1.3 Fractions

GCF (Greatest Common Factor)

1. Write each of the given numbers as a product of prime factors.
2. The GCF of two or more numbers is the product of all prime factors common to every number.

Example: $10=2 ; 5$ and $8=2^{3}$.
GCF of 10 and 8 is: 2
Examples:

1. Find the GCF of 24 and 32.

$$
\begin{aligned}
& 15=3 \cdot 5 \\
& 27=3^{3} \\
& \operatorname{GCF}(15,27)=3
\end{aligned}
$$

3. Find the GC IF of 27,18 , and 45.

$$
\begin{aligned}
& 27=3^{3} \\
& 18=2 \cdot 3^{2} \\
& 45=3^{2} \cdot 5
\end{aligned}
$$

$$
\text { CF }=3^{2}=9
$$

LCM (Least Common Multiple)

1. Write each of the given numbers as a product of prime factors.
2. Take the greatest power on each prime and multiply them.

Example: $10=2: 5$ and $8=2^{3}$.
LCM of 10 and 8 is: $2^{3} .5=40$.
Examples:

1. Find the LCM of 15 and 27 :

$$
\begin{aligned}
15 & =3 \cdot 5 \\
27 & =3^{3} \\
L C M=3^{3} \cdot 5 & =27 \cdot 5=135
\end{aligned}
$$

2. Find the LCM of 18 and 36.

$$
\begin{aligned}
18 & =2 \cdot 3^{2} \\
36 & =2^{2} \cdot 3^{2} \\
L C M & =2^{2} \cdot 3^{2}=4(9)=36
\end{aligned}
$$

3. Find the LCM of 15,18 , and 36.

4. Find the LCM of 2,5 and 10 .

Adding and Subtracting Fractions:

- Find a least common denominator using method for LCM
- Change the numerators of each fraction
- Add or subtract the numerators (keep denominator unchanged)
- Reduce

Examples:
$1+\frac{1}{4}+\frac{1}{5}=\frac{1.5}{4.5}+\frac{1.4}{5.4}=\frac{5+4}{20}=\frac{9}{20}$
2. $\frac{5}{6}+\frac{3}{8}=\frac{5 \cdot 4}{6 \cdot 4}+\frac{3 \cdot 3}{8 \cdot 3}=\frac{20+9}{24}=\frac{29}{24}$

$$
=\frac{12+5+9}{30}=\frac{26}{30}=\frac{13}{15}
$$

$$
\begin{aligned}
6 & =2 \cdot 3 \\
8 & =2^{3} \\
L C M & =2^{3} \cdot 3 \\
& =8 \cdot 3=24
\end{aligned}
$$

4. $\frac{2}{5}-\frac{1}{6}=$

$$
\begin{array}{ll}
5.3 \frac{1}{5}-2 \frac{1}{4}=\frac{16 \cdot 4}{5 \cdot 4}-\frac{9 \cdot 5}{4 \cdot 5} & \frac{64-45}{20}=\frac{19}{20} \\
3 \frac{1}{5}=\frac{3 \cdot 5+1}{5}=\frac{16}{5} & 2 \frac{1}{4}=\frac{2 \cdot 4+1}{4}=\frac{9}{4}
\end{array}
$$

6. $\frac{1}{2}+\frac{4}{5}-\frac{3}{10}=\frac{1 \cdot 5}{2 \cdot 5}+\frac{4 \cdot 2}{5 \cdot 2}-\frac{3}{10}$

$$
=\frac{5+8-3}{10}=\frac{10}{10}=1
$$

$$
\begin{aligned}
& 2=2 \\
& 5=5 \\
& 10=2 \cdot 5 \\
& L C M=2 \cdot 5=10
\end{aligned}
$$

$$
\frac{4}{5}+\frac{4 \cdot 5}{1-5}=\frac{4+20}{5}=\frac{20}{5}=4 \frac{4}{5}
$$

Multiplying and Dividing Fractions:

- Simplify the fractions if not in lowest terms.
- Multiply the numerators of the fractions to get the new numerator.
- Multiply the denominators of the fractions to get the new denominator.

Examples:

1. $\frac{1}{5} \times \frac{2}{3}=\frac{1 \cdot 2}{5 \cdot 3}=\frac{2}{15}$
2. $\frac{5}{4} \times \frac{2}{3}=\frac{5 \cdot 1}{4 \cdot 3}=\frac{5}{12}$

$$
\frac{4}{5} \times 6=4 \frac{4}{5}
$$

3. $\frac{4}{5} \times \frac{6}{1}=\frac{4 \cdot 6}{5}=\frac{24}{5}=4 \frac{4}{5} \quad \begin{aligned} & \frac{4}{5}+6=65 \\ & \frac{4}{2} \\ & \frac{5}{24} \\ & \text { Dividing Fractions: }\end{aligned}$

- Multiply the first fraction by the reciprocal of the second

Examples:

1. $\frac{3}{2} \div \frac{6}{7}=\frac{3}{2} \cdot \frac{7}{62}=\frac{7}{4}=1 \frac{3}{4}$
$2 \cdot \frac{4}{5} \div \frac{8}{11}=\frac{\not X^{\prime}}{5} \cdot \frac{11}{82}=\frac{11}{10}=1 \frac{1}{10}$
2. $\frac{4}{9} \div \frac{8}{1}=\frac{14}{9} \cdot \frac{1}{82}=\frac{1}{18}$

$$
\frac{1}{2}=1 \div 2
$$

4. $\frac{\left(\frac{4}{5}\right)}{\left(\frac{2}{7}\right)}=\frac{4}{5} \div \frac{2}{7}=\frac{2}{5} \cdot \frac{7}{\chi_{1}}=\frac{14}{5}=2 \frac{4}{5}$

$$
\text { 5. } \frac{\left(-\frac{7}{10}\right)}{\left(-\frac{2}{9}\right)}=\frac{7}{10} \div \frac{2}{9}=\frac{7}{10} \cdot \frac{9}{2}=\frac{63}{20}=3 \frac{3}{20}
$$

