is as in (2.19), then, for all k•>! and x! ..... x k in F such 

that N = (M,x 1 ..... xk)A is proper, where A -- R[x I ..... x k] , A N is C•i_ 1 ..... C a . 
PROOF. By (2.24), D k is H•/_l+k,...,Ha+ k , so D k is C•/_l+k,...,Ca+k_l [11, 

(2.6)]; and clearly D k is Ca+ k . Also, A N = Dk/K, for some prime ideal K in D k . 
Then height K = k, since K is maximal with respect to the property of contracting 

to (0) in R. Therefore AN= Dk/K is C•/_i,...,C a [13, (3.3)], q.e.d. 
We come now to the fourth and final theorem in this section. 

(2.27) THEOREM. Assume that there exist non-negative integers i,j,k such 

that !•<j•<k and D k is H i and Hi•_ j. Then D k is H i ..... Hi•_ j. 
PROOF. Suppose that D k isn't Hi+ r , for some r (0<r<j), and take the 

largest such r. Then i+r+l G S(Dk) (2.5.2), so i+r-k+2 G s(D 1) (2.2.3). 

Now 0 <r (so i-k+l <i+r-k+2) and r<j •<k (so i+r-k+2 •<i+l). Also, D k is H i , 

so D 1 is Hi_k+ 1,...,H i (2.4.4). Therefore, since i-k+l •< i+r-k+l •< i, D 1 is Hi+r_k+ 1 , 

hence i+r-k+2 = a+l (2.5.1). But i+r-k+l <a, since D k isn't Hi+ r (2.4.1); 

contradiction. Therefore, D k is Hi,...,Hi+ j ,q.e.d. 
It is clear from (2.27) that if D k is H i and Hi+ j and isn't Hi+ 1 , then j > k. 
The first part of the following corollary to (2.27) holds without the assumption 

that R is H o (2.17). 
(2.28) COROLLARY. (2.28.1) With j,k as in (2.27), assume that R is 

H o and D k is Hi. Then, for all h •> O, D h is H o ..... Hi. 
(2.28.2) If there exist !•< k<i such that D k is H i , then, for all prime 

ideals p in R such that height p=i-j (0•< ! •< k) and for all h•> O, 

Dh/PD h is H o ..... Hi. 
PROOF. (2.28.1) Since R is H o, D k is H o (2.22). 

Therefore D k is H o ..... Hj (2.27), hence the conclusion follows from (2.23.1). 
(2.28.2) If D k is H i and height p =i-j , then Dk/PD k is Hj (2.4.2.) 

and 0 •<j •< k. Therefore, since, for all h •> 0, Dh/PD h •= (R/p) [X1,...,X h] 



POLYNOMIAL RINGS AND Hi-LOCAL RINGS (II) 111 

(M/p,X 1,...,Xh) , the conclusion follows from (2.28.1), q.e.d. 
(2.29) COROLLARY. If there exist i,j,k such that k • max( 1,i,j} and D k is 

H i and mir/, then, for all h•O, D h is H o ..... Hit / . 
PROOF. By (2.23.1), it suffices to prove that D k is Ho,...,Hi+ j . For this, 

since D k is H i and i • k, D k is Ho,...,H i [ 11, (3.1) ]. Therefore, since j•3c and D k 

is Hi+ j, D k is Ho,...,Hi+ j (2.27), q.e.d. 
The following lemma, which will be used to derive some further corollaries of 

(2.27), is analogous to (2.23.1). 

(2.30) LEMMA. Assume that there exist k•l and i•O such 

that D k is H i ..... Ha•_k_ 1 . Then, for all h •>-k, Dkq_ h is Hi•_ h ..... Ha•_k•_ h . 

PROOF. D k is Hi,...,Ha+ k (2.4.1). Therefore, by (2.4.4), Dk+ 1 is Hi+l,...,Ha+k, 

and is also Ha+k+ 1 (2.4.1). Repeating this Dk+ h is Hi+h,...,Ha+k+ h, for all h•0. 

Also Dk_ 1 is Hi_ 1 ..... Ha+k_ 1 (2.4.4), so repetitions show that 

Dk, h is Hi+h,...,Ha+k+h, for h =-k,...,-1 , q.e.d. 

(2.31) COROLLARY. If there exists k •> 1 such that D k is Ha_ 1 , then, for 

all h •>-k, Dk•_ h is Ha_l•_ h ..... Ha•_k•_ h . 

PROOF. D k is Ha+k_ 1 (2.4.1). Therefore, if D k is Ha_l, then D k is 

Ha_ 1,...,Ha+k_ 1 (2.27). Thus the conclusion follows from (2.30), q.e.d. 
As has already been pointed out, if R satisfies the s.c.c., then, for all 

i •> 0 and k •> 0, D k is H i . In (2.32) the converse is considered. (See also (2.16).) 
(2.32) REMARK. (2.32.1) If k •>a-1 in (2.31), then R satisfies the s.c.c. 

(2.32.2) If k<a-1 in (2.31), then let h be such that k+h=a-1 . 

Then h+l is •> the greatest element in s(D 1) -(a+l}. 
(2.32.3) (cf. [11, (2.12)].) If there exist h•>0 and 0•<i•<h such 

that Da_l+ h is Ha_l+ i , then R satisfies the s.c.c. 
(2.32.4) (cf. [11, (2.13)].) If there exist h•>0 and 0•<i•<h such 

that Da_2+ h is Ha_l+ i , then, for all minimal prime ideals z in R, the integral 
closure of R/z satisfies the c.c. 

PROOF. (2.32.1) By (2.31), D 1 is Ho,...,Ha+ 1 , so D 1 satisfies the f.c.c. [3, 
Proposition 7], hence R satisfies the s.c.c. [7, Theorem 2.21]. 

(2.32.2) By (2.31),D k is Hh+k,...,Ha+k, so the conclusion follows from 
(2.24). 
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then Da_l+h_ i is Ha_ 1 (2.4.4), (2.32.3) If Da_l+ h is Ha_l+ i and 0 •i• h, 
so the conclusion follows from (2.32.1). 

(2.32.4) If Da_2+ h is Ha_l+ i and 0•i•h, then Da_2+h_ i is Ha_ 1 (2.4.4), 
hence the conclusion follows from [11, (2.13)], q.e.d. 

(2.33.1) is somewhat analogous to (2.23.2), and (2.33.2) is in a similar 

relationship to (2.29). 

(2.33) COROLLARY. (2.33.1) If there exist k• 1 and i• 0 such 

that O k is H i ..... Ha_ 1 , then, for all h •>-k , Ok•_ h is Hi•_ h ..... Ha•_k•_ h . 

(2.33.2) If there exist k•> 1 and i•> a-l-ff such that D k is H i and Ha_ 1 , 
then, for all h •>-k, Dk•_ h is Hi•_ h ..... Ha•_k•_ h . 

PROOF. (2.33.1) If D k is Hi,...,Ha_ 1 , then D k is H i .... ,Ha+ k (2.31), so the 
conclusion follows from (2.30). 

(2.33.2) If D k is H i and Ha_ 1 and i•>a-l-k, then D k is Hi,...,Ha_ 1 (2.27), 
so the conclusion follows from (2.33.1), q.e.d. 

(2.34) COROLLARY.Assume that R is an integrally closed local domain 

which is H I and that D k is Hk•_ 1, for some k•> l. Then, for all h•> O, 

o h is ..... 

PROOF. The hypotheses on R imply that D k is H o and H 1 [9, (3.3)]. 

Therefore, since D k is Hk+ 1 , the conclusion follows from (2.27) and (2.23.1), q.e.d. 
(2.35) COROLLARY. If there exist k •> 1 and i•>O such 

that D k is H i and Hi•_k•_ 1, then D k is Hi•_ 1 if and only if D k is Hi•_ 2 if and 

only if"'if and only if D k is Hi•-k' If D k isn't Hi, 1 , then, for all height j 

(i•-I •<j•<i-t-k) prime ideals p in D k , depth p G{a•-k-j, i4-1-t-k-j}. 

PROOF. Assume that D k is H i and Hi+k+ 1. Then, if D k is H h, for someh 

(1 •< h •< k), then D k is Hi,Hi+h,Hi+k+ 1 , so D k is Hi,...,Hi+k+ 1 (2.27). 

Now assume that D k isn't Hi+ 1 , and let p be a prime ideal in D k such 

that height p =j (i+l •<j •<i+k) and d = depth p < a+k-j (D k isn't Hj, by the 
preceding paragraph). Then j+d•<i+k+l (2.4.2), and, clearly, j+dGs(Dk) , so 

j+d-k+l G s(D1) (2.2.3). Therefore either D 1 isn't Hi+d_ k or j+d-k = a (2.5.1). 
Now, by hypothesis, dKa+k-j, so D 1 isn't Hi+d_ k. Also, since D k is H i and Hi+k+l, D1 
is Hi_k+l,...,Hi,Hi+2,...,Hi+k+ 1 (2.4.4). Therefore, j+d-k ½(i-k+l,...,i,i+2,...,i+k+l}. 
But, by the above inequalities, i+l+d-k•<j+d-k•<i+l. Therefore j+d-k=i+l, 
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so d = i+l+k-j, q.e.d. 

To obtain one more corollary to (2.27), the following lemma is needed. For the 

lemma, recall that R is C i (2.25) if and only if, for all height j (j •<i) prime 

ideals p in R, R/p is Ci_ j and either altitude R/p= a-j or •<i-j [13, (3.3)]. 
(2.36) LEMMA. Assume that there exist i •> O, j •> O, and k •> 1 such that, for 

all height j prime ideals p in R, Dk/PD k is H i and either altitude 

Dk/PD k = a•-k-j or •< i. Then the following statements hold: 

(2.36.1) If i•>k, then D k is Hi_/_ j. 
(2.36.2) If k •> i, then D i is Hi•_ j. 
PROOF. If there does not exist a prime ideal p in R such that height p = j, 

then j>a, so i+j>i+a•>k+a and so D k is Hi+ j (2.4.1) and (2.36.1) holds 
(respectively, i+j > i+a and so D i is Hi+ j and (2.36.2) holds). Therefore assume that 
j•<a. If i•>a+k-j-1, then Dk/PD k is H i and D k is H i and D k is Hi+ j (2.4.1). Therefore 
assume that i < a+k-j-1 . Then, by hypothesis 

Hi_k+l,...,H i and either altitude D1/PD 1 --a+l-j or 

(2.4.3), R/p is Ci_ k .... ,Ci_ 1 and either altitude 
since p was an arbitrary height j prime 

and (2.4.4), D1/PD 1 is 
•<i-k+l . Therefore, by 

R/p = a-j or •< i-k. Thus, 

ideal in R, if i•>k, 

then R is Ci_k+j,...,Ci+j_ 1 [13, (3.3)], so D 1 is Hi_k+j+l,...,Hi+ j (2.4.3), and so 
D k is Hi+ j (2.4.4); and, if k•>i, then R is Cj,...,Ci_I+ j (by [13, (3.3)] and since 
the statement that R/p is C_h(h>0) says only that R/p is Ho), so D 1 is 

Hj+ 1 .... ,Hi+ j (2.4.3), and so D i is Hi+ j (2.4.4), q.e.d. 
We close this section with the following corollary of (2.27). 

(2.37) COROLLARY. If there exist integers 0 •< h •< k •< i (k•>l) such that, for 

all height j prime ideals p in R, Dk/PD k is H i and Hi•_ h and either altitude 

Dk/PD k = a-•k-j or •< i, then D k is Hi_•j ..... Hi_•h_•j. 
PROOF. If Dk/PD k is H i and Hi+ h and k •> h , 

then Dk/PD k is H i .... ,Hi+ h (2.27). Therefore the conclusion follows from (2.36.1), 
q.e.d. 

3. A generalization to principal Rees localities. In this section we will generalize 

(2.6) to principal Rees localities (3.3). 

(3.1) DEFINITION. Let (R,M) be a local ring, let B = (b 1 ..... bk)R be an ideal 

in R , let t be an indeterminate, and let u =l/t. Then the ring 
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œ(R,B) = R[tb 1 ..... tbk,u] (M,tbl,...,tbk,U) is called the Rees locality of R with 
respect to B. 

It should be noted that œ(R,(0)) -• D 1 . 
To prove (3.3), the following two facts concerning Rees localities are needed. 

(3.2) REMARK. With the notation of (3.1), fix an ideal B in R and 

let œ = œ(R,B). Then the following statements hold: 

(3.2.1) Altitude œ = a+l (a = altitude R) [7, Remark 3.7]. 

(3.2.2) For a prime ideal p in R, let p+=(pR[t,u]CqR[tb,u]) œ. 

Then height p+ - height p and depth p+ = depth p + 1 . (This follows easily from [7, 
Remarks 3.6(ii) and 3.7] .) 

Also, in the proof of (3.3), the following fact will be used: If there exists a prime 

ideal p in R such that there is a height one maximal ideal N in the integral 

closure S of R/p, then there exists a prime ideal P in D 1 such that PCqR=p, 
depth P- 1 , height P = height p + 1 , and X I+P is integral over R/p and is in the 
quotient field of R/p. (To see this, let x be an element in N such that 1-x is in all 

other maximal ideals in S. Then altitude (R/p) [x] (M/p,x) = 1 , and the existence 
of P easily follows from this.) 

It is known [10, (2.10)] that R is Ci_ 1 (2.25) if and only if, for 

all b C E ={b C M; height bR = 1)U (0}, œ(R,bR) is H i . (3.3) gives a variation of this 

and, at the same time, a generalization of (2.6) (since œ(R,(0)) m D 1) . 

(3.3) THEOREM. (3.3.1) If there exists b GM such that œ--œ(R,bR) is H i, 

then R is H i and i¾-1 ½ s(œ)- {a¾-i ). 

(3.3.2) If R is H i and there exists b G M such that, for all but finitely many 
k, i-31 ½ s(œ(R,bkR)) -{a-31}, then, for all cGE --{bGM;height bR -- 1}t3 {0}, œ(R,cR) is 

PROOF. (3.3.1) If œ is H i , then it follows easily from (3.2.2) that R is H i . 

Also, it is clear that i+l • s(œ) - {a+l} . 
(3.3.2) By (2.4.1), it may be assumed that i<a. Also, by [10, (2.10)], it 

suffices to prove that R is Ci_ 1 . That is, since R is Hi, it suffices to prove that 
there does not exist a height i-1 prime ideal p in R such that there exists a height 

one maximal ideal in the integral closure of R/p. Suppose there exist such p. 

If depth p = 1 , then, for each fixed k, height p+ = i-1 and depth p+ = 2 (3.2.2), so, 
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since i+l •< a, i+l • s(œ (R,bkR))- (a+l}, for all k > 0; contradiction. 
Therefore depth p > 1, so, by the comment preceding this theorem, there exists a 

prime ideal P in D = R[u] (M,u) such that PChR = p, depth P = 1, height P = height 
p+l, and u+P is integral over R/p and is in the quotient field of R/p. Now u ½ P, 

since altitude D/P = 1 < altitude R/p. Let * denote residue class modulo P. Then, 

in D* = D/P, b *k Gu*D*, for all large k (since altitude D* = 1). 
(Possibly b* = 0'.) Therefore, since D[ l/u]/PD[ l/u] = D*[ l/u*] is the quotient 

field of R/p and tbk--bk/u, D*[(tbk) *] = D*, for all large k. Fix a large k, 
let œ = œ(R,bkR), and let P' = (PD[ l/u] rh D[tb k] )œ. (Since u isn't a zero divisor, it is 
clear that œ is a quotient ring of D[tb k] .) Then œ/P' = D/P = D* , so depth P' = 1 . 
Also, height P' = height P = height p + 1 = i. Therefore i+l • s(œ); contradiction. 

Therefore R is Ci_l, q.e.d. 

(3.4) COROLLARY. If D 1 is H i , then, for all b G E (E as in (3.3.2)), 

R,bR) is H i. 

PROOF. If D 1 is H i , then R is H i and i+l ½s(D 1) (2.6), so the conclusion 
follows from (3.3.2) (since 0 G E), q.e.d. 

(3.5) REMARK. If R is a local domain and i+l ½ s(D1), then, for all b•M, 
i+l ½ s(œ(R,bR)), even if R isn't H i. (This follows easily from [12, (2.5)] and the fact 
that D 1 G C .) 

(3.6) COROLLARY. Assume that R satisfies the fc. c. and fix b G E (E as in 

(3.3.2)). Then(i'i-t-lq}s(œ(R,bkR))-{a-t-1}, for all large k}={i'for all cGE, 
œ(R,cR) is H i ). 

PROOF. Let A and B denote the sets on the left and right side of the 

equation, respectively. Then A C_B, by (3.3.2). Conversely, if iGB, then, 

since 0GE, D 1 is H i . Therefore œ(R,bkR) is H i , for all k•> 1 (3.4), 
so i G A (2.5.1), q.e.d. 

The authors don't know if, for b G M, (3.3.2) can be proved under the simpler 

assumption: (+) R is H i and i+l ½s(œ(R,bR))-(a+l}. (Of course, for b=0, 
(+) says that D 1 is H i (2.6), so R is Ci_ 1 (2.4.3), hence, for all c 

œ(R,cR) is H i and i+l ½s(œ(R,cR))-(a+l}, by [10, (2.10)].) However, 
if b Gp (p as in the proof of (3.3.2)), then (+) does suffice (by the proof of 

(3.3.2)). The following theorem shows that (+) always suffices, if R • C. 
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(3.7) THEOREM. (cf [10, (2.12)].)Assume that R C C. If R is H i and there 

exists b CM such that i-t-1 •ks(œ(R,bR))-{a-/-1}, then, for all cGE (E as in 

(3. 3. 2)), •dR,cR) is H i . 

PROOF. By [10, (2.10)], it suffices to prove that R is Ci_ 1 . Therefore, since 

R•C, it suffices to prove that R is Hi_ 1 (since R is Ci_ 1 if and only 

if R is Iti_ 1 and H i [11, (2.19)] (since R GC) and since R is H i,byhypothesis). 

Now it may clearly be assumed that 0 < i < a, so, by (2.5.3), R is Hi_ 1 if and only 

if i ½ s(R). Therefore, assume that i • s(R), and let p be a height i-1 prime ideal 

in R such that depth p=l (2.2.1). Then, for each fixed cCM, 

height p+ = i-1 and depth p+ = 2 (3.2.2), hence i+l • s(œ(R,cR)) -{a+l}. Therefore, 

if there exists b • M such that i+l • s(œ(R,bR)) - {a+l}, then i ½ s(R), 

so R is Hi_l, hence R is Ci_ 1 , q.e.d. 
(3.7) is, clearly, a strong converse of (3.3.1), so, if R GC, then there 

exists b C E such that œ(R,bR) is H i if and only if R is H i and there 

exists c • E such that i+l • s(œ(R,cR))-{a+l}. In this form we have a generalization 

of (2.6) (since D 1 -• œ(R,(0))). 
This section will be closed with an application of (2.14). To prove (3.8), the 

following known result is needed: if there exist k•> 1 and i•> 1 such 

that D k is Hi+k_ 1 , then, for all ideals B = (bl,...,bk)R such that height B•> 1, 

œ(R,B) is H i [10, (4.2)]. 

(3.8) PROPOSITION. If R is Hi•_k_ 1 and i•-I ..... i•-k q• S(Dl)- (a•-I },then, for all 

ideals B =(b 1 ..... bk)R such that height B •> 1, œ(R,B) is H i. 
PROOF. This follows immediately from (2.14) and [10, (4.2)], q.e.d. 

4. A theorem on the f.c.c. In this section we prove, as one application of (4.4), 

that if D 1 is H i and i< œ-1 (with œ as in (2.19)), then (Dk) P satisfies the f.c.c., 

for all k •> 0 and for all prime ideals P in D k such that height P •< i (4.5.2). 

To prove (4.4), we need the following result: 

(4.1) PROPOSITION. Assume that R is H i . Then, for all height i prime ideals 

p in R, Rp is Hi, for all j•>2i- a. 
PROOF. By (2.4.1), it may be assumed that i < a-1 . Let p be a height i prime 

ideal in R, and assume that there exists a prime ideal q C p such 

that j = height q •> 2i-a. Let d = height p/q. Then it suffices to show that j+d = i. 
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Suppose that j+d < i. Then, since p 4= M, by repeated use of [ 1, Theorem 1 ] and [8, 

(2.2)], there exists a prime ideal P in R such that q CP, height P=j+d, 

and depth P = depth p-- a-i (since R is H i ). Now consider a saturated chain of 

prime ideals P C P l C-.. C Pa-i = M. Since 2i•<a+j, a-i•>i-j>i-(j+d)>0 (it is clear 

that j+d > 0). Thus this chain is P C --. C Pi-(j+d) C-.. Pa-i = M. By [3, Lemma 
1], we may assume that height Pi-(j+d) = height P+i-(j+d) = i. However, since depth 
P = a-i, clearly depth Pi-(j+d) = a-i-(i-(j+d)). But R is H i , so depth Pi-(j+d)= a4. 
Therefore a-2i+j+d = a-i, so j+d =i; contradiction. Therefore Rp is Hj, for 
all j •> 2i-a, q.e.d. 

(4.1) allows us to prove the following interesting result: 

(4.2) COROLLARY. If O•<i•<a/2 and if R is H i , then, for all 

height i prime ideals p in R, Rp satisfies the f c.c. 
PROOF. By (4.1), Rp is Hi, for all j •>2i-a. Now, by hypothesis, 2i•<a, 

so Rp is Hj, for all j •>0. Therefore Rp satisfies the f.c.c. [3, Proposition 7], 
q.e.d. 

From (4.2) we get yet another variation of(2.16) and (2.32.3). 

(4.3) COROLLARY. If Da+ 2 is Ha+ 2 , then R satisfies the s.c.c. 

PROOF. (Da+2)(M,X1) satisfies the f.c.c. (4.2), so D 1 satisfies the f.c.c. [8, 
Theorem 4.11], hence R satisfies the s.c.c. [7, Theorem 2.21], q.e.d. 

We now come to the main result in this section. It is the application of this result 

to the results in Section 2 which make it particularly interesting. 

(4.4) THEOREM. If there exists i•>O such that, for all h •> O, D h is H o ..... H i , 

then, for all n •> 0 and for all prime ideals P in D n such that height P •< i, (Dn) P 
satisfies the f c. c. 

PROOF. Let n •> 0 , and let P be a prime ideal in D n such 

that j = height P •< i. Let m = max{n,2j-a}. By [8, Theorem 4.11 ], it is enough to 

show that (Dm)PD m satisfies the f.c.c. Now height PD m = height p = j--•.i and D m is 
Hi, by assumption. Also, m•>2j-a, so j •< (m+a)/2 = (altitude Dm)/2, 

hence (Dm)PD m satisfies the f.c.c. (4.2), q.e.d. 
(4.5) REMARK. The hypothesis of (4.4) is satisfied in the following cases: 

(4.5.1) There exist k•>l and i•<k such that D k is Hi , by (2.17). 

(4.5.2) D 1 is H i , for some i < œ-1 (with œ as in (2.19)), by (2.20). 
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(4.5.3) There exist k • 1 and i % œ+k-2 such that D k is H i (with • as in 
(2.19)), by (2.21.1). 

(4.5.4) There exist k • I and i • 1 such that D k is H 1 .... ,H i , by (2.23.1). 

(4.5.5) There exist k • I and i • k such that D k is Hk,...,H i , by (2.23.2). 

(4.5.6) There exists k • max (l,i, j')such that D k is H i and Hi+ j , by (2.29). 
(4.5.7) R is an integrally closed Hl-local domain and there exists k •3 1 such 

that D k is Hk+ 1 , by (2.34). 
(4.6) œGROLLARY. With the hypothesis of (4.4), for all k • 0 and for all 

prime ideals P in •9 k such that height P%z and depth P•>I, (Dk) P satisfies the s.c.c. 

PROOF. Let k•>0 and let P be a prime ideal in D k such 

that h = height P % i and depth P •> 1. To prove that (Dk) P satisfies the s.c.c., it 

suffices to prove that (Dk+l)PDk+ 1 satisfies the s.c.c. (the proof is straightforward 
by the definition). For this, let P* = (P,Xk+i)Dk+ 1 , so height P* •<i, 

hence (Dk+l)p, satisfies the f.c.c. (4.4). Therefore, since depth P(Dk+l)p, = 1, 

(Dk+l)PDk+ 1 satisfies the s.c.c. [8, Theorem 3.9], q.e.d. 
In analogy to (4.4) and (4.5), the last two results of this section consider the 

opposite extreme. 

(4.7) THEOREM. If there exist i •> O and k •> O such that, for 

all h •>-k, Dk•_ h is Hi•_ h ..... Ha•_ h , then, for all height •>i prime ideals p in R and for 

all n•>O, Dn/PD n satisfies the f.c.c., so Rip satisfies the s.c.c. 
PROOF. By [7, Theorem 2.6], it suffices to prove that, for all prime ideals p 

in R such that height p •>i, R/p satisfies the s.c.c. For this, it suffices to prove 

that D1/PD 1 satisfies the f.c.c. [7, Theorem 2.21]. Now, if p is a prime ideal 

in R such that j = height p •>i, then D1/PD 1 is H1,...,Ha+i_ j (2.4.2); 
and D1/PD 1 is clearly H o. Also, altitude D1/PD 1 •<a+l-j. Therefore D1/PD 1 

satisfies the f.c.c. [3, Proposition 7], q.e.d. 

(4.8) REMARK. The hypothesis of (4.7) is satisfied in the following cases: 

(4.8.1) k = 0 and i = 9-1 (with 9 as in (2.19)), by (2.24). 

(4.8.2) There exist i•>0 and k•>l such that D k is H i .... ,Ha+k_ 1 , by (2.30). 

(4.8.3) There exists k •> 1 such that D k is Ha_ 1 , by (2.31) (let i = a-l). 

(4.8.4) There exist i•> 0 and k •> 1 such that D k is Hi,...,Ha_ 1 , by (2.33.1). 

(4.8.5) There exist k•>l and i•>a-l-k such that D k is H i and Ha_ 1 , by 
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(2.33.2). 

5. Concluding remarks. We close this paper with the following two remarks 

which have the effect of greatly extending and generalizing the results in this paper. 

(5.1) REMARK. Throughout this paper attention has been directed at D k . It is 

conceivable that if a maximal ideal N• (M,X1,...,X k) in R k = R[X1,...,X k] had 
been chosen, then different results would be obtained. This isn't true, if NChR = M, 

since in this case, D k is H i (respectively, C i , satisfies the f.c.c. or the s.c.c.) if and 

only if (Rk) N is H i (respectively, C i , satisfies the f.c.c. or the s.c.c.) [ 14, (5.5)]. 
(5.2) REMARK. Our base ring throughout has been a local ring (R,M). All the 

results in this paper can be generalized to the case where R is replaced by a 

quasi-local ring (S,N) which contains and is integral over R and is such that minimal 

prime ideals in S lie over minimal prime ideals in R. For: (a) by [13, (2.17) and 

(3.18)] and [8, Remark 2.24(ii) and (iv), and Theorem 3.2], R is H i (respectively, 

C i , satisfies the f.c.c. or the s.c.c.) if and only if S is H i (respectively, C i , satisfies 
the f.c.c. or the s.c.c.); (b) by [14, (3.4)], n G s(R) if and only if n G s(S); (c) it is 

clear that D k and S[X1,...,Xk](N,X1,...,Xk ) satisfy the hypotheses on R and S; 
and, (d) it is easily seen that œ(S,B)and œ(R1,B 1) satisfy the hypotheses 

on R and S, where B = (b 1,...,bk)S , R 1 = Rib 1,...,b k] , and B 1 = (b 1,...,bk)R 1 . 
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