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1. Introduction. Let X be a topological space. Then by the covering dimension 

of X, denoted by dim X, we mean, as in our previous paper [5], the least integer n 

such that every finite normal open cover of X is refined by a finite normal open cover 

of X of order •< n+l; in case there is no such an integer n, we define dim X = o•. 

Let A be a subset of X. For each integer n •> 0, let Hn(X,A) be the n-th •ech 

cohomology group of (X,A) with coefficients in the additive group of integers which is 

defined by using locally finite normal open covers of X. 

Let I be the closed unit interval [0,1 ] in the real line and i n the boundary of I n. 

A continuous map f: (X,A)->(I n, in) is called essential if any continuous map 
g: (X,A)->(I n, i n) with glA=flA satisfies g(X)=In; otherwise f is said to be 

inessential. Hence f is inessential iff there is a continuous map g: X->• n which is an 
extension of flA. 

Thus, the following theorem may be viewed as a generalization of the Hopf 

extension theorem. 

THEOREM 1. Let (X,A) be a pair of topological spaces such that dim X/A •< n. 

Then a continuous map f: (X,A)-> (I n, ;)n) is inessential iff f*.' Hn(I n, i n) --> Hn(X,A) is 
zero, where n •> 2. 

Now, let us consider the case where A is C-embedded in X. Then, by Shapiro [8], 

for every locally finite, countable, normal open cover U of A there is a locally finite, 

countable, normal open cover V of X such that V C3 A refines U. On the other hand, 
¾ 

the Cech cohomology groups with coefficients in the additive group of integers are 
¾ 

naturally isomorphic to the corresponding Cech cohomology groups defined by using 

locally finite, countable, normal open covers (cf. [5, Theorem 6.8]). Hence we can 

define the coboundary operator 6: Hn-I(A)->Hn(X,A), and the cohomology 

sequence of (X,A). 
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ß " -> H n-1 (X) • H n-1 (A) -• H n (X,A) ->"- 
is exact, where i: A --* X is the inclusion map. 

In the commutative diagram 

i* Hn-1 (X) > Hn-! (A) 6 
l(fl A)* 

0 , Hn-1 (in) 

the upper and lower sequences are exact. 

, Hn(X,A) 

> Hn(I n, i n) ) 0 

Therefore from Theorem 1 we obtain the following theorem which has the same 

form as the usual Hopf extension theorem. 

THEOREM 2. Let X be a topological space and A a subset of X which is 

C-embedded in X. Let dim X/A •< n and n •> 2. Then a continuous map g: A -> )n can 

be extended to a continuous map from X to )n iff g,Hn-l(]n) C i*Hn-l(x). 
The Hopf extension theorem has been proved hitherto for the following cases. 

I. (X,A) is a relative CW complex and dim(X-A) •< n (Spanier [9] ). 

II. X is a paracompact normal space with A closed and dim X •< n (Dowker [ 1 ] ). 

In case ! the condition "dim(X-A) •< n" is equivalent to "dim X/A •< n", and, as 

was proved in [5 ], dim X •< n implies dim X/A •< n for any pair (X,A) of spaces. 

In both cases A is C-embedded in X. 

In case I the singular cohomology groups are used. But, if (X,A) is a relative CW 

complex, then the •'ech cohomology group Hn(X,A) is naturally isomorphic to the 

corresponding singular cohomology group of (X,A) by virtue of [ 5, Theorem 6.1 ] and 

[9, P. 428], and the cohomology sequence of (X,A) is exact for both cohomology 

groups, and hence the condition "g*Hn-l(i n) C i*Hn'l(x)" remains to be equivalent 
if Hn-I(A) and Hn-I(x) are replaced by the corresponding singular cohomology 
groups. 

Thus, our Theorem 2 contains the Hopf extension theorem for the cases I and II 

above. 

In õ4, Theorem 1 and the arguments in its proof will be applied to covering 

dimension. 

Throughout the paper, N denotes the set of positive integers. 

2. Proof of Theorem 1. Since the "only if" part is obvious, we have only to 
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prove the "if" part. 

Since dim X/A •< n, for any normal open cover G of X there exists a locally finite 

normal open cover H of X such that H is a refinement of G and the order of 

{ H, St(A,H,I H C H, H Cl A = {b} does not exceed n+l. 

To prove this, let G = { G x I X CA} be a locally fifiite cozero-set cover of X and 

let A o= {X c A I G x C3 A v • ½ }. Let {F x I X C A } be a locally finite zero-set cover of 
X such that F x C G x for each X C A. Let us put 

Fo=kJ (Fx [ XGAo}, Go=kJ(Gx [XGAo}. 

Then by [6, Lemma 2.3] F o is a zero-set and G O is a cozero-set. Hence there is a 

continuous map h:X-+I such that h'l(0)=Fo , h-I(1)=X-G o. Let us put 
L= (xGXIh(x)•<«}. Then ACF oCIntL. Hence (G x-L,G OlxGA-A o} is 
the inverse image of a locally finite cozero-set cover of X/A under the quotient map of 

X onto X/A. Hence there is a locally finite cozero-set cover ( HX, H o I X G A - A o } of 
X such that its order does not exceed n+l and 

H x C G x- L for each X GA- Ao; A C H o C G o- 

Then H = ( HX, H o C3 G/a I X G A - Ao,/a G A o } is a locally finite cozero-set cover of 
X and H o = St(A,H). Thus H is a desired cover of X. 

Let ( W i I i G N } be a normal sequence of open covers of I n such that each set 

belonging to W i has diameter •< 1/i. Then there is a normal sequence • = ( U i I i G N } 
of open covers of X satisfying the following conditions: 

(1) U i is a refinement of f-1 (Wi) for i G N, 
(2) order (U, St(A,Ui) I U G Ui, U ch A = • } •< n+l. 
Let (X,•) be a topological space obtained from X by taking { St(x,Ui) I i G N } 

as a local base at each point x of X, and X/• the quotient space obtained from (X,•) 

by identifying two points x and y such that y G St(x,Ui) for each i G N. Let us denote 

by ß the composite of the identity map from X to (X,•) and the quotient map from 

(X,•) to X/•. Then ½: X -+ X/• is a continuous map and the space X/• is metrizable. 

This fact is proved in [4]. 

For any subset K of X let us put 

Int(K;•)= {xGX[ EIiGN: St(x,Ui) cK} . 
Then Int(K;•) is an open set of (X,•) and ;b-lqb(Int(K;•))=Int(K;•).Let us put 
further 
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(3) B i = Int(St(A,Ui);•), 

(4) V i= (Int(U,•)lUcU i). 

Then V i is an open cover of X such that Vi+ 1 > Ui+ 1 > V i where "•" means "is a 

refinement of". Moreover, ( ½(V i) [i c N) is a normal sequence of open covers of 

X/• such that (St(y,½(Vi)) I i 6 N ) is a local base at any point y of X/•. This fact is 
proved in[4]. 

Since 

(5) St(A,Ui+ 1) C B i C St(A,Ui) 
we have 

C1 ½(A) C St(½(A), ½(Vi+ 1)) C ½(Bi) C St(½(A), ½(Vi_ 1)) 
and hence 

(6) C1 ½(A) = c• (½(Bi) { i • N). 
On the other hand, forj •> i+l we have by (5) 

(7) (½(X) - ½(Bi)) t• ½(U) = ½ for U • Uj with U 
Since Vj is a cover of X, we have 

(8) ½(X)- ½(B i) C L• { ½(Int(U; •) [ U • Uj, U C• A = •) . 
From (2), (7) and (8) it follows that the order of ½(Vj) on •b(X)- ½(B i) does not 
exceed n+l forj > i. Hence by Nagata [7] 

(9) dim(½(X) - •b(Bi)) •< n for i C N. 
Therefore, by (6) and by the sum theorem on dimension we have 

(10) dim(X/•- C1 ½(A)) •<n. 

By (1) there is a continuous map g: (X/•, ½(A)) -+ (In,• n) such that f = g o½. 

Let {•ala G,9,) be the set of all normal sequences of open covers of X 

satisfying (1), (2) and (3). If each cover of •a is refined by some cover of •13 we write 

•a < •13; in this case there is a canonical map ½•a: 
then Ca •ø ½• = Ca 7 and if Ca denotes the map from X to X/• a defined above then 
½a=½•o½13 when •a<cb$3 (cf. [4]). As is proved in [5], {½•l a•) defines an 
isomorphism 

li_+m {nn(x/•a, Ca(A)), (½a•) *) -• Hn(X,A). 
Let ga: (X/•a, Ca (A)) • (In' •n) be a continuous map defined above such that 
f = ga ø Ca' Then, if •a < •13 we have g13 = ga øCa •' 

Therefore, if f*: Hn(In,i n) -• Hn(X,A) is zero, then there is some a G CZ such that 
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g•: Hn(I n, i n) -• Hn(x/(I)c•, •c•(A)) is zero. 
Since gc•(Cl•o•(A))C i n, gc• is viewed as a continuous map ha: (X/(I)o•, 

C1 •bo•(A) ) -• (In,i n) and we have gcr = her ø ½o• where •bo•: (X/(I)o•, •bo•(A)) -• (X/(I)o• , 
C1 •o•(A)) is the inclusion map. Since •: Hn(X/(I)o•, C1 •o•(A)) -• Hn(X/(I)o•,•o•(A)) is 
an isomorphism, h•: Hn(I n, i n) • Hn(X/(I)o•, C1 •o•(A)) is also zero. Moreover, by (10) 
dim(X/(I)o•)/C1 •o•(A) •< n. 

Therefore, if the "if" part of Theorem 1 is proved for the case where X is 

metrizable and A is closed in X, then the map h a, and hence gc•, is inessential and 
consequently f is inessential. 

Thus, as for the "if" part of Theorem 1 we have only to prove it for the case 

where X is metrizable and A is closed in X. 

3. Proof of Theorem 1 for the case of metric spaces. Let X be a metric space 

and A a closed subset of X such that dim X/A •<n. Let G = { G x I X C A) be any 
locally finite normal open cover of X. The following argument is given in [2, the proof 

of Theorem 2.2]. 

There exist two collections { PX [ X C A o } and { H x I X G A o} of open subsets 
of X such that A o C A and 

(11) C1PxCHxCGx, AcnPx:/=½forXGAo;ACUP x. 
(12) {AChPxlXGA o} is similar to {H xlxGA o}. 

Since dim X/A •< n, we have dim(X- UP x) •< n and hence by [3, Theorem 1.2] there 
is a locally finite collection V of open subsets of X such that 

(13) V is a refinement of {Hx, X-C1P x } for each XCA o and also a 
refinement of G, 

(14) X-UPxCU {VIVGV}, 
(15) order V •< n+l. 

Let us well-order A o such that A o = { X I X < % } for some ordinal o• o and let QX be 

the union of all V G V such that V c3 PX :/= ½ and V C/Po• = • for each o• with o• < X. 
The sets V GV for which V FIPx= ½ for all X<o• o shall be denoted by 

{ V•I • < t3 o }. Let us put 
WX = PX U QX for X < o• o. 

Then by (13) we have W x C H x for X < o• o. 

IfX 1 <'"<Xr<O• o, v 1 <'"<Vs<t3o and 
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( n wxi) n vvi ) . 9 i=l , 

and if this intersection does not meet A, then r+s • n+l. Indeed, we have then s • 1 

by (12) and hence 

(i•lWXi) • (iOl Vvi) = (i= QXi) • (i= Vvi) 

and hence r+s • n+ 1 by (1 b). Let us put 

U = (Wx, V/• I X(• o,/•(go •. 
Then by (14) U is a cover of X and is a refinement of G. 

Let N(U) (resp. N(U 5• A)) be the nerve of U (resp. U • A) with the weak 

topology. Then by the above consideration each simplex of N(U) which is not 

contained in N(U (q A) has dimension • n (that is, dim(N(U) - N(U • A)) • n). 

Let f: (X,A) -• (I n, i n) be a continuous map such that f*: Hn(I n, i n) -• Hn(X,A) 
is zero. Then there are a locally finite normal open cover U of X and a continuous map 

g: (N(U), N(U (q A)) -• (I n, i n) satisfying the following conditions, where •b: (X,A) -• 
(N(U), N(U • A)) is a canonical map (cf. [5, õ4]). 

(15) f-• go•: (X,A) -•(I n, in), 
(16) g* = 0: Hn(I n, i n) • Hn(N(U), N(U 5• A)), 
(17) dim(N(U) - N(U 5• A)) • n. 

Hence, by Theorem 2 for the case of complexes, which is equivalent to Theorem 

1 in this case as was shown in the introduction and has been proved already (cf. [9]), 

g is inessential. Hence g o•b is inessential. Therefore, by the homotopy extension 

theorem of Borsuk f is also inessential. Thus, the proof of the "if" part of Theorem 1 

for the special case of X being a metric space with A closed is completed. Hence our 

Theorem 1 is completely proved. 

4. Some theorems on covering dimension. A combination of the arguments in 

õ2 with those in õ3 yields the "only if" part of the following theorem. 

THEOREM 3. Let (X,A) be a pair of topological spaces. Then dim X/A • n iff 

for any finite normal open cover G of X there is a locally finite normal open cover U 

of X such that U is a refinement of G and dim N(U)/N(U hA) • n. 

To prove the "if" part, let G TM ( G o, G 1,"', G s } be any finite cozero-set cover 
of X such that it is the inverse image of a finite cozero-set cover of X/A under the 
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quotient map of X onto X/A. Without loss of generality we may assume that A C G o 
and A n G i = • for i • 1. Then by assumption there is a locally finite cozero-set cover 
U of X such that it refines G and dim N(U)/ N(U n A) • n. Then from U we can 

construct a finite cozerooset cover V = {V o, V 1,--., V s } of X such that V i C G i for 
i = 0,1,-",s and that dim N(V) • n, by forming the unions of suitable members of U. 

This proves the "if" part of Theorem 3. 

COROLLARY 4. Let A be C*-embedded in a topological space X. Then dim 

X -- Max(dim A, dim X/A). 

PROOF. If dim X •< n, then dim A •< n and dim X/A •< n by [5, Lemmas 5.8 and 

5.14]. Conversely, suppose that dim A•<n and dim X/A•<n. Let G be any finite 

normal open cover of X. Then there is a finite normal open cover H of X which is a 

refinement of G with dim N(I-I fl A) •< n. Let { H i I i=l,-",p } be the totality of 
H G I-I with H n A 4: 0- By Theorem 3 we can find a finite cozero-set cover V of X 

such that V is a refinement of H and dim N(V)/N(V fl A) •< n. Let us put 

U I=U{VcVIVr3A%o, VCH 1 }, 

Ui= U {V CV I V flA%O, V ½ Hj forj <i, V C H i } 
for 2 •< i •< p; let 

V1,'", Vq 
be the totality of V G V with V 

Assume that 

r 

L=n n( X=l uix tl=l 

for 1 •<i 1 <-.-<ir•< p and 1 •<Jl <"'<js •<q' If LnA4:½ then s=0 and 
r 

RH. nA%O and hence r+s r•n+l. IfLDA=0, then there are •X of V for X=l •X 
1 • X • r such that 

V! Uix r V! (t• s g) •X C for each X and M = n n X=l 91 vj • 

Since M c3 A = • and dim N(V)/N(V fl A) •< n, we have r+s •< n+l. Thus, if we put 

U = (U 1,-", Up, V 1,-'-,Vq }, 
then U is a finite cozero-set cover of X and a refinement of H and hence of G. 

Moreover dim N(U) •< n. This completes the proof of Corollary 4. 

The following theorem is obtained as another application of the arguments in õ 2. 
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In case A = •, by X/A we mean the disjoint union of X and one point. Hence, if G is 

open in X, then X/(X-G) = C1 G/Bd G. 

THEOREM 5. Let G be a normal open cover of a topological space X. If dim 

Ci G/Bd G • n for each G G G, then dim X • n. 

Roughly speaking, Theorem 5 asserts that if X is uniformly locally at most 

n-dimensional then X is at most n-dimensional. 

Before proceeding to the proof of Theorem 5, we shall prove 

LEMMA 6. If { GX I X G A } is a discrete collection of open subsets of X and if 

dim Ci Gx/Bd Gx •< n for each 3, G A, then dim Ci G/Bd G •< n for 

G=U {Gx I X GA}. 
PROOF. The space C1 G/Bd G is homeomorphic to the quotient space obtained 

from the disjoint union of C1 Gx/Bd G x by identifying all the base points of 

C1 Gx/Bd GX to a single point, where the base point of X/A is either the point to 
which all the points of A are identified or the point which is added by definition in 

case A = ½. Hence Lemma 6 is proved easily. 

PROOF OF THEOREM 5. If G and G' are open in X and G C G', then 

dim X/(X-G)•< dim X/(X-G'). Since any normal open cover of X is refined by a 

a-discrete cozero-set cover of X, by Lemma 6 we have only to prove the theorem for 

the case where G is a countable normal open cover of X; let G = { G i I i • N} . 

Let V be any countable normal open cover of X. 

Then there is a normal sequence qb= { U i I i • N } of open covers of X satisfying 
the following conditions. 

(1)' U 1 is a refinement of G and of V, 

(2)' order { U, St(X-Gj, U i) I U G U i, U C Gj } •< n+l for each i >• 2 and j •< i. 
Here X/qb and ½: X -> X/qb have the same meaning as in õ 2. 

Hence by the arguments in õ 2 we have 

(10)' dim(X/• - C 1 ½(X-Gj)) •< n for j G N. 
If we put I• = Int(Gj; qb) (for the notation, cf.õ2), then H= { Hj Ij GN } is an open 
cover of X and 0 -10(Hi) = Hi. Since 0(X-Gj) C 0(X)- 0(Hi), we have 

C3 (C1 ½(X-Gj)[j •N } =•. 
By the sum theorem on dimension, we conclude from (10)' that dim X/cb •< n. The 

theorem follows readily from the last inequality. 
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Combining the arguments in the proof of [5, Theorem 5.2] with Theorem 1, we 

have the following theorem, which is an extension of [5, Theorem 5.2]. 

THEOREM 7. Let (X,A) be a pair of topological spaces such that dim X/A = n, 

and let f: (X,A) --> (I n, i n) be a continuous map. If f is essential, so is the product map 
f x 1.' (X,A) X (I,[) n*! •(I ,I ), where fX 1 isdefined by(fX 1)(x,t)=(ffx),t)for 

x G X, t G I and I n•-l -- I n X I. 

THEOREM 8. If dim X/A --n, then 

dim(X X D/(A X I LJ X X i) -- n•-l. 

PROOF. Since (X/A) X I • (X X I)/(A X I), by [5, Theorem 5.7 and Lemma 

5.14] we have 

dim(X X I)/(A X I U X X i) • dim(X X I)/(A X I) 

=dimX/A+l =n+l. 

On the other hand, by [5, Theorem 5.1 ] and the remark at the beginning of the proof 

of [5, Lemma 5.13] there are a closed subset B of X containing A and an essential 

map f: (X,B) • (I n, in). Hence by Theorem 7, f X 1: (X,B) X (I,•) -• (In+l,i n+l) is 
essential and consequently Hn+I(x X I, (B X I) LJ (X X i)) 4: • by Theorem 1. Since 
(B X I) U (X X i) D (A X I) CJ (X X i), this shows that 
dim (X X I)/(A X I t_J X X I) • n + 1. Thus, Theorem 8 is proved. 

COROLLARY 9 ([5, Lemma 5.13]). Let (X,x o) be a pointed space of finite 
dimension. Then dim SX -- dim X-t-l, where SX is the reduced suspension of X. 
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