Example 1: Evaluate.

$$
\begin{aligned}
& -10-24+6=-34+6=-28 \\
& \rightarrow \\
& \rightarrow 2 \div 6 \cdot 4=12 \cdot 4=48 \\
& 4-3(12 \div 6 \cdot 2)=4-3(4)=4-12=-8
\end{aligned}
$$

Example 2 Find the least common multiple (LCM) of:

$$
\begin{aligned}
& 18,20=2^{2} \cdot 3^{2} \cdot 5 \\
&=4 \cdot 9 \cdot 5 \\
&=180 \\
& 16,36
\end{aligned} \quad \begin{aligned}
L C M & =2^{4} \cdot 3^{2} \\
& =16 \cdot 9=147
\end{aligned}
$$

$$
\begin{array}{ccc}
18 & 20 & 18=2 \cdot 3^{2} \\
\Lambda & \Lambda & 20=2^{2} .5
\end{array}
$$

$$
25
$$

$\begin{array}{ccc}16 & 36 & 16 \\ \Lambda & \Lambda & 36 \\ 2 & 8 & 66 \\ \Lambda & \Lambda & \\ 3 & 2 & 3\end{array}$

$$
\begin{equation*}
x^{-n}=\frac{1}{x^{n}} \tag{22}
\end{equation*}
$$

$$
\begin{gathered}
\left(\frac{4 x^{-6} y^{14} x^{2}}{2 x^{-3} y^{4}}\right)^{2}=\left(\frac{44 x^{-4} y^{14}}{2 x^{-3} y^{4}}\right)^{2}=\left(\frac{2 x^{-4} y^{14}}{x^{-3} y^{4}}\right)^{2}=\left(\frac{2 x^{36} y^{14}}{x^{4} y^{4}}\right)^{2} \\
=\left(\frac{2}{x} y^{14-4}\right)^{2}=\left(\frac{2}{x^{2}} y^{10}\right)^{2}=\frac{4 y^{20}}{x^{2}} \frac{x^{n}}{x^{m}}=x^{n-m} \\
\frac{x^{3}}{x^{4}}=x^{3-4}=x^{-1}=\frac{1}{x}
\end{gathered}
$$

Math 1300 Final Exam Review

$$
\begin{aligned}
& \sqrt{96}=\sqrt{16 \cdot 6}=\sqrt{16} \cdot \sqrt{6}=4 \sqrt{6} \\
& \sqrt{75}=\sqrt{25 \cdot 3}=\sqrt{25} \cdot \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& 4=2^{2} \\
& 9=3^{2} \\
& 16=4^{2} \\
& 25=5^{2}
\end{aligned}
$$

Example 4: Let $-4 x+7 y=56$. Find the y-intercept.

$$
\text { set }=0
$$

$$
3+7 y=56
$$

$$
\frac{79}{7}=\frac{56}{7}
$$

$$
\begin{array}{ll}
y=8 & (0,8) \\
\hline
\end{array}
$$

Example 5: Let $\frac{3 y}{3}=\frac{-7 x}{3} \frac{-10}{3}$. Find the slope and the y-intercept

Example 6: Find the slope of the line that passes through $(-8,4)$ and $(-3,-6)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-3-(-8)}=\frac{-10}{-3+8}=\frac{-10}{5}=-2
$$

$x_{1} y_{1} \quad m$
Example 7: Find the equation of the line that passes through $(-2,8)$ and has slope 4.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-8=4(x-(-2))
\end{aligned}\left\{\begin{array}{l}
y-8=4(x+2) \\
y-8=4 x+8 \\
+8+8 \\
y=4 x+16
\end{array}\right.
$$

Example 8: Complete the table given. Then sketch the graph of the line $y=4 x-$ 16 by plotting the points in the completed table

x	y
-2	-22
4	0
1	-12

$$
\left.\begin{aligned}
& y=4(-2)-16 \\
&=-8-16 \\
&=-22 \\
& 0=4 x-16 \\
&+16 \\
&+16
\end{aligned} \right\rvert\, \begin{aligned}
& y=4(1)-16 \\
& \\
& =4 \\
& \frac{16}{4}=\frac{4 x}{4} \\
& 4=x \\
& x=4
\end{aligned}
$$

Example 9: Find the coordinates of the y-intercept for: $y=-4 x^{2}-8 x+2$.

$$
\begin{gathered}
\text { set } x=0 \\
y=-4(0)^{2}-8(0)+2 \quad y=2 \\
(0,2)
\end{gathered}
$$

Example 10: Let $f(x)=-3 x^{2}+10$. Find

$$
\begin{aligned}
f(-2)= & =-3(-2)^{2}+10
\end{aligned}=-3(4)+10
$$

Example 11: Simplify.

$$
\begin{aligned}
& \left(4 x^{2}-2 x+9\right)-\left(5 x^{2}-7 x-1\right) \\
& =4 x^{2}-2 x+9-5 x^{2}+7 x+1 \\
& =-x^{2}+5 x+10 \\
& (x-5)(x+7) \quad \text { FOIL } \\
& =x^{2}+7 x-5 x-35 \\
& =x^{2}+2 x-35 \\
& (x-4)(x+4) \quad(a-b)(a+b)=a^{2}-b^{2} \\
& =x^{2}-4^{2}=x^{2}-16
\end{aligned}
$$

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

$$
\begin{aligned}
& \text { Example 12: Factor. } \\
& \begin{array}{c}
16 x^{2}-144 \\
\uparrow \\
16 \cdot 9
\end{array}=16\left(\begin{array}{cc}
x^{2}-9 \\
\uparrow & (3) \\
9 & p
\end{array}\right)=16(x-3)(x+3) \\
& =\begin{array}{c}
x^{2}+13 x+36 \\
(x+9)(x+4)
\end{array} \\
& \text { Factors of } 36 \\
& \text { Add up to B } 9,4
\end{aligned}
$$

$$
\frac{x^{2}+2 x-48}{(x+8)(x-6)}
$$

Factors of -48 8,-6
Add up to 2

$$
\begin{aligned}
x^{3}-9 x^{2}+4 x-36= & x^{2}(x-9)+4(x-9) \\
& (x-9)\left(x^{2}+4\right)
\end{aligned}
$$

Example 13: Solve for x .

$$
\begin{aligned}
& x^{2}-9=0 \\
& (x-3)(x+3)=0 \\
& x-3=0 \quad x+3=0 \\
& x=3 \quad x=-3
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{l}
x^{2}-5 x-84=0
\end{array} & \text { Factors of }-84 \\
(x-12)(x+7)=0 & \text { Add up to }-5 \\
x-12=0 & x+7=0 \\
x=12 & x=-7
\end{array}
$$

Example 14: Find the domain of $f(x)=\frac{x+5}{x-7}$

$$
\begin{gathered}
x-7=0 \\
x=7
\end{gathered}
$$

