Math 1300 Section 1.4 Section 1.4: Exponents and Radicals Let n be a natural number. Then the exponential expression x^n is defined by $x^n = x * x * x * ... * x$. x^n is read as "x to the *n*th power". n times **Examples:** $2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$, $(-3)^2 = (-3)(-3) = 9$ $4^{3} = 4 \cdot 4 \cdot 4 = 64 \quad (-5)^{2} = (-5)(-5) = 25 \quad -5^{2} = -(5)(-5) = -25$ **Rules for Exponents: Multiplying Powers:** $a^m \times a^n = a^{m+n}$ **Dividing Powers:** Negative Powers: 5 2 and Power Rule: $(a^m)^n$ $= a^{mn}$ 3·5 15 2 = 2 Zero Power Rule: *Note:* If no power is shown, then the exponent is 1. **Examples:** Simply having no negative exponents. $1.(4)(4^3) =$ 2. 4+2 16-8 -12 × -5 =

13. $(6a^2b^{-2}c^4)^2$

 $= 36 a^{4} b^{-4} c^{8}$ $= \frac{36 a^{4} c^{8}}{b^{4}}$

 $= (6)^{2} (a^{2})^{2} (b^{-2})^{2} (c^{4})^{2}$

В. 6x с. з,

 $X^{-n} = \frac{1}{X^n} \quad \frac{1}{X^{-h}} = X^n$

 $6. \frac{3}{5^{-2}} = 3 \cdot 5^2 = 3 \cdot (25) = 75$

2

Math 1300 Section 1.4 **Simplifying Radicals**

 $(-4)^2 = (-4)(-4) = 16$ A number y is called the square root of a number x if $y^2 = x$. $(4)^2 = (4)(4) = 16$

 $(-4)^2 = 4^2 = 16$. So, 4 and -4 are both square roots of 16.

In general, if x > 0, then x has two square roots. However, we use the symbol \sqrt{x} for the "principal square root", which is the positive square root of x.

Ξ

Examples: Simplify the following.

1. $\sqrt{36} = 6$

3.
$$\sqrt{18} = \sqrt{9 \cdot 2}$$

 $= \sqrt{9 \cdot 2}$
 $= 3\sqrt{2}$
5. $\sqrt{10^2} = 10$
 $\sqrt{4^2} = 4$
 $\sqrt{204}\sqrt{2} = 2014$
Notation: $x^{1/2} = \sqrt{x}$
7. $81^{1/2}$
 $= \sqrt{81}$

= Q