Rules for exponents

1. $a^{0}=1$
2. $a^{-n}=\frac{1}{a^{n}}$
3. $a^{\frac{1}{n}}=\sqrt[n]{a}$
4. $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$
5. $a^{m} a^{n}=a^{m+n}$
6. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
7. $\left(a^{m}\right)^{n}=a^{m n}$
8. $(a b)^{n}=a^{n} b^{n}$
9. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
10. For $b \neq 1, b^{x}=b^{y}$ means $x=y$.

Absolute Value Equations

To solve the equation $|x|=C$, use the following properties:
If C is positive, then $|x|=C$ is equal to $x= \pm C$.
If C is negative, then $|x|=C$ has no solution.
If C is zero, then the solution of $|x|=C$ is $x=0$.

The Distance and Midpoint Formula

For any two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ the distance between them is given by

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The midpoint of the line segment joining A and B is $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Lines, Slopes, and Intercepts

You can find the slope of a line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ by using this formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Lines with slope equal to 0 are horizontal lines.
Lines with undefined slope are vertical lines.
To find x-intercept set $y=0$, solve for x. Point form: $(x-\operatorname{int}, 0)$.
To find y-intercept set $x=0$, solve for y. Point form: $(0, y-i n t)$.

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$, where a and b are legs, and c is the hypotenuse, i.e. side opposite the right angle.

Equations of a Line

1. The standard form of a linear equation is $A x+B y=C$, where A and B cannot both be equal to 0 .
2. The point-slope form of a linear equation is given by $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope and the line passes through the point $\left(x_{1}, y_{1}\right)$.
3. The slope-intercept form of a linear equation is given by $y=m x+b$ where m is the slope and b is the y-intercept.

Parallel and Perpendicular Lines

Two lines with slopes m_{1} and m_{2} are parallel if and only if $m_{1}=m_{2}$.
Two lines with slopes m_{1} and m_{2} are perpendicular if and only if $m_{1} \cdot m_{2}=-1$.

Factoring

$a^{2}-b^{2}=(a-b)(a+b)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

