Math 1300 Section 1.4

Section 1.4: Exponents and Radicals

Let n be a natural number. Then the exponential expression x^n is defined by $x^n = x * x * x * \dots * x$. x^n is read as "x to the nth power".

Examples:
$$2^4 = 2*2*2*2 = 16$$
, $(-3)^2 = (-3)(-3) = 9$

$$4^3 = (-5)^2 = -5^2 =$$

Rules for Exponents:

Multiplying Powers:

$$a^m \times a^n = a^{m+n}$$

Dividing Powers:

$$\frac{a^m}{a^n} = a^{m-n}$$

Negative Powers:

$$a^{-m} = \frac{1}{a^m} \text{ and } \frac{1}{a^{-n}} = a^n$$

Power Rule:

$$(a^m)^n = a^{mn}$$

Zero Power Rule:

$$a^0 = 1$$

Note: If no power is shown, then the exponent is 1.

Examples: Simply having no negative exponents.

$$1.(4)(4^3)$$

$$2.(c^3d^4)(c^5d^2)$$

$$3.\frac{a^5b^{16}c^7}{a^9b^8c^{12}}$$

4.
$$6x^{-3}$$

Math 1300 Section 1.4

$$5.\frac{30e^{-4}f^3}{5(f^4)^{-1}}$$

6.
$$\frac{3}{5^{-2}}$$

$$7.\frac{y^{-6}}{y^{-8}}$$

$$8.\left(\frac{3}{7}\right)^{-1}$$

$$9. \ \frac{12x^3y^0z^{-4}}{18x^3y^{-3}z^4}$$

10.
$$\left(\frac{4x^4}{16x^3y}\right)^{-1}$$

$$11. \left(\frac{24x^3y^{-8}z^4}{476x^{-3}y^2z^4} \right)^0$$

12.
$$(3^24^3)^8$$

13.
$$(6a^2b^{-2}c^4)^2$$

$$14.\frac{(mn^3)^{-2}}{(n^4)^2}$$

Math 1300 Section 1.4

Simplifying Radicals

A number y is called the **square root** of a number x if $y^2 = x$.

$$(-4)^2 = 4^2 = 16$$
. So, 4 and -4 are both square roots of 16.

In general, if x > 0, then x has two square roots. However, we use the symbol \sqrt{x} for the "principal square root", which is the positive square root of x.

Examples: Simplify the following.

1.
$$\sqrt{36}$$

2.
$$\sqrt{121}$$

3.
$$\sqrt{18}$$

4.
$$\sqrt{75}$$

5.
$$\sqrt{10^2}$$

6.
$$\sqrt{64} - 2^2$$

Notation: $x^{1/2} = \sqrt{x}$

7.
$$81^{1/2}$$

8.
$$144^{1/2} + 49^{1/2} - \sqrt{169}$$