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Statistical Mechanics for Truncations of
the Burgers-Hopf Equation:
A Model for Intrinsic Stochastic
Behavior with Scaling

A. Majda and I. Timofeyev

Abstract. In this paper we consider both analytically and numerically
several finite-dimensional approximations for the inviscid Burgers-Hopf
equation. Fourier Galerkin truncation is introduced and studied as a
simple one-dimensional model with intrinsic chaos and a well-defined
mathematical structure allowing for an equilibrium statistical mechan-
ics formalism. A simple scaling theory for correlations is developed that
is supported strongly by the numerical evidence. Several semi-discrete
difference schemes with similar mathematical properties conserving dis-
crete momentum and energy are also considered. The mathematical
properties of the difference schemes are analyzed and the behavior of
the difference schemes is compared and contrasted with the Fourier
Galerkin truncation. Numerical simulations are presented which show
similarities and subtle differences between different finite-dimensional
approximations both in the deterministic and stochastic regimes with
many degrees of freedom.

1. Introduction

One challenging common feature of several important problems in contem-
porary science ranging from short term climate prediction for the coupled
atmosphere-ocean systems [1], [2], [3] to simulating protein folding through
molecular dynamics [4], [5] is the important fact that larger scale features
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have longer correlation times and are more predictable than the general
smaller scale and shorter time scale features of these systems with a huge
number of degrees of freedom. For these intuitive reasons, for example,
many features of the climate are much more predictable than the weather
at a fixed location. Such circumstances naturally suggest the development of
suitable stochastic modeling procedures for the reduced systems involving
only the degrees of freedom with longer correlation times. Systematic math-
ematical strategies to treat such issues have been developed very recently
in different contexts [4], [6], [7]. Here we study simple one-dimensional sys-
tems of equations with such features as highly simplified models for such
behavior. Straightforward numerical experiments with these deterministic
systems presented below establish that they have intrinsic stochastic dy-
namics with many degrees of freedom and longer correlation times on the
larger scales with general features that can be predicted a-priori through
simple mathematical arguments and scaling theories. Thus, such models
provide a simple unambiguous test problem for stochastic modeling strate-
gies for treating unresolved degrees of freedom.

The models which are studied here are the Fourier Galerkin truncated
spectral approximation to the Hopf or inviscid Burgers equation,

ut +
1
2

(
u2

)
x

= 0 (1.1)

as well as suitable spatially discrete finite-difference approximations to (1.1)
which conserve both momentum and energy simultaneously. Various ap-
proximations to the equation in (1.1) have a long history. With various
dissipative terms added to the right-hand side, this equation becomes both
a model for shock dynamics [8] and turbulence theory [9] which can be
solved exactly [10] with extremely predictable behavior associated with
shock formation and propagation. For suitable dispersive terms added to
(1.1), the equations become completely integrable once again with highly
predictable and recurrent behavior [8], [11]. Goodman and Lax [12] have
shown that the simplest naive dispersive difference approximation to (1.1)
has completely integrable behavior for suitable initial data. In contrast, the
approximations to (1.1) introduced here have intrinsic stochastic dynamics
with strong numerical evidence for ergodicity and mixing as well as scaling
behavior so that the larger scales are more predictable with longer correla-
tion times provided that these discrete systems have suitably many degrees
of freedom.



Truncations of the Burgers-Hopf Equation 41

The study of various approximations to the Burgers-Hopf equations in
(1.1) has a prominent history involving the symbiotic interaction of math-
ematical theory and scientific computing to gain insight. Prominent ex-
amples of such interaction are the pioneering discovery through numerical
experiments of clean soliton interaction for the KdV equation by Zabusky
and Kruskal [14] and the related studies of the properties of suitable dis-
persive difference approximation to (1.1) by Goodman and Lax [12] and
Levermore and Liu [20]. Discrete dissipative approximations to (1.1) also
have a prominent historical role in the design of numerical methods for
computing shock dynamics in much more complicated problems such as
gas dynamics, combustion, and magneto-hydrodynamics. For a review, see
the article by Harten [21].

This article is written in the style of research described in the preceding
paragraph where mathematical theory and scientific computing mingle to
give insight on a simplified model, used as a prototype for behavior in
vastly more complex systems of interest in contemporary science. This is
a prominent research “modus operandi” for modern applied mathematics.
For more discussion and recent examples of this mode of research, see the
article by the first author [22].

Here is a brief preview of the remainder of this paper. In Section 2
we briefly summarize the structural properties of systems of ODE’s which
allow for an equilibrium statistical mechanics formulation. The mathemat-
ical properties of the Fourier Galerkin approximation to the Burgers-Hopf
equation which yield an equilibrium statistical theory and statistical predic-
tions for scaling behavior of correlations are presented in Section 3. Several
illuminating exact solutions of the Galerkin approximation to (1.1) also are
discussed in that section. The material in Section 3 is an expanded version
of the discussion in the authors’ very recent paper [19]. Section 4 contains
numerical evidence for ergodicity and correlation scaling for Galerkin trun-
cations which strongly confirms the predictions of the theory in Section 3.
All of the results presented in Section 4 are completely new. In [19], the au-
thors gave numerical evidence validating the statistical predictions with the
classical deterministic initial data, u0 = 2 sin(x), with fifty discrete Fourier
modes. In Section 4 several new results are presented: 1) confirmation of
the statistical predictions with random initial data in a more difficult larger
variance regime together with universal behavior as the number of degrees
of freedom increases systematically; 2) the transition from completely inte-
grable to chaotic to completely ergodic behavior for Galerkin truncations
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with few degrees of freedom; 3) the route in time from very small perturba-
tions of completely integrable exact solutions with short wavelength spatial
structure to a temporal regime with ergodicity, mixing and correlation scal-
ing.

How universal are the results obtained in Section 3 and 4 for Galerkin
truncations of the Burgers-Hopf equation? One way to address this issue is
to study other suitable discrete approximations to (1.1) which fit the statis-
tical framework summarized in Section 2. Natural candidates for such ap-
proximations involve appropriate spatially discrete finite-difference schemes
for (1.1) which conserve both discrete momentum and energy. This is the
topic of Section 5. In the first part of Section 5, the authors introduce a new
simple five-point finite-difference scheme which is consistent with (1.1) and
also conserves both discrete momentum and energy. This difference scheme
is structurally close to the simple scheme utilized by Goodman and Lax
[12] but has radically different mathematical properties as we discuss in
Section 5. Goodman and Lax showed that their difference scheme is com-
pletely integrable for positive initial data. We briefly review the elementary
part of their argument in Section 5 and then give explicit solutions which
rigorously demonstrate that the difference scheme from [12] has many so-
lutions which blow-up in finite time for initial data changing sign. We end
Section 5 by utilizing exact nonlinear solutions of difference schemes which
blow-up in finite time as a criterion to motivate the difference scheme for
(1.1) of Zabusky and Kruskal [14]. This difference scheme provides a second
example which conserves both discrete momentum and energy. In Section
6, discrete Fourier series are utilized to compare and contrast the statistical
and structural properties of the new five-point finite difference scheme and
Kruskal-Zabusky finite-difference scheme in physical space from Section 5
and the Fourier space Galerkin truncation from Section 3. We establish that
these methods actually have different nonlinear dynamics at low wavenum-
bers even as ∆x → 0 than the Fourier Galerkin truncation! Finally, nu-
merical evidence for ergodicity and mixing for both the five-point and the
Kruskal-Zabusky schemes is presented in Section 7 including a comparison
with related numerical results for the Fourier Galerkin truncation method
from Section 3.
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2. A Brief Summary of Equilibrium Statistical
Mechanics for ODE’s

In this paper, we will consider various systems of ordinary differential equa-
tions (ODE’s) given by

d

dt
�w(t) = �F (�w) (2.1)

with �w = (w1, . . . , wN ) and �F = (F1(�w), . . . , FN (�w)). These ODE’s will be
suitable discretizations of (1.1) in either Fourier space or physical space.
The approximations which we study will always conserve a discrete form
of the energy, so that

E(�w) =
1
2

N∑
j=1

|wj |2 (2.2)

is a conserved quantity for the solution of (2.1). The key property for (2.1)
needed to setup an equilibrium statistical mechanics theory is the Liouville
property, i.e. the vector field �F satisfies

div �F =
N∑

j=1

∂Fj

∂wj
= 0. (2.3)

Associated with the ODE’s in (2.1) is the Liouville equation for the
transport of probability measures involving statistical ensembles of solu-
tions of (2.1) given by

∂f

∂t
+

N∑
j=1

∂

∂wj
[Fj(�w)f ] = 0

f |t=0 = f0. (2.4)

In (2.4), f0 is the density on RN of the initial probability measure so that

f0 ≥ 0 and
∫

RN

f0 = 1. (2.5)

The Liouville property in (2.3) guarantees that any smooth function of E,
G(E), is automatically an equilibrium or steady state solution of (2.4).

The natural measures on RN for making measurements for equilibrium
statistical mechanics are the canonical Gibbs measures with density given
by

Gβ(�w) = Cβe−βE(�w), β > 0 (2.6)
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where Cβ is a positive normalizing constant picked to guarantee that Gβ(�w)
is a probability measure. With the property in (2.3), Gβ is a steady state
solution of the Liouville equation in (2.4). The canonical Gibbs measures
in (2.6) are the unique probability measures which maximize over all prob-
ability densities the information theoretic entropy

S(p) = −
∫

RN

p ln(p)dw, p ≥ 0,

∫
RN

p = 1 (2.7)

subject to the mean energy constraint

E =
∫

RN

E(�w)pdw. (2.8)

Here E is a given positive constant and β is the Lagrange multiplier asso-
ciated with this constraint (see [23] for example).

3. The First Model: Galerkin Truncation of the
Burgers-Hopf Equation

To develop the approximation to (1.1) which defines this model, let PΛf =
fΛ denote the finite Fourier series truncation of f ,

PΛf = fΛ =
∑
|k|≤Λ

f̂ke
ikx. (3.1)

Here and elsewhere in the paper it is tacitly assumed that f is 2π-periodic
and real-valued so that the complex Fourier coefficients f̂k satisfy f̂−k = f̂∗

k .
The positive integer, Λ, from (3.1) defines the number of complex-valued
degrees of freedom in the approximation. With these preliminaries, the
model introduced and studied here is the approximation to (1.1)

(uΛ)t +
1
2
PΛ(u2

Λ)x = 0. (3.2)

This is the Fourier Galerkin truncated approximation to (1.1). With the
expansion

uΛ(t) =
∑
|k|≤Λ

ûk(t)eikx, û−k = û∗
k (3.3)

the equations in (3.2) can be written equivalently as the following system
of nonlinear ordinary differential equations for the amplitudes uk(t) with
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|k| ≤ Λ
d

dt
ûk = − ik

2

∑
k + p + q = 0
|p|, |q| ≤ Λ

û∗
pû

∗
q . (3.4)

It is elementary to show that solutions of the equations in either (3.2)
or (3.4) have conservation of both momentum and energy, i.e.

M =
1
2π

2π∫
0

uΛ(t) = û0 (3.5)

and

E =
1
4π

∫
u2

Λdx =
1
2
|û0|2 +

Λ∑
k=1

|ûk|2 (3.6)

are constant in time for solutions of (3.2) or (3.4). The proof for conservation
of energy is as follows:

∂

∂t

∫
u2

Λ = −1
2

∫
uΛPΛ

(
u2

Λ

)
x

= −1
2

∫
uΛ

(
u2

Λ

)
x

= −1
3

∫ (
u3

Λ

)
x

= 0.

(3.7)
The momentum constraint in (3.5) is associated with trivial dynamical

behavior and without loss of generality, we set M = 0, so that û0(t) ≡ 0 in
the formula for the energy, E, in (3.6). Also, all of the sums in (3.4) involve
only k with 1 ≤ k ≤ Λ. In addition to the conserved quantities in (3.5) and
(3.6) the discrete analog ∫

u3
Λdx

is also conserved. Gregor Kovacic and the authors have shown that the
dynamics in (3.2) or (3.4) is a noncanonical Hamiltonian system with the
same symplectic structure as arises for the Korteweg deVries equation. The
implications of this fact for the dynamics and statistical behavior will be
developed elsewhere by Kovacic and the authors in the near future.

It is well known that nontrivial smooth solutions of (1.1) develop dis-
continuities in finite time and thus exhibit a transfer of energy from large
scales to small scales. For functions with ûk(t) identically zero instanta-
neously for k > Λ

2 the approximation in (3.2) or (3.4) represents this energy
transfer exactly; however, once this transfer develops in a general solution
of (3.2) or (3.4), the conservation of energy constraint rapidly redistributes
the energy in the smaller scales to the the larger scale modes. This effect is
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responsible for the intuitive fact that the small scale modes of the system
should decorrelate more rapidly than the large scale modes.

3.1. Equilibrium Statistical Mechanics for the Model

It is natural to utilize the conserved quantity given by the energy, E, in (3.6)
to define an invariant Gibbs measure for equilibrium statistical mechanics
as discussed in Section 2. In order to be able to do this, the ordinary differ-
ential equations in (3.4) need to satisfy the Liouville property in (2.3). As
mentioned in the preceding paragraph, the equations in (3.4) have individ-
ual solutions which exhibit compressible transfer of energy to the smaller
scales. Nevertheless, the equations in (3.4) satisfy the Liouville property
for statistical solutions; to see this, since û0 = 0 and û−k = û∗

k, the modes
ûk = ak + ibk with 1 ≤ k ≤ Λ are the defining modes for the equations in
(3.4). The equation for ûk(t) in (3.4) can be written in the following form
in terms of ak and bk

d
dt

(
ak

bk

)
=

(
V 1

k

V 2
k

)
=


 2k(bka−2k + akb−2k)

−2k(aka−2k + bkb−2k)




plus the terms without ak, bk.

(3.8)

Since ∂V 1
k /∂ak + ∂V 2

k /∂bk = 0 as follows from (3.8) the Liouville property
is satisfied. With this property, the canonical Gibbs measures

Gβ = CβEXP

(
−β

Λ∑
k=1

|ûk|2
)

, β > 0 (3.9)

are invariant probability measures for the statistical dynamics of eq. (3.2)
or (3.4). Given a value for the mean energy, E, from (3.6), β is given by

β =
Λ
E

, with V ar{ak} = V ar{bk} =
1
2β

(3.10)

where V ar denotes the variance. The canonical Gibbs ensemble predicts a
spectrum with equipartition of energy in all modes according to (3.10). We
show below that these statistical predictions are satisfied with surprising
accuracy for Λ of moderate size.
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A Scaling Theory for Temporal Correlations

It is a simple matter to present a scaling theory which predicts that the
temporal correlation times of the large scale modes are longer than those
for the small scale modes. Recall from (3.10) that the statistical predictions
for the energy per mode is E/Λ = β−1; since E/Λ has units length2/time2,
and the wavenumber k has units length−1 the predicted eddy turnover time
for the k-th mode is given by

(
Λ
E

)1/2 1
k

=
√

β

k
, 1 ≤ k ≤ Λ.

If the physical assumption is made that the k-th mode decorrelates on a
timescale proportional to the eddy turnover time with a universal constant
of proportionality, C0, a simple plausible scaling theory for the dynamics
of the equation in (3.2) or (3.4) emerges and predicts that the correlation
time for the k-th mode, Tk, is given by

Tk =
C0

√
β

k
, 1 ≤ k ≤ Λ. (3.11)

Thus, the scaling theory implied by (3.11) shows that the larger scale modes
in the system should have longer correlation times than the smaller scale
modes. This basic qualitative fact is always confirmed in the numerical
simulations for the Fourier Galerkin truncation. The exact quantitative
agreement of computed correlation times with the predictions of the scaling
theory is also reported below in Section 4 and for another case in [19].

3.2. Invariant Low Dimensional Subspaces

Virtually all inhomogeneous systems with many degrees of freedom and
intrinsic stochastic behavior also possess lower dimensional invariant sets
with non-generic and atypical dynamic behavior. Here we show how to
construct large families of lower dimensional invariant subspaces for the
dynamics in (3.2) or (3.4).

To build these invariant subspaces, pick any positive integer k∗ satis-
fying 2 ≤ k∗ ≤ Λ and consider the unique integer N with

Nk∗ ≤ Λ < (N + 1)k∗. (3.12)
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Associated with k∗, we build exact solutions of (3.4) with non-zero Fourier
coefficients only at û±jk∗ for 1 ≤ j ≤ N , i.e. define ũj by

û±jk∗ = ũ±j , 1 ≤ j ≤ N

ûk = 0, k �= ±jk∗.
(3.13)

Functions with Fourier coefficients satisfying the symmetries in (3.13) are
not only 2π-periodic but are also spatially periodic with the smaller period,
2π/k∗. For elegance in notation, given k∗, we rescale time to the faster time
scale τ = k∗t, then a short calculation confirms that the non-zero Fourier
coefficients in (3.13) satisfy the same dynamical equations in (3.4) with 2N
degrees of freedom which are strictly less than 2Λ degrees of freedom in the
general solution of the original system, i.e.

d

dτ
ũk = − ik

2

∑
k + p + q = 0
|p|, |q| ≤ Λ

ũ∗
pũ

∗
q , for |k| ≤ N (3.14)

with ûk(t) = 0 for k �= ±jk∗.
For k∗ with Λ

2 ≤ k∗ ≤ Λ, N = 1 and the equations in (3.14) trivially
yield the time independent steady state

uk∗ = u0
k, any complex constant

uk = 0 for k �= k∗, 1 ≤ k ≤ Λ.
(3.15)

For k∗ with Λ
3 ≤ k∗ < Λ

2 , N = 2 and the non-zero Fourier components
ûk∗ , û−2k∗ are defined through (3.14) with N = 2, i.e.

d

dτ
ũ1 = −iũ∗

1ũ
∗
−2

d

dτ
ũ−2 = i (ũ∗

1)
2 . (3.16)

First, note that equations in (3.16) have the steady state solution defined by
the higher wavenumber ũ−2 = ũ0−2, ũ1 = 0 which corresponds to the steady
state already mentioned in (3.15). Linearized perturbations ũ′

1 about this
steady state satisfy the equation

d

dτ
ũ′

1 = −i(ũ′
1)

∗ũ0
−2 (3.17)

with exponentially growing solution so that these higher wavenumber steady
states are dynamically unstable to lower wavenumber perturbations. This
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is the simplest example exhibiting the tendency of the equations in (3.2) or
(3.4) to transfer energy to larger scales.

In fact, the equations with N = 2 are completely integrable since
conservation of energy implies that |ũ1|2 = E−|ũ2|2 and differentiating the
second equation in (3.16) yields

d2

dτ2
ũ−2 = −2|ũ1|2ũ−2 = −2

(
E − |ũ2|2

)
ũ−2. (3.18)

Following the discussion in [13] we show that the equation in (3.18) is
integrable so the dynamics for N = 2 has regular non-chaotic behavior. We
make the change of variables

û(t)−2 = r(t)eiφ(t) (3.19)

and substitute (3.19) into the equation in (3.18) and separately equate real
and imaginary part to zero. First, from the imaginary part we obtain

2ṙφ̇ + rφ̈ = 0 (3.20)

where {̇} denotes the time-derivative, i.e. {̇} = d
dt . The equation in (3.20)

implies that
d

dt

(
r2φ̇

)
= 0, (3.21)

i.e. r2φ̇ is conserved in time
r2φ̇ = C. (3.22)

Second, from the real part we obtain

r̈ − rφ̇2 = −2(E − r2)r (3.23)

and expressing the time-derivative φ̇ from (3.22) we obtain the second order
differential equation for r alone

r̈ − C2

r3
= −2(E − r2)r. (3.24)

Multiplying the equation in (3.24) by ṙ we immediately recognize that

E =
1
2

(
dr

dt

)2

+ V (r) (3.25)

is constant, where

V (r) = Er2 +
1
2

C2

r2
− 1

2
r4. (3.26)

The conserved quantity in (3.25) is analogous to the energy equation of a
particle, whose position is r(t), subject to the force potential V (r) and the
total energy E , which is fixed by values of ṙ and r at the initial time. The
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transition from complete integrability to ergodic behavior with mixing as
N is increased through N = 3, 4, 5 is one of the topics of the next section.

4. Numerical Evidence for Ergodicity and
Correlation Scaling

In all the numerical simulations presented in this section, a pseudo-spectral
method of spatial integration combined with fourth order Runge-Kutta
time stepping is utilized for (3.4). One can anticipate from (3.9), which
predicts energy equipartition, that in dynamic simulations both the high
and low spatial wavenumbers are equally important so increased spatial
resolution in the pseudo-spectral algorithm is needed. This is achieved by
increasing the length of the array containing the discrete Fourier coefficients
by adding zeros for wavenumbers k with Λ < k ≤ Λ∗ and then performing
the discrete Fourier transform to x-space on this bigger array for pseudo-
spectral computations. The choice Λ∗ ≥ 4Λ works well in practice and is
utilized below. The typical time step for the Runge-Kutta time integrator
is ∆t = 2 × 10−4, with the necessity to use smaller time steps for larger
values of the total energy E (smaller β and/or larger Λ). In all simulations
presented below the energy computed from (3.6) is conserved within 10−4

percent, a relative error of 10−6.
All statistical quantities are computed as time-averages. In particular,

the energy in the k-th mode is computed by

〈|ûk|2〉 =
1
T

T+T0∫
T0

|ûk(t)|2dt. (4.1)

This is a severe test because only the microcanonical statistics for an in-
dividual solution of (3.4) are utilized rather than a Monte-Carlo average
over many random initial data as given by the canonical Gibbs ensemble
in (3.9). The time correlations 〈Re ûk(t+τ)Re ûk(τ)〉 are computed by the
same numerical averaging procedure from (4.1).

The initial data is selected at random with Fourier coefficients uk,
1 ≤ k < Λ − 15 sampled from a Gaussian distribution with mean zero and
variance 0.8 × β−1. The tail Fourier coefficients with Λ − 15 ≤ k ≤ Λ are
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initialized with random phases and equal amplitudes

|uk|2 =
1
15


E −

Λ−16∑
j=1

|uj |2

 , Λ − 15 ≤ k ≤ Λ

to satisfy the energy constraint given by E.
A wide range of simulations of (3.4) have been performed in several

parameter regimes. A detailed numerical study of the equations in (3.4)
with β = 50, Λ = 50 was already reported in [19]. In particular, simula-
tions with the deterministic initial data u0 = 2 sin(x) were discussed and
compared with simulations with random initial data. Numerical results pre-
sented in [19] provide convincing evidence for the validity of the theoretical
predictions of the equilibrium statistical mechanics and the scaling theory
for correlations and also for the ergodicity of the dynamics of the equations
in (3.4). Here we discuss a more difficult regime both computationally and
numerically with the larger variance β = 10 and Λ varying over 50, 100,
200. All three of these truncations exhibit qualitatively similar behavior and
we focus our attention on the numerical simulations with β = 10, Λ = 100.
Some results of the simulations with Λ = 50 and Λ = 200 are presented for
comparison and to emphasize the dependence of the statistical quantities
on the number of Fourier modes in the truncation, Λ.

The numerical results discussed in this section are qualitatively similar
to the simulations with Λ = 50, β = 50 described in [19]. In particular,
the equipartition of the spectrum and the agreement with the predictions
of the scaling theory for temporal correlations for modes with k ≤ 15
were observed in all simulations with surprising accuracy. The results of
the numerical simulations presented in this section support the numerical
evidence about the qualitatively universal behavior of the equations in (3.4).
In the simulation presented here, the initial averaging value, T0 = 100, and
averaging window, T = 5000, were utilized.

The energy spectrum for the real and imaginary parts of the Fou-
rier modes is presented in the top and the bottom parts of Figure 4.1,
respectively. The straight lines in Figure 4.1 correspond to the theoretically
predicted value V ar{Re ûk} = V ar{Im ûk} = 0.05 with β = 10. Clearly,
there is statistical equipartition of energy for times t with t ≥ 100 in the
solution of (3.4); the relative errors mostly occur at large scales and do not
exceed 3.5%.

The time correlations of Re ûk for k = 1, 2, 3, 10, 15, 20 are presented
in Figure 4.2 illustrating the wide range of time scales present in the system.
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Figure 4.1: Galerkin truncation with β = 10, Λ = 100. Energy Spectrum;

Circles - Numerics, Solid Line - Analytical Predictions.

The elementary scaling theory for correlation times developed in (3.11)
is compared with the numerically computed correlation times in Figure
4.3. There the scaling formula in (3.11) is multiplied by a normalization
constant, C0, to exactly match the correlation time for the mode with
k = 1. As shown in Figure 4.3, the simple theory proposed in (3.11) is an
excellent fit for the large scale wavenumbers, k with k ≤ 15, which exhibit
the largest range of scaling behavior for the temporal correlations.

The equipartition of the spectrum and correlation scaling behavior
predicted by the theory in (3.9), (3.10), and (3.11) is very robust. The only
caveat in this discussion is the normalization constant for the correlation
scaling theory in (3.11) which depends upon the correlation time of the
largest scale mode with k = 1.

Correlation functions for mode k = 1 in the simulations with β = 10
and Λ = 50, 100, 200 are depicted in Figure 4.4, which illustrates the
dependence of the correlation time of the Fourier mode with k = 1 (and
thus, the normalization constant, C0, in (3.11)) on Λ. Table 4.1 summarizes
the dependence of the normalization constant on β and Λ in nine different
parameter regimes.
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Figure 4.2: Galerkin truncation with β = 10, Λ = 100. Correlation Functions

for modes k = 1, 2, 3, 10, 15, 20.

Λ\β 10 50 75
50 0.177 0.174 0.1729
100 0.156 0.166 0.1528
200 0.134 0.126 0.1177

Table 4.1: Normalization Constant, C0, in Simulations with β = 10, 50, 75 and

Λ = 50, 100, 200

The normalization constant, C0, is nearly universal for the simulations
with varying β for the same value of Λ, but depends weakly on Λ for
fixed β; however, correlation times for low and high wavenumbers scale
uniformly with Λ and the ratio of the largest to the smallest correlation
time in the system is independent of Λ for all the parameter regimes tested.
Correlation times, Tk, for selected wavenumbers in the three regimes β = 10
and Λ = 50, 100, 200 are presented in Table 4.2. Correlation times for
all modes decrease with Λ and the predictions of the scaling theory are
confirmed by the numerical simulations in all three parameter regimes.
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Figure 4.3: Galerkin truncation with β = 10, Λ = 100. Correlation Times vs

wavenumber k. Circles - DNS, Solid Line - Predictions of the Scaling Theory.

mode \ Λ 50 100 200
1 0.5610 0.5164 0.4240
2 0.2983 0.2447 0.1934
3 0.2055 0.1571 0.1179
25 0.0338 0.0258 0.0212
50 0.0252 0.0204 0.0203
75 N/A 0.0183 0.0202
100 N/A 0.0200 0.0202
150 N/A N/A 0.0200
200 N/A N/A 0.0204

Table 4.2: Correlation Times, Tk, for selected modes for simulations with β =

10, Λ = 50, 100, 200

The statistical predictions of (3.9) go beyond the energy spectrum and
also predict Gaussian behavior for the higher moments. Strong numerical
evidence supporting the Gaussian nature of the dynamics in (3.4) was pre-
sented in [19] for the regimes with β = 50, Λ = 50. Here we reproduce
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Figure 4.4: Galerkin truncation. Correlation Functions of Re û1 for runs with

β = 10 and Λ = 50(Solid), 100(Dashed), 200(Dotted).

results reported earlier in [19] with the larger variance, β = 10, and, also,
perform a harder test of Gaussianity of the dynamics of the equations in
(3.4), namely the comparison of the eighth moment. Unlike for the regime
β = 50, Λ = 50, dynamic range effects are not present in the regime β = 10,
Λ = 100 and we can compute eighth moment with sufficient accuracy. For
a Gaussian distribution in (3.9), the following relationships between second
and higher moments hold

〈|Re ûk|4〉 = 3〈|Re ûk|2〉2 = 3
4β−2

〈|Re ûk|6〉 = 15〈|Re ûk|2〉3 = 15
8 β−3

〈|Re ûk|8〉 = 105〈|Re ûk|2〉4 = 105
16 β−4.

(4.2)

To check the Gaussianity of the dynamics we compute the relative error
between the analytical predictions in (4.2) and numerical estimates given
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by

Rel. Err.{4th Moment} = |〈|Re ûk|4〉 − 3
4β−2| × 4

3β2

Rel. Err.{6th Moment} = |〈|Re ûk|6〉 − 15
8 β−3| × 8

15β3

Rel. Err.{8th Moment} = |〈|Re ûk|8〉 − 105
16 β−4| × 16

105β4.

(4.3)

In Figure 4.5, the relative error in (4.3) for the fourth, sixth, and eighth
moments is computed as a function of wavenumber from the simulations
of (3.4) with β = 10 and Λ = 100. Relative errors in the fourth moment
prediction (the top part of Figure 4.5) are less than 2% for almost all
wavenumbers and never exceed 3.5% with the largest errors for the low
wavenumbers. For the sixth moments (the middle part of Figure 4.5) the
relative errors are less than 5% for most of the wavenumbers and do not
exceed 9% overall. For the eighth moment (the bottom part of Figure 4.5)
the relative errors are about 7-8% for most of the Fourier modes. Thus, the
higher order statistics agrees with the predictions of the invariant measure
in (3.9) and the Gaussianity of the dynamics of the equations in (3.4) is
confirmed with surprising accuracy.
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Figure 4.5: Galerkin truncation with β = 10, Λ = 100. Relative Errors for

Numerical and Analytical Estimates for 4th, 6th, and 8th Moments; Vertical

axis = 10% Relative Error.
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4.1. The Transition from Integrability to Ergodicity with
Few Degrees of Freedom

In this Section we present numerical simulations for the low-dimensional
cases with few degrees of freedom so that N = 3, 4, and 5. Here we use Λ and
N interchangeably. The initial averaging value, T0 = 1000, and averaging
window T = 40000 were utilized in these simulations. The total energy, E,
is conserved up to 10−11, relative error 10−9, in all simulations described in
this section. The initial conditions were selected at random in all simulation
as follows - the first two Fourier modes û1 and û2 were sampled from a
Gaussian distribution with mean zero and variance 0.85 × β−1. Then, the
rest of the Fourier coefficients ûj , j = 3 . . .Λ were initialized with random
phases and identical amplitudes |ûj |2 = (Λβ−1 − |û1|2 − |û2|2)(Λ − 2)−1 to
satisfy the energy constraint E = Λ/β.

For N = 3, the dynamics exhibits a mixture of integrable and chaotic
behavior. Two simulations with different initial conditions are compared in
Figures 4.6 and 4.7. Both initial conditions were selected at random, but
the dynamics is drastically different in these two cases. The time series of
Re û1 for two runs are presented in the top parts of Figures 4.6 and 4.7.
The top part of Figure 4.6 shows regular quasi-oscillatory behavior, while
the top part of Figure 4.7 shows dynamics which resembles chaotic behav-
ior. Correlation functions for Re û1 for these two runs are presented in the
middle parts of Figures 4.6 and 4.7. As expected, the correlation function
computed in the quasi-periodic regime (the middle part of Figure 4.6) does
not decay at all, while the correlation function in the chaotic regime (the
middle part of Figure 4.7) decays to some moderately low values. Nev-
ertheless, the correlation function for the mode with k = 1 in the chaotic
regime does not decay to zero and retains some structure for extremely long
times. The set of initial conditions for which the three-dimensional subsys-
tem exhibits chaotic behavior is rather small; most of the initial conditions
lead to a regular behavior resembling quasi-periodic motion. The energy
spectrum (the bottom parts of Figures 4.6 and 4.7) is not equipartitioned
in either simulation and relative errors between numerical and analytical
estimates are up to 20%, which is another indication that the dynamics on
the three-dimensional subspace is not completely ergodic.

For N = 4 the situation is the reverse. Most of the initial conditions
lead to irregular behavior. Nevertheless, there exist parts of the phase space
in which the correlation function for the mode with k = 1 has a very long
tail, which indicates a significant influence of the coherent structures in
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Figure 4.6: Simulations with N = 3 with regular behavior; Top - Time Series of

Re û1, Middle - Correlation function of Re û1, Bottom - Averaged Spectrum.

the dynamical system. The time evolution of the Fourier mode Re û1 for
N = 4, plotted in the top part of Figure 4.8, resembles the oscillatory
behavior of the Fourier mode Re û1 for N = 3 plotted in the top part
of Figure 4.6. The solution for N = 4 is more chaotic than for N = 3,
but regular behavior is clearly evident in the time series of Re û1, which is
reflected in the extremely long tail of the correlation function for the mode
with k = 1 shown in the middle part of Figure 4.8.

Numerical and analytical estimates for the energy spectrum are pre-
sented in the bottom part of Figure 4.8. Despite the long tail of the cor-
relation function for the mode with k = 1, we observe a reasonably good
agreement with the predictions of the equilibrium statistical mechanics in
(3.10). Nevertheless, the energy spectrum is not exactly equipartitioned;
the relative errors for the mode with k = 1 are about 12% in this simu-
lation which together with slowly decaying correlation functions indicates
insufficient dynamic mixing on the four-dimensional space.

Next, we consider N = 5. The time evolution and correlation function
for the mode Re û1 and the energy spectrum depicted in Figure 4.9 present
convincing evidence that the dynamics of the five-dimensional subsystem
is completely chaotic. The correlation function for mode with k = 1 decays
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Figure 4.7: Simulations with N = 3 with irregular, chaotic behavior; Top - Time

Series of Re û1, Middle - Correlation function of Re û1, Bottom - Averaged

Spectrum.

much faster than for N = 4. The energy spectrum for the simulation with
N = 5 is presented in the bottom part of Figure 4.9. The relative errors in
this case are no more than 3.5% which is consistent with the simulations
with larger Λ described earlier in Section 4.

In all simulation tested we found that a chaotic, mixing regime is
generic behavior for the equations in (3.4) with Λ ≥ 5. We also found that
for any number of degrees of freedom there are sets of initial conditions of
measure zero (phase-locked initial condition, completely identical Fourier
coefficients, for instance) which lead to a non-generic, more regular behavior
with slowly decaying temporal correlations of the Fourier coefficients with
low wavenumbers. Thus, not all of the presumed set of measure zero in the
complement of the ergodic region consists of the invariant subspaces from
3.2.

4.2. Simulations with Initial Conditions as Perturbation of the
Integrable Two-Dimensional Invariant Subspace

In this section the mixing properties of the equations in (3.4) are investi-
gated further by performing numerical simulations with initial data close to
the two-dimensional invariant subspace described in Section 3.2. As we have
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Figure 4.8: Simulations with N = 4; Top - Time Series of Re û1, Middle -

Correlation function of Re û1, Bottom - Averaged Spectrum.

shown earlier, the two-dimensional invariant subspace is completely inte-
grable, but linearly unstable. Here numerical evidence is presented which
shows very strong mixing properties for the equations in (3.4). To contrast
with simulations reported in [19] where all the initial energy is contained
in the mode with k = 1 initially (simulations with the initial condition
u0 = 2 sin(x)) we perform numerical simulations with β = 50 and Λ = 50
and initial conditions where the short wavelength modes û20 and û40 con-
tain 99.9999% of the total energy at time t = 0. Amplitudes of the modes
û20 and û40 are selected to be equal,

|û20|2 = |û40|2 = 0.999999 × E

2
= 0.999999 × 1

2
β−1Λ, j = 20, 40, (4.4)

but the phases are selected at random. The energy of perturbations is con-
tained in the first 19 Fourier modes to allow bigger perturbation per Fourier
mode and to avoid the instantaneous inverse cascade at time t = 0. Fourier
coefficients with 1 ≤ k < 20 are initialized with equal amplitudes

|ûj |2 = 10−6 × E

19
= 10−6 × 1

19
β−1Λ, j < 20 (4.5)
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Figure 4.9: Simulations with N = 5; Top - Time Series of Re û1, Middle -

Correlation function of Re û1, Bottom - Averaged Spectrum.

and random phases. Similar to the simulations discussed in [19] the initial
averaging value, T0 = 50, and averaging window T = 5000 were utilized.
With the time step ∆t = 2.5×10−4 the total energy in (3.6) was conserved
up to 10−6.

The numerical solution exhibits three phases - the first phase, 0 <
t < 1, is dominated by integrable behavior. Almost all of the energy is
contained in Fourier modes with k = 20 and k = 40 and Fourier coefficients
û20 and û40 follow the integrable trajectory, with the periodic exchange
of energy between the two modes, while the energy is also slowly leaked
into the other modes. In the second phase the solution departs from the
integrable behavior and starts exhibiting chaotic, mixing properties. The
solution departs from the integrable trajectory rather fast after 0.1% of
energy has been transferred into the modes with k �= 20, 40 at time t ≈ 1.1.
Fourier modes with k = 20, 40 dominate the dynamics of the second phase
when energy is redistributed between all the modes with k ≤ Λ. Figures
4.10 and 4.11 illustrate the transition to chaos. Snapshots of the numerical
solution, evolution of selected Fourier coefficients in time, and evolution
of the energy in modes with k = 20 and 40 are depicted in Figures 4.10
and 4.11. In the first snapshot at time t = 0 only two frequencies are
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present in the solution. As solution evolves in time, Fourier coefficients
with k �= 20, 40 grow in amplitude and at time t = 1.12 more than two
frequencies are present, but the spatial structure is still dominated by the
modes with k = 20, 40. Next, we observe a very fast transition to chaos
when the numerical solution departs quickly form the integrable trajectory.
The numerical solution at time t = 1.66 depicted in the third snapshot
in Figure 4.10 shows that the solution becomes more chaotic over a very
short time interval, 1.12 ≤ t ≤ 1.66. Finally, in the third phase, after the
time t = 20 the instantaneous spectrum looks completely random and the
dynamics resembles simulation with random initial data as reported earlier.
The graphs of the absolute values of the complex Fourier modes, k = 1, 20,
40, 45, and the energy in modes with k = 20, 40 in Figure 4.11 confirm the
tendency in the first, second and third phases.

Similar to other simulations with β = 50, Λ = 50 the averaged energy
spectrum agrees with the predictions of the equilibrium statistical mechan-
ics and correlation functions exhibit the same behavior as in the simulations
described earlier in this paper or in [19].
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Figure 4.10: Perturbation of the 2D invariant subspace; Solution u(x, t) at times

t = 0, 1.12, 1.66, 20.
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5. Finite-Difference Schemes with
Momentum and Energy Conservation for the
Burgers-Hopf Equation

We are interested in building finite-difference schemes for the equation in
(1.1) in periodic geometry which conserve a discrete form of momentum∫

udx (5.1)

as well as a discrete form of energy

1
2

∫
u2dx. (5.2)

It is also amusing to consider schemes that might conserve a discrete form
of higher powers ∫

u2pdx (5.3)

which are also conserved quantities for the equation in (1.1).
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We are interested in these properties in order to apply methods of
equilibrium statistical mechanics to ensembles of these solutions as simple
models. For statistical mechanics applications it is also necessary to check
the Liouville property discussed in Section 2.

Below we discuss semi-discrete difference approximations to (1.1) that
satisfy

(1) Discrete Conservation of Momentum
(2) Discrete Conservation of Energy
(3) Liouville property

(5.4)

With the properties in (5.4), as discussed in Section 2, we can always write
down a Gibbs ensemble of equilibrium statistical mechanics for the differ-
ence schemes in physical space as we discuss at the end of this section.

5.1. A Simple Five-Point Difference Scheme with
Momentum and Energy Conservation

Consider the semi-discrete five-point difference scheme
duj

dt
+

1
2

uj+1uj+2 − uj−1uj−2

3∆x
= 0. (5.5)

Note that (5.5) is a conservation form difference approximation to (1.1).
With the flux functions, Fj , consistent with (1.1) defined by

Fj =
1
2
uj+ 1

2
uj− 1

2
(5.6)

the scheme in (5.5) can be rewritten as

duj

dt
+

Fj+ 3
2
− Fj− 3

2

3∆x
= 0. (5.7)

From the conservation form in (5.7), it follows automatically that the dis-
crete form of momentum ∑

j

uj (5.8)

is conserved in time.
The discrete energy is also conserved in time by (5.5). To see this, we

compute from (5.5) that

d

dt

1
2
u2

j +
1
2

uj+1uj+2uj − uj−1uj−2uj

3∆x
= 0. (5.9)

Thus, we introduce the nonlinear flux functions

Gj =
1
3
uj−1ujuj+1 (5.10)
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and rewrite the equation in (5.9) using the nonlinear flux functions, Gj , as
follows

d

dt

1
2
u2

j +
Gj+1 − Gj−1

2∆x
= 0 (5.11)

so that the discrete energy,

E =
1
2

∑
j

u2
j (5.12)

is conserved in time.
The difference scheme in (5.5) also satisfies the Liouville property; this

is trivial for (5.5) since
∂Fj

∂uj
≡ 0. (5.13)

5.2. The Goodman-Lax Finite-Difference Scheme

The dispersive difference scheme studied by Goodman and Lax in [12] is
given by

duj

dt
+ uj

uj+1 − uj−1

2∆x
= 0. (5.14)

Note that if the same nonlinear flux from (5.6) is introduced, i.e.

Fj =
1
2
uj+ 1

2
uj− 1

2
, (5.15)

then the scheme in (5.14) can be written in conservation form

duj

dt
+

Fj+ 1
2
− Fj− 1

2

∆x
= 0 (5.16)

so that the scheme in (5.14) conserves the discrete momentum∑
j

uj . (5.17)

For uj > 0 Goodman and Lax observed that (5.14) can be rewritten as

d

dt
lnuj +

uj+1 − uj−1

2∆x
= 0 (5.18)

from which it is follows that

∑
j

ln uj = ln


∏

j

uj


 (5.19)

is conserved in time for uj > 0. Thus, for initial data in the cone with
u0

j > 0, the solution stays positive for the ordinary differential equations
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in (5.14) and exists for all time t > 0. Furthermore, Goodman and Lax
showed that

On the cone of uj > 0, (5.14) is a completely integrable system of
equations which is equivalent to the Toda lattice.

(5.20)

Explicit Examples of Nonlinear Instability for the Goodman-Lax Scheme
with Initial Data Changing Sign

In contrast to (5.20), next, explicit examples are presented which show that
the ordinary differential equations in (5.14) have many oscillatory solutions
which blow up in finite time when the initial data change sign.

The equation in (5.14) has the property that it propagates zeros in the
initial data, i.e. if u0

k is zero, then

uk(t) ≡ 0 (5.21)

for all time for the solution of (5.14). The property in (5.21) is obvious
because the k-th equation in (5.14) has the form, d

dtuk = ukgk(�u). To build
explicit examples of solutions with finite time blow-up, we consider the
solution of (5.14) with the initial data

u0
j with u0

3k = 0 for all k (5.22)

so that u3k(t) ≡ 0 by (5.21). Consider the pair of points u3k+1(t), u3k+2(t)
between the consecutive zero states, u3k(t) = u3k+3(t) ≡ 0. For simplicity in
notation, denote u3k+1(t), u3k+2(t) by a1(t), a2(t), respectively. Then with
(5.22) it is a simple matter to calculate that there are explicit solutions of
(5.14) defined through the coupled ordinary differential equations

da1

dt
+

a1a2

2∆x
= 0

da2

dt
− a1a2

2∆x
= 0 (5.23)

a1(t = 0) = u0
3k+1, a2(t = 0) = u0

3k+2

with u3k(t) ≡ 0, u3k+1(t) = a1(t), u3k+2(t) = a2(t). The equations in (5.23)
trivially have the conserved quantity

a1(t) + a2(t) = Ak (5.24)
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with Ak = u0
3k+1 + u0

3k+2 so that (5.24) reduces to the elementary ordinary
differential equation

da1

dt
=

a2
1

2∆x
− Aka1

2∆x
. (5.25)

The ordinary differential equation in (5.25) has many solutions that blow-
up in finite time. In particular, for initial data that change sign so that
Ak = 0, we have the explicit formula for the solution of (5.14)

u3k(t) = 0, u3k2(t) = −u3k1(t)

u3k1(t) = u0
3k1

(
1 − u0

3k1
t

2∆x

)−1 (5.26)

Thus, there is blow-up in finite time of order O(∆x), for any initial data
for (5.14) consistent with (5.25) so that u0

3k1
> 0 for some k and with

u0
3k2

= −u0
3k1

. In particular,

The difference scheme in (5 .14 ) never conserves
any discrete power

∑
u2p

j for all initial data.
(5.27)

Thus, the conservation properties of the five-point difference scheme in (5.5)
strongly contrast with these for the difference scheme in (5.14) even though
both schemes are based on the same nonlinear flux from (5.6) and (5.15)
with the flux evaluated at slightly different points for (5.5) than for (5.14).
However, it is worth remarking here that the difference scheme in (5.14)
satisfies the Liouville property since

∂Fj

∂uj
= −uj+1 − uj−1

2∆x
(5.28)

so that ∑
j

∂Fj

∂uj
= 0.

Next, we briefly consider the nonlinear difference scheme

duj

dt
+

1
2

u2
j+1 − u2

j−1

2∆x
= 0 (5.29)

which obviously has conservation form with the flux

Fj =
1
2
u2

j . (5.30)

Note that this scheme is also structurally close to the scheme in (5.5).
This scheme also has exact solutions with an ansatz satisfying a restricted
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version of the symmetries in the first line of (5.26) which exhibit nonlinear
instability. Mimicing (5.26), define exact solutions of (5.29) with the form

u3k(t) = 0, u3k+1(t) = a1(t), u3k+2(t) = −a1(t) (5.31)

By substituting the ansatz from (5.31) into (5.29) these functions define
an exact solution provided a1(t) satisfies the nonlinear ordinary differential
equation

da1

dt
= − a2

1

4∆x
, a1(0) = u0

1. (5.32)

Note that this ordinary differential equation for a1 in (5.32) has a coef-
ficients with one-half the magnitude and the opposite sign of (5.25) with
Ak = 0. In particular, the explicit solutions of (5.29) exhibit nonlinear
instability and finite time blow-up provided that u0

1 satisfies u0
1 < 0.

Next, we consider the composite difference scheme combining (5.14)
and (5.29) with the form

duj

dt
+ α

uj(uj+1 − uj−1)
2∆x

+ (1 − α)
1
2

u2
j+1 − u2

j−1

2∆x
= 0 (5.33)

where 0 ≤ α ≤ 1 is a parameter. All of these schemes are consistent with
the Burgers-Hopf equation in (1.1). They admit exact solutions with the
form in (5.31) provided a1(t) satisfies the ordinary differential equation

da1

dt
=

(
α

2∆x
− 1 − α

4∆x

)
a2

1, a1(0) = u0
1. (5.34)

5.3. Another Finite-Difference Scheme with Momentum and
Energy Conservation

We ask whether there is a specific value of α for the composite scheme in
(5.33) so that there are no elementary exact solutions with the structure
in (5.31) exhibiting nonlinear instability through finite time blow-up. From
(5.34), we see that the choice α = 1/3 achieves this. For this value of α the
scheme in (5.33) becomes

duj

dt
+

1
3

(uj+1 + uj + uj−1)
uj+1 − uj−1

2∆x
= 0. (5.35)

This is the scheme introduced by Kruskal and Zabusky [14] in their pi-
oneering numerical studies on soliton interactions. Two phase oscillations
in this scheme have also been studied recently by Levermore and Liu, [20].
Not only does this difference scheme eliminate nonlinear instability, Kruskal
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and Zabusky have observed that it conserves both the momentum and the
energy. In fact the scheme has two local conservation forms

duj

dt
+

Fj+ 1
2
− Fj− 1

2

∆x
= 0

1
2

du2
j

dt
+

Gj+ 1
2
− Gj− 1

2

∆x
= 0 (5.36)

with

Fj+ 1
2

=
1
6

(
u2

j + ujuj+1u
2
j+1

)
Gj+ 1

2
=

1
6

(
u2

juj+1 + uju
2
j+1

)
. (5.37)

The scheme in (5.35) also satisfies the Liouville property since

∂Fj

∂uj
= −1

3
uj+1 − uj−1

2∆x
(5.38)

so that
div �F =

∑
j

∂Fj

∂uj
= 0.

An Important Open Problem for Testing Statistical Theories

Are there elementary difference schemes which have the Liouville property
and conserve, in addition, the 4-th moment∑

j

u4
j

(or some approximation to this quantity) besides the momentum and the
energy? A difference scheme with these properties can be utilized to test
the role of the higher order conserved quantities in the statistical theory
for the simplest one-dimensional example involving the Burgers dynamics.

5.4. Statistical Mechanics for the Difference Schemes

Here we consider difference approximations for the Burgers-Hopf equation,
ut+uux = 0, that have the three properties discussed in (5.4). For concrete-
ness, we consider the difference scheme in (5.5) which, as we established
earlier, has all three properties in (5.4). We consider periodic solutions for
simplicity on the normalized period interval [0, 2π] and assume that there
are 2N+1 discrete distinct points with (2N+1)∆x = 2π, uj(t) = u(j∆x, t),
and �u = (u0, u1, . . . , u2N ). Periodicity requires

uj+2N+1 = uj .
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Associated with this discrete set of points is the normalized discrete inner
product

(
�f,�g

)
∆x

=
∆x

2π

2N∑
j=0

fjg
∗
j =

∆x

2π
�f · �g (5.39)

where �f ·�g is the standard complex inner product on C2N+1 with
(

�f, �f
)

∆x
=

|�f |2∆x.
The momentum constraint,

2N∑
j=0

uj = Const (5.40)

is a rugged constraint satisfied for all solutions and does not have a statis-
tical character. For simplicity, below we consider solutions with zero total
momentum. In contrast, fluctuations in the energy are statistical. As a con-
sequence of the Liouville property any function of the energy is an invariant
measure for the dynamics. However, the most probable invariant measure
for the dynamics given an average total energy and zero total momentum
is the Gibbs measure with dPβ(�u) given by

dPβ(�u) = CβEXP
(
−β

2
|�u|2∆x

) 2N∏
j=0

duj × δ


 2N∑

j=0

uj


 . (5.41)

Our interest in the statistical mechanics of these systems is motivated by
the fact that they should exhibit a wide range of scaling behaviors of corre-
lations with the largest spatial scales having the longest correlations. The
easiest way to check this behavior is to utilize discrete Fourier series and
look at the correlation behavior for fixed spatial Fourier modes in phase
space. It is also interesting to compare the behavior of correlation functions
at large scales for the statistical dynamics of difference approximations as
discussed in Section 5 to those for the Fourier Galerkin truncated Burgers
dynamics which is naturally defined in phase space. Is the behavior univer-
sal at large scales? Not surprisingly, in the next section, we utilize discrete
Fourier series to establish connection between the two methods.
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6. Physical Space and Fourier Phase Space
Representations of Difference Schemes and
Statistical Mechanics

We begin this section with a summary of well-known properties of discrete
Fourier series.

6.1. Summary of Discrete Fourier Series

Given any 2π-periodic function, f(x), we associate with f(x), the discrete
vector �f via

f(x) → [f(0), f(∆x), f(2∆x), . . . , f(2N∆x)] = �f (6.1)

with
(2N + 1)∆x = 2π.

The trigonometric functions eikx = ek(x) for k = 0,±1,±2, . . . are a
complete orthonormal basis with the continuous inner product

(f, g) =
1
2π

2π∫
0

fg∗dx (6.2)

so that
(ek(x), ej(x)) = δk,j , (6.3)

where δk,j is the Kronecker delta. The discrete functions,

�ek =
(
1, eik∆x, ei2k∆x, . . . , ei2Nk∆x

)
for |k| ≤ N are also an orthonormal basis for C2N+1 so that

(�ek, �ej)∆x = δk,j for |k|, |j| ≤ N. (6.4)

For every �f ∈ C2N+1, the discrete Fourier coefficients are given by

f̂∆x
k =

(
�f,�ek

)
∆x

for |k| ≤ N (6.5)

and every �f admits the unique expansion

�f =
∑
|k|≤N

f̂∆x
k �ek, (2N + 1)∆x = 2π (6.6)

with
|�f |2∆x =

∑
|k|≤N

|f̂∆x
k |2. (6.7)
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For real-valued discrete functions, we necessarily have(
f̂∆x

k

)∗
= f̂∆x

−k for |k| ≤ N. (6.8)

Thus, it follows from (6.6), (6.7) and (6.8) that for real-valued functions,
the linear map from R2N+1 to R2N+1 defined by discrete Fourier transform

FT : �f →
[
f̂∆x
0 , f̂∆x

1 , f̂∆x
2 , . . . , f̂∆x

N

]
(6.9)

is an invertible map. This map is an isometry with a suitable norm on
R2N+1 since

|�f |2∆x = |f̂∆x
0 |2 + 2

N∑
k=1

|f̂∆x
k |2. (6.10)

Finally, given a discrete function, �f , we can build the continuous trigono-
metric polynomial interpolant for this function by extending (6.6) so that
we have the map

�f →
∑
|k|≤N

f̂∆x
k eikx. (6.11)

For this smooth interpolant, clearly f∆x
k = fk where fk is the continuous

Fourier coefficient. With these preliminaries, we are finally able to discuss
the relationship between equilibrium statistical mechanics in physical space
and Fourier space.

6.2. The Equivalence of Canonical Measures on Physical Space and
Fourier Space

The canonical Gibbs measure in (5.41) is a measure in physical space. It is
interesting to see the form of this measure in phase space by utilizing the
discrete Fourier representation.

Recall from (6.9) and (6.7) that the map, FT(�u), is a linear map from
R2N+1 to R2N+1. Next, recall the elementary fact: any map such as FT(�u)
from one measure space to another (in this particular case from R2N+1

to R2N+1) induces a corresponding push-forward mapping on probability
measures via the formula∫

R2N+1

Φ
(
û∆x

0 , û∆x
1 , . . . , û∆x

N

)
dFT(v) =

∫
R2N+1

Φ (FT(�u)) dv (6.12)

for all bounded continuous functions Φ. In (6.12) dv is the physical space
probability measure on R2N+1 and dFT(v) denotes the induced probability
measure on phase space, R2N+1.
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Proposition 6.1. The probability measure induced by the Gibbs measure
in (5.41) under the discrete Fourier series mapping FT is given by

dFTPβ

(
û∆x

0 , û∆x
1 , . . . , û∆x

N

)
= CβEXP

(
−β

N∑
k=1

|û∆x
k |2

)
×δ

(
û∆x

0

)
. (6.13)

Thus, the canonical measure in phase space utilized for studying the
statistical mechanics of spectrally truncated Burgers dynamics (TBD) is
precisely the measure induced on phase space by the canonical Gibbs mea-
sure from (5.41) in physical space associated with various finite-difference
approximations. This result links the two approaches and demonstrates
their equivalence with regard to stationary measures.

The proof of the proposition is straightforward. First, from (6.10) the
push-forward of the function, EXP(−β|�f |2∆x) is given by

EXP

[
−β

(
|f̂∆x

0 |2 + 2
N∑

k=1

|f̂∆x
k |2

)]
.

Second, the push-forward of δ

(
2N∑
j=0

uj

)
is C̃δ(û0). With these two facts, it

is easy for the reader to complete the proof.

6.3. Finite-Difference Dynamics as Fourier Space Dynamics

We write the finite difference equation in (5.5),

duj

dt
+

1
2

uj+1uj+2 − uj−1uj−2

3∆x
= 0, (6.14)

equivalently as coupled system of ordinary differential equations in Fourier
space so that this discrete method can be compared to the Galerkin trun-
cated dynamics discussed in Section 3. We use the interpolated Fourier
series

u∆x(x, t) =
∑
|k|≤N

û∆x
k eikx (6.15)

to simplify calculations. We suppress the ∆x superscript below for simplic-
ity. Recall that the equations in (6.14) can be rewritten in conservation
form

duj

dt
+

Fj+ 3
2
− Fj− 3

2

3∆x
= 0 (6.16)

with the flux function
Fj =

1
2
uj+ 1

2
uj− 1

2
. (6.17)
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First, we write the Fourier series expansions for uj+ 1
2

and uj− 1
2

uj+ 1
2

=
∑
|k|≤N

ûke
i k∆x

2 eikx

uj− 1
2

=
∑
|l|≤N

ûle
−i l∆x

2 eilx (6.18)

and compute the Fourier expansion for the flux function

Fj =
1
2
uj+ 1

2
uj− 1

2
=

∑
|m|,|l|≤N

ûmûle
i
(m−l)∆x

2 ei(m+l)x (6.19)

and

Fj+ 3
2
− Fj− 3

2

3∆x
=

=
1

6∆x

∑
|m|,|l|≤N

(
ei(2m+l)∆x − e−i(2l+m)∆x

)
ûmûle

i(m+l)x. (6.20)

Thus, we introduce the symbol

Dm,l =
1

6∆x

(
ei(2m+l)∆x − e−i(2l+m)∆x

)
(6.21)

which is an analog of x-differentiation, so that

Fj+ 3
2
− Fj− 3

2

3∆x
=

∑
|m|,|l|≤N

Dm,lûmûle
i(m+l)x. (6.22)

Next, we need to take into account aliasing since the right hand side
for (6.14) is evaluated at the mesh points, j∆x, i.e.

eikx = ei(k+p(2N+1))x, for x = j∆x (6.23)

and (2N + 1)∆x = 2π. For a fixed k with |k| ≤ N , we need to consider the
contribution from the points

m + l = k ± (2N + 1), 0 < |m| ≤ N, 0 < |l| ≤ N.

The contribution to aliasing is from the modes with

m + l = k − (2N + 1), k > 0
m + l = k + (2N + 1), k < 0.

(6.24)
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Thus, in Fourier space utilizing the discrete Galerkin projection we get the
equivalent dynamics for the difference approximation in (6.14)

d

dt
ûk =

∑
m+l=k

Dm,lûmûl +

∑
m+l=k−2N−1; k>0

Dm,lûmûl + (6.25)

∑
m+l=k+2N+1; k<0

Dm,lûmûl, 0 < |k| ≤ N.

We rewrite equations in (6.25) through the complex conjugates, û∗
m,

û∗
l using the property D−m,−l = Dl,m

d

dt
ûk =

∑
k+m+l=0

Dl,mû∗
mû∗

l +

∑
k+m+l=2N+1; k>0

Dl,mû∗
mû∗

l + (6.26)

∑
k+m+l=−2N−1; k<0

Dl,mû∗
mû∗

l , 0 < |k| ≤ N.

Also we recall that the equations for the Galerkin spectral truncation can
be written in the following (alternative to (3.4)) form

d

dt
ûk = −

∑
k+m+l=0

−imû∗
mû∗

l =
∑

k+m+l=0

i(m + l)
2

û∗
mû∗

l (6.27)

where i(m + l)/2 = −ik/2 corresponds to the operator of differentiation
∂/∂x in physical space. Next, we consider Dl,m and demonstrate that Dl,m

is also a finite-difference approximation to the operator of differentiation
∂/∂x

Dl,m =
1

6∆x

[
ei(2l+m)∆x − e−i(2m+l)∆x

]
=

1
6∆x

[cos(2l + m)∆x) − cos(2m + l)∆x)] +

i

3∆x
sin

(
3(m + l)

2
∆x

)
cos

(
m − l

2
∆x

)
. (6.28)

We can disregard the first term, cos(2l+m)∆x)−cos(2m+ l)∆x), in (6.28)
because of the symmetry between the two coefficients, m and l, entering in
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(6.26). Thus,

lim
∆x→0

Dl,m =
i(m + l)

2
. (6.29)

Similarly, we can show that the finite-difference scheme in (5.35) first
introduced by Kruskal and Zabusky is equivalent to the system of ordinary
differential equations in (6.26) for the discrete Fourier coefficients with a
different approximation, D′

m,l, for the space derivative ∂/∂x

D′
m,l =

i

3∆x

[
sin ((l + m)∆x) + sin

(
(l + m)∆x

2

)
cos

(
(m − l)∆x

2

)]
(6.30)

with the same limit as ∆x → 0, i.e.

lim
∆x→0

D′
l,m =

i(m + l)
2

. (6.31)

6.4. Comparison of the Galerkin Spectral Truncation and
Finite-Difference Schemes and the Role of Aliasing terms

We consider equations in (6.26) in more detail and show that the aliasing
terms might play an important role in the finite-difference approximations.

Explicit Formulas for the Low-Dimensional Case N = 1 First,
we consider the simplest situation with N = 1, so that 2N + 1 = 3. In this
case the only wavenumbers contributing to the equations for the Fourier
coefficients in (6.26) are m, l = ±1. Therefore, the Galerkin spectral trun-
cation trivially reduces to the equation

d

dt
û1 = 0. (6.32)

The first term on the right-hand side of the equation in (6.26) is zero
(there are no wavenumbers m and l satisfying m + l = ±1) but, the finite-
difference equations in Fourier space in (6.26) are non-trivial because of
the contribution of the second aliasing term since for k = m = l = 1, the
condition k + l +m = 2N +1 = 3 is satisfied. Thus, the equations in (6.26)
reduce to a non-trivial ordinary differential equation for û1

d

dt
û1 = D1,1 (û∗

1)
2 (6.33)

Substituting the explicit expressions for Dm,l and D′
m,l we obtain that

the five-point scheme in (6.14) and Kruskal-Zabusky scheme in (5.35) for
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N = 1 are equivalent to the following ordinary differential equation for û1,
respectively,

d

dt
û1 =

i

3∆x
sin (3∆x) (û∗

1)
2 (6.34)

and
d

dt
û1 =

i

3∆x
[sin (2∆x) + sin (∆x)] (û∗

1)
2 . (6.35)

Explicit Formulas for the Wavenumber k = 1 The equations in
(6.26) for k = 1 and general N become

d

dt
û1 =

∑
m+l+1=0

Dl,mû∗
mû∗

l +

∑
m+l+1=2N+1

Dl,mû∗
mû∗

l . (6.36)

The first term in the equation in (6.36) is the usual interaction term com-
mon for the finite-difference approximation and Fourier Galerkin trunca-
tion, but the second term is the contribution from aliasing. The contribution
from aliasing can be rewritten more explicitly as follows

∑
m+l+1=2N+1

Dl,mû∗
mû∗

l =
∑
|l|≤N

Dl,2N−lû
∗
2N−lû

∗
l = DN,N (û∗

N )2 . (6.37)

To collapse the sum to a single term in (6.37), we have utilized the fact
that Dl,m = 0 for |m| > N or |l| > N . It is easy for the reader to check
that as ∆x → 0, lim DN,N �= 0 for either of the two difference schemes with
two different non-zero limiting values.

When the energy in the equations in (6.26) is statistically equiparti-
tioned so that there is a significant energy at the largest wavenumbers, the
contribution from aliasing in (6.37) does not decay as the spatial resolution
of the finite-difference schemes is increased, i.e. ∆x → 0. Similarly we can
show that any of the equations for other wavenumbers will have signifi-
cant contributions from the aliasing terms when there is an equipartition
spectrum. Thus, the two finite-difference schemes are actually two different
models to check statistical behavior besides the Fourier Galerkin method
studied earlier.
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7. Numerical Evidence for Ergodicity and Mixing for
Finite-Difference Schemes

Here numerical evidence is presented which demonstrates that the behavior
of the correlation functions for Fourier coefficients in the Fourier Galerkin
truncation and in the finite-difference schemes in (5.5) and (5.35) is uni-
versal in many respects with some subtle differences. We also contrast the
three discrete approximations for the Burgers-Hopf model to show quanti-
tative difference in the statistics and illustrate the role of the aliasing terms
in the finite-difference approximations.

We do not expect the behavior of either of the difference schemes to
converge exactly to the behavior of the Fourier Galerkin truncation in the
statistical regime with large energies at high wavenumbers. Our reason for
this has already been discussed in Section 6.4; near the statistical equipar-
tition regime, the new aliasing terms for the finite-difference schemes are
not negligible for the dynamics and do not vanish as N → ∞. Nevertheless,
the two difference schemes provide alternative nonlinear dynamics to check
universal features of the statistical predictions which we have established
previously in Sections 3, 5 and 6 of the present paper and already confirmed
dramatically for the Fourier Galerkin truncation. In general, we will find
below that the Kruskal-Zabusky finite-difference scheme from 5.3 has an
equipartition spectrum with ergodicity and mixing with time correlations
that also agree with the predicted scaling theory. On the other hand, the
five-point scheme described in Section 5.1 typically reproduces the equipar-
tition spectrum except for some peculiar behavior near a resonant band of
wavenumber, kr ≈ (2N + 1)/3. In this band there are long range corre-
lations and if (2N + 1)/3 happens to be an integer, we present examples
below where a steady mode can appear at this wavenumber which is not in
equipartition of energy. Thus, the temporal correlation scaling theory for
statistical solutions of the five-point scheme is a much worse approximation
in this case and this approximation can even fail to have mixing dynamics
for a single mode in a bath of modes which display strong mixing.

To compare the five-point finite-difference scheme in (5.5) and the
Kruskal-Zabusky finite-difference scheme in (5.35) with the simulations
with the Fourier Galerkin truncation reported in [19] we perform simu-
lations with the deterministic initial condition u0 = 2 sin(x). At each time
step the discrete Fourier transform is utilized to compute the statistics in
Fourier space. To demonstrate the mixing properties of the finite-difference
schemes the time-averaging of an individual solution is performed; thus,



Truncations of the Burgers-Hopf Equation 79

analogous to the Fourier Galerkin truncation, the energy in the k-th mode
is computed by (4.1). For the simulations with finite-difference schemes the
initial averaging value, T0 = 1000, and averaging window, T = 40000, are
utilized. The total energy in physical space

E =
∆x

4π

2N+1∑
j=1

u2
j (7.1)

has the value E = 1. For fourth-order Runge-Kutta time differencing with
the time step ∆t = 5× 10−4 the energy was conserved within 10−5 relative
error. The value of N is 50, so that the number of the spatial points is
2N + 1 = 101, and the corresponding β is β = 2E/(2N + 1) = 50.5. We
would like to emphasize that in simulations for finite-difference schemes in
(5.5) and (5.35) with 2N +1 spatial points the largest non-zero wavenumber
is N .

Let us recall the results in [19] for simulations with the deterministic
initial condition u0 = 2 sin(x) with the pseudo-spectral scheme. In particu-
lar, in order to compare the simulations for the finite-difference schemes we
reproduce the snapshots of the solution depicted in Figure 7.1, the scaling
of correlation times in Figure 7.2, and also show the correlation functions
for selected wavenumbers in Figure 7.3.

7.1. Kruskal-Zabusky Finite-Difference Scheme

Similar to the simulation with the Fourier Galerkin projection, the nu-
merical solution of the Kruskal-Zabusky finite-difference scheme in (5.35)
exhibits three phases depicted in the snapshots of the solution in Figure
7.4 at times t = 0.4, 0.6, 1.6, 20. Although, like in the Galerkin spec-
tral projection, the energy is transfered into the Fourier modes with high
wavenumbers, k ≈ N , the mechanism of the shock brake-up is different for
the finite-difference scheme in (5.35) compared with the Galerkin spectral
truncation. The solution computed with the Kruskal-Zabusky scheme be-
comes oscillatory near the shock, but remains smooth almost everywhere in
the interval [0, 2π]. As shown in Figure 7.1, the situation for the Galerkin
spectral truncation is exactly the opposite, since after the classical brake-
up time the solution in Figure 7.1 becomes highly oscillatory outside of the
shock on the whole interval [0, 2π].

During the second phase the solution becomes very oscillatory with
an increase of the energy in high wavenumbers and then the energy is
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Figure 7.1: Galerkin truncation. Simulation with β = 50, Λ = 50, u0 = 2 sin(x).

Solution at time t = 0.4, 0.56, 1.56, 20.

redistributed between all the Fourier modes, and by time t = 20 the in-
stantaneous spectrum depicted in Figure 7.5 looks completely random. We
obtain excellent agreement between the predictions of equilibrium statisti-
cal mechanics and the numerical estimates for the spectrum of the Fourier
coefficients presented in Figure 7.6. Clearly, there is a statistical equipar-
tition of energy for times t > 1000. The relative errors are distributed
uniformly in this case, and do not exceed 2%.

Correlation functions for the Fourier coefficients computed in simula-
tions with the finite-difference scheme in (5.35) (Figure 7.7) have very differ-
ent structure than correlation functions computed with the Fourier Galerkin
projection. In particular, the correlation functions for low wavenumbers
presented in Figure 7.7 are highly oscillatory and, thus, become negative,
while correlation functions computed in the simulation with the Galerkin
projection (Figure 7.3) are strictly positive. For k = 1, this feature is clearly
a manifestation of the additional aliasing term from (6.37) in the dynam-
ics. Therefore, in order to test the scaling theory for the Kruskal-Zabusky
finite-difference scheme we need to consider the signed area under the curve
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Figure 7.2: Galerkin truncation. Simulation with β = 50, Λ = 50, u0 = 2 sin(x).

Correlation Times; Circles - DNS, Solid Line - Predictions of the Scaling The-

ory.

of correlation functions. This, essentially, amounts to computing the corre-
lation times as areas under the absolute values of correlation functions of
Re ûk.

The range in time scales of correlations in the individual Fourier modes
varies over 2 decades for the value β = 50.5 in the present simulation. The
elementary scaling theory for correlation times of the Fourier coefficients
developed in (3.11) is compared with the numerically computed correlation
times in Figure 7.8. Numerical results presented in Figure 7.8 demonstrate
that the simple scaling theory works very well for low wavenumbers. The
only qualitative difference with the Galerkin spectral projection (see Figure
7.2) is that the correlation times for higher wavenumbers, k ≥ 35, increase a
little bit with k. This might be explained as a purely numerical issue caused
by utilizing the absolute value of the correlation function for computing the
correlation times; in this case the errors from the unresolved tails might
accumulate and cause the correlation times to increase slightly with k.
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Figure 7.3: Galerkin truncation. Simulation with β = 50, Λ = 50, u0 = 2 sin(x).

Correlation Functions for Re ûk with k = 1, 3, 34, 40.

7.2. The Five-Point Finite-Difference Scheme

Here we illustrate the behavior of the five-point finite-difference scheme
in(5.5). The numerical solution and instantaneous energy spectrum de-
picted in Figures 7.9 and 7.10, respectively, illustrate that the mechanism
of energy transfer for the five-point scheme in (5.5) is qualitatively similar
to the Kruskal-Zabusky finite-difference scheme discussed previously. The
snapshots of the numerical solution computed with the five-point scheme
shown in Figure 7.9 are similar to the snapshots of the solution in Figure
7.4. In particular, in contrast with the Fourier Galerkin truncation, when
the energy is transfered to higher modes the numerical solution becomes
more oscillatory near the shock. The energy transfer is a little bit slower for
the five-point scheme compared with the Kruskal-Zabusky scheme. At time
t = 1.6 the numerical solution in Figure 7.4 (Kruskal-Zabusky scheme) is
more oscillatory than the numerical solution computed with the five-point
scheme presented in Figure 7.9. This is also reflected in the instantaneous
energy spectrum, which is distinctly peaked at high wavenumbers for the
Kruskal-Zabusky scheme, but is flatter at high wavenumbers for the five-
point scheme.
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Figure 7.4: Kruskal-Zabusky Scheme with N = 50, β = 50.5, u0 = 2 sin(x);

Numerical Solution at time t = 0.4, 0.6, 1.6, 20.

The energy spectrum computed with the five-point finite-difference
scheme is depicted in Figure 7.11. Similar to the simulations with the
Kruskal-Zabusky scheme we obtain a reasonably good agreement with the
prediction of equilibrium statistical mechanics. The largest errors are ac-
cumulated near the wavenumber kr = 34 ≈ (2N + 1)/3, but do not exceed
5.5%. Correlation functions for wavenumbers k = 1, 3, 34, 40 and cor-
relation times are presented in Figures 7.12 and 7.13, respectively. The
wavenumber kr = 34 ≈ (2N + 1)/3 plays a special role for the five-point
scheme and will be discussed later in this section. The rate of decay of the
correlation function for Re û34 is much slower than for the Re û1, which is
reflected in a sharp peak in the graph of correlation times in Figure 7.13
at k = 34. This phenomena is probably caused by a resonance between the
nonlinear interaction terms and aliasing terms in the equations in (6.26).
We found that the resonant wavenumber kr scales with N and the formula

kr ≈ 2N + 1
3

(7.2)

holds for all the regimes we have tested. To demonstrate this, we present
numerical results for the simulations with N = 300. For N = 300, the
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Figure 7.5: Kruskal-Zabusky Scheme with N = 50, β = 50.5, u0 = 2 sin(x);

Instantaneous Spectrum at time t = 0.4, 0.6, 1.6, 20.

resonant frequency in (7.2) is kr = 200. The dependence of correlation
times on the wavenumbers for N = 300 is depicted in Figure 7.14.

Similar to the simulation with N = 50, Fourier modes with k ≈ kr

have the largest correlation times and the position of the peak in Figure
7.14 is shifted to kr = 200 according to (7.2).

We also found that in simulations with the five-point scheme correla-
tion times for low wavenumbers decay faster than predicted by the scaling
theory for correlations in (3.11). In particular, correlations times seem to
obey a different power law

Tk ∼ k−3/2.

Log-log plot of correlation times for the 30 first low Fourier modes ver-
sus the wavenumbers for the simulations with N = 300 is presented in
Figure 7.15. A comparison with the same plots for the Fourier Galerkin
truncation is also given on the same Figure. The solid line in Figure 7.15
corresponds to the power law k−3/2 and the dashed line corresponds to the
power law k−1. Clearly, correlation times for low wavenumbers, 1 ≤ k < 10,
decay according to the power law k−3/2 for the five-point scheme. For the
Fourier Galerkin truncation (see Figure 7.15) correlations for the large scale
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Figure 7.6: Kruskal-Zabusky Scheme with N = 50, β = 50.5, u0 = 2 sin(x);

Energy Spectrum; Circles - DNS, Solid Line - Canonical Predictions.

wavenumbers, 1 ≤ k < 30, decay according to the k−1 power law predicted
by the scaling theory.

The discrepancy between the numerical and analytical estimates for
the rate of decay of correlation functions for the five-point difference scheme
might be explained by the failure of exact equipartition of energy for the
modes around k = kr. As we noted earlier, the largest discrepancies for the
energy spectrum are concentrated at the wavenumber kr.

To analyze the role of the wavenumber kr = (2N + 1)/3 we consider
special steady state solutions of the five-point and the Kruskal-Zabusky
schemes. It is easy to construct large families of steady state solutions of
the five-point difference scheme in (5.5) following the discussion in Section
5.2 for the Goodman-Lax scheme. Define the grid values, u0

j , to satisfy

u0
3k = 0

u0
3k+1u

0
3k+2 = Q0 (7.3)

with Q0 a fixed constant. An explicit calculation establishes that these val-
ues define a steady state of the five-point difference scheme in (5.5). For the
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Figure 7.7: Kruskal-Zabusky Scheme with N = 50, β = 50.5, u0 = 2 sin(x);

Correlation Functions for Re ûk with k = 1, 3, 34, 40. Note that the correlation

functions for Re ûk with k = 1, 3 oscillate through zero.

special case with u0
3k+1 = a1, u0

3k+2 = a2 independent of k and a1, a2 arbi-
trary constants, such solutions are periodic with period 3∆x. Such steady
states have a unique non-zero discrete Fourier coefficient û0

kr associated
with the given mesh, ∆x, if and only if for some integer kr with |kr| ≤ N ,
kr = (2N + 1)/3, i.e. kr is exactly the wavenumber associated with the
resonant value observed in the simulations. The existence of these steady
states provides a simple link between theory and simulations. However, for
such steady states to provide an explanation of what is actually observed
in the simulations, they need to be nonlinearly stable.

We comment here that the stability of such steady states for energy
conserving difference schemes can be quite subtle. Recall from the beginning
of Section 5.3, that we motivated the Kruskal-Zabusky difference scheme
through the requirement that simple solutions exhibiting nonlinear insta-
bility are suppressed. That argument demonstrates that there are similar
simple “resonant” steady state solutions of the Kruskal-Zabusky scheme
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Figure 7.8: Kruskal-Zabusky Scheme with N = 50, β = 50.5, u0 = 2 sin(x);

Correlation Times; Circles - DNS, Solid Line - Predictions of the Scaling The-

ory.

with period 3∆x of the form,

u0
3k = 0

u0
3k+1 = a (7.4)

u0
3k+2 = −a

where a is an arbitrary constant. The numerical evidence presented above
suggests that these steady states play no role in the general dynamics of
the Kruskal-Zabusky difference scheme and are nonlinearly unstable in con-
trast to the conjectured stability of those steady states for the five-point
difference scheme.
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Figure 7.9: 5-Point Scheme with N = 50, β = 50.5, u0 = 2 sin(x); Numerical

Solution at time t = 0.4, 0.6, 1.6, 20.

We address the issue about the stability of the steady states in (7.3)
and (7.4) numerically and perform two numerical experiments for the five-
point and the Kruskal-Zabusky schemes with N = 100 and small pertur-
bation of the initial data

u0
3k = 0

u0
3k+1 = 2.42 (7.5)

u0
3k+2 = −2.42.

The energy of this steady state is E = 1.952. We perturb the initial condi-
tion in (7.5) in Fourier space. The energy of perturbations is 1.9%, so that
the total energy in the simulations is Etot = 1.98 and β ≈ 50.51.

Time evolution of the Fourier coefficients with k = 1, k = 66, k = kr =
67 and k = 68 for the five-point scheme and the Kruskal-Zabusky scheme
are presented in Figures 7.16 and 7.17, respectively. Fourier coefficients with
k �= kr for the five-point scheme do not grow in time and are O(10−4) over
the whole length of the numerical simulation and Fourier coefficient with
k = kr settles to a steady state with a value close to the steady state in (7.5).
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Figure 7.10: 5-Point Scheme with N = 50, β = 50.5, u0 = 2 sin(x); Instanta-

neous Spectrum at time t = 0.4, 0.6, 1.6, 20.

The instantaneous spectrum in this simulation always has kr as the domi-
nant wavenumber. On the other hand, we observe very rapid energy transfer
from ûkr to other modes for the Kruskal-Zabusky scheme. The Fourier coef-
ficient ûkr decays fast for the simulation with the Kruskal-Zabusky scheme
and by time t = 5 the instantaneous spectrum looks completely random.
Therefore, numerical evidence indicate that steady states in (7.5) are indeed
nonlinearly stable for the five-point scheme and cause energy discrepancies
for the mode with k = kr as well extremely long correlations for a few
Fourier modes with k ≈ kr.

8. Concluding Discussion and Future Directions

In the previous sections, the authors have introduced simple models for one-
dimensional dynamics which are suitable approximations of the Burgers-
Hopf equation in (1.1) involving either the Galerkin projection on Fourier
modes or suitable finite-difference approximations which conserve both mo-
mentum and energy. Unlike the celebrated dissipative and dispersive ap-
proximations to (1.1) which exhibit exactly solvable and/or completely in-
tegrable behavior, the numerical evidence presented here indicates strong
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Figure 7.11: 5-Point Scheme with N = 50, β = 50.5, u0 = 2 sin(x); Energy

Spectrum; Circles - DNS, Solid Line - Canonical Predictions.

intrinsic chaos with ergodic behavior in the models. Furthermore, the math-
ematical structure of the models including conservation of momentum, en-
ergy and the Liouville property, allows for simple statistical predictions for
the models which are strongly confirmed by the numerical experiments.
The models exhibit intrinsic slower decay of temporal correlations at larger
scales and the increased predictability of the larger scale motions. This is
one of the main achievements of the present paper. Furthermore, simple
scaling theories for the behavior of the correlations have been developed
and these predictions are also supported and confirmed by the numerical
evidence reported here provided there are sufficiently many degrees of free-
dom. There are also some amusing discrepancies for the five-point difference
scheme which are documented at the end of Section 7.

Several intriguing issues regarding the models are worth pursuing in
the future. The equation in (1.1) also conserves the higher invariants,

∫ |u|p.
Thus, are there suitable approximations to (1.1) which conserve momen-
tum, energy and a discrete version of at least one of the higher invariants
and also have the Liouville property with a well-defined statistical theory?
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Figure 7.12: 5-Point Scheme with N = 50, β = 50.5, u0 = 2 sin(x); Correlation

Functions for Re ûk with k = 1, 3, 34, 40. Note the extremely slow decay of

correlations at k = 34.

The original motivation of the “toy” models developed here is to uti-
lize these models to check reduced stochastic modeling procedures for more
complex physical or biological models with a range of correlations on a
simple unambiguous one-dimensional model system that exhibits such be-
havior. Cai, Vanden Eijnden, and one of the authors have done this for the
model and report on this work elsewhere [15].

Spectrally truncated approximation for idealized geophysical flows that
conserve both energy and enstrophy play an important role in building
idealized climate models [16], [17] where various facets of observational
as well as computational [18] and stochastic [6], [7] modeling phenomena
can be checked in a relatively unambiguous context. The even simpler one-
dimensional models proposed here have the potential to provide more math-
ematical insight on a variety of the issues encountered in these problems. In
that context, as discussed by Leith [16], an important issue is the validity
of the fluctuation-dissipation theorem. It is very interesting to test both the
fluctuation-dissipation theorem and various practical predictability strate-
gies for the models in this paper with a wide range of scaling behavior for
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Figure 7.13: 5-Point Scheme with N = 50, β = 50.5, u0 = 2 sin(x); Correlation

Times; Circles - DNS, Solid Line - Predictions of the Scaling Theory.

correlations. The authors plan to address these questions for the models in
this paper with other collaborators in the near future.

There is another discrete model system of ODE’s, the Orszag-
McLaughlin model [24] given by the finite-difference scheme

duj

dt
= uj+1uj+2 + uj−1uj−2 − 2uj+1uj−1 (8.1)

which conserves energy, but not momentum. Clearly this model is not con-
sistent with the Burgers-Hopf equation in (1.1) or any other differential
equation in any sense. Nevertheless, this model has chaotic dynamics and
Carnevale, et al [25] have utilized the model to provide an interesting test
of the fluctuation-dissipation theorem. It is unclear whether these models
exhibit a wide range of scaling behavior for correlations. Thus, it is also
interesting to compare the statistical behavior in these models with that in
the new models presented in this paper. The authors plan to do this in the
near future.
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