

Math 1300 Section 1.4
Section 1.4: Exponents and Radicals
Let n be a natural number. Then the exponential expression x^{n} is defined by $x^{n}=x * x * x * \ldots * x$. x^{n} is read as " x to the nth power".

Examples: $2^{4}=2 * 2 * 2 * 2=16,(-3)^{2}=(-3)(-3)=9$

$$
4^{3}=4 \cdot 4 \cdot 4=64(-5)^{2}=(-5)(-5)=25 \quad-5^{2}=-(5)(5)=-25
$$

Rules for Exponents:
Multiplying Powers:

$$
a^{m} \times a^{n}=a^{m+n}
$$

$$
2^{3} \times 2^{2}=\underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{3+2}=2^{5}
$$

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

$$
\frac{2^{5}}{2^{3}}=2^{5-3}=2^{2}
$$

Negative Powers:

$$
\begin{aligned}
& a^{-m}=\frac{1}{a^{m}} \text { and } \frac{1}{a^{-n}}=a^{n} \quad \frac{1}{2^{3}} \frac{1}{2^{-5}}= \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{0}=1 \quad\left(2^{3}\right)^{5}=2^{3.5}=2^{15}
\end{aligned}
$$

Note: If no power is shown, then the exponent is 1 .

Examples: Simply having no negative exponents.
Examples: Simply having no negati

1. $(4)\left(4^{3}\right)=4^{1+3}=4$

$$
\begin{gathered}
\left(2^{3}\right)^{5}=2^{3 \cdot 5}= \\
(2014)^{0}=1 \\
2^{1}=2
\end{gathered}
$$

3. $\frac{a^{5} b^{16} c^{7}}{a^{9} b^{8} c^{12}}$

$$
\begin{aligned}
& =a^{a^{2} b b^{50}} b^{16-8} c^{7-12} \\
& =c^{5-1}
\end{aligned}
$$

$$
=a^{-4} b^{8} c^{-5}
$$

$$
\begin{aligned}
& \quad(2 O 14)^{0}=1 \\
& \text { 2. }\left(c^{3} \cdot d^{4}\right)\left(c^{5} \cdot d^{2}\right) 2^{1}=2 \\
& =C^{3+5} a^{4+2} \\
& =C^{8} d^{6} \\
& \text { 4. } 6 x^{-3}=\frac{6}{x^{3}} \\
& (6 x)^{-3}=\frac{1}{(6 x)^{3}}=\frac{1}{6^{3} x^{3}}
\end{aligned}
$$

Power Rule:

Zero Power Rule:

$$
=\frac{b^{8}}{a^{4} c^{5}}
$$

$$
x^{-n}=\frac{1}{x^{n}} \quad \frac{1}{x^{-n}}=x^{n}
$$

$$
\begin{aligned}
& \text { Math } 1300 \text { Section } 1.4 \\
& \text { 5. } \frac{30 e^{-4} f^{3}}{5\left(f^{4}\right)^{-1}}=\frac{30^{6} e^{-4} f^{3}}{5 \cdot f^{-4}} \\
& \text { 6. } \frac{3}{5-2}=3 \cdot 5^{2}=3 \cdot(25)=75 \\
& =\frac{6 f^{3} \cdot f^{4}}{e^{4}}=\frac{6 f^{3+4}}{e^{4}}=\frac{6 f^{7}}{e^{4}} \\
& 7 \cdot \frac{y^{-6}}{y^{-8}} \\
& =\frac{y^{8}}{y^{6}}=y^{8-6}=y^{2}
\end{aligned}
$$

$$
\begin{align*}
& \text { 8. }\left(\frac{3}{7}\right)^{-1}=\left(\frac{7}{3}\right)^{1}=\frac{7}{3} \\
& =\frac{2 y^{3}}{3 y^{8}} \\
& \text { 11. }\left(\frac{24 y^{8} y^{-1} z^{4} t}{\left.476 x^{-3} y^{2} z^{4}\right)^{4}}\right)^{0}=1 \\
& \text { 10. }\left(\frac{4 x^{x}}{10 x^{x} y}\right)^{-1}=\frac{x^{4} x^{3} y}{4 x^{4}} \\
& =4 x^{3-4} y=4 x^{-1} y \\
& \text { 12. }\left(3^{2}{ }^{2} x^{8}\right)^{8} \quad=\frac{4 y}{x} \\
& =\left(3^{2}\right)^{8}\left(4^{3}\right)^{8}=\frac{x}{3^{16} 4^{24}} \\
& =(6)^{2}\left(a^{2}\right)^{2}\left(b^{-2}\right)^{2}\left(c^{4}\right)^{2} \\
& =36 a^{4} b^{-4} c^{8} \\
& =\frac{36 a^{4} c^{8}}{b^{4}} \\
& (3 x)^{2}=\quad \begin{array}{l}
\text { A. } 9 x^{2} \\
\text { B. } 6 x^{2} \\
\end{array} \tag{2}\\
& { }^{14 \cdot \frac{\left(m n^{3}\right)^{2}-2}{\left(n n^{2}\right.}}=\frac{1}{\left(m n^{3}\right)^{2}\left(n^{4}\right)^{2}} \\
& =\frac{1}{m^{2} n^{6} \cdot n^{8}} \\
& =\frac{1}{m^{2} n^{11}} \\
& (3 x)^{3}=(3)^{2}(x)^{2}=9 x^{2} \\
& \text { C. } 3 x^{2}
\end{align*}
$$

Math 1300 Section 1.4
Simplifying Radicals
A number y is called the square root of a number x if $y^{2}=x . \quad(4)^{2}=(4)(4)=16$ $(-4)^{2}=4^{2}=16$. So, 4 and -4 are both square roots of 16 .

In general, if $x>0$, then x has two square roots. However, we use the symbol \sqrt{x} for the "principal square root", which is the positive square root of x.

Examples: Simplify the following.

1. $\sqrt{36}=6$
2. $\sqrt{121}=\|$
3. $\sqrt{18}=\sqrt{9 \cdot 2}$
$=\sqrt{9} \cdot \sqrt{2}$

$$
=3 \sqrt{2}
$$

5. $\sqrt{10^{2}}=10$

$$
\begin{aligned}
& \sqrt{4^{2}}=4 \\
& \sqrt{(2014)^{2}}=2014
\end{aligned}
$$

Notation: $x^{1 / 2}=\sqrt{x}$
7. $81^{1 / 2}$

$$
\begin{aligned}
& =\sqrt{81} \\
& =9
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt[{4 \cdot \sqrt{75}}]{ } \\
& 25 \cdot 3 \\
& =\sqrt{25} \cdot \sqrt{3} \\
& =5 \sqrt{3}
\end{aligned}
$$

6. $\sqrt{64}-2^{2}$

$$
\begin{aligned}
& =8-4 \\
& =4
\end{aligned}
$$

25
36
49
64 81 100 121
8. $144^{1 / 2}+49^{1 / 2}-\sqrt{169}$

$$
\begin{aligned}
& =\sqrt{144}+\sqrt{49}-\sqrt{169} \\
& =12+7-13 \\
& =6
\end{aligned}
$$

