Math 1300 Section 2.2
Section 2.2: The Distance and Midpoint Formula
For any two points $\mathbf{A}\left(x_{1}, y_{1}\right)$ and $\mathbf{B}\left(x_{2}, y_{2}\right)$, the distance between them is given by

$$
d(A, B)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 1: Find the distance between the following pair of points.

$$
\begin{aligned}
& x_{1} y_{1} \quad x_{2} y_{2} \\
& \text { a) }(-3,1) \&(1,3) \\
& d=\sqrt{(1-(-3))^{2}+(3-1)^{2}}=\sqrt{(1+3)^{2}+(3-1)^{2}} \\
& =\sqrt{4^{2}+2^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4 \cdot 5}=\sqrt{4} \cdot \sqrt{5} \\
& =2 \sqrt{5} \\
& x_{1} y_{1} \quad x_{2} \quad y_{2} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \begin{aligned}
\frac{1}{2}+\frac{2 \cdot 2}{1 \cdot 2} & =\frac{1}{2}+\frac{4}{2} \\
& =\frac{5}{2}
\end{aligned} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \frac{1}{2}+\frac{2^{2}}{1 \cdot 2}=\frac{1}{2}+\frac{4}{2} \\
& d=\sqrt{\left(\frac{1}{2}-(-2)\right)^{2}+(-1-5)^{2}}=\sqrt{\left(\frac{1}{2}+2\right)^{2}+(-6)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{\left(\frac{3}{2}-4\right)^{2}+(-2-(-6))^{2}}=\sqrt{\left(-\frac{5}{2}\right)^{2}+(-2+6)^{2}} \\
& =\sqrt{\frac{25}{4}+(4)^{2}}=\sqrt{\frac{25}{4}+164}=\sqrt{\frac{25}{4}+\frac{64}{4}} \\
& =\sqrt{\frac{89}{4}}=\frac{\sqrt{89}}{\sqrt{4}}=\frac{\sqrt{89}}{2} \quad \begin{array}{rl}
2 T \cdot 2 & 2 \\
& =-\frac{5}{2}
\end{array} \\
& \frac{3}{2}-\frac{4}{1 \cdot 2}=\frac{3}{2}-\frac{8}{2} \\
& \begin{array}{l}
=\sqrt{\left(\frac{5}{2}\right)^{2}+(-6)^{2}}=\sqrt{\frac{25}{4}+\frac{36 \cdot 4}{1.4}}=\sqrt{\frac{25}{4}+\frac{144}{4}}=\sqrt{\frac{169}{4}}=\frac{\sqrt{169}}{\sqrt{4}}=\frac{b}{\frac{13}{2}} \\
d=\sqrt{\left(x_{2}, y_{2}\right.}\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
\end{array} \\
& \begin{aligned}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \begin{aligned}
\frac{1}{2}+\frac{2^{2}}{1 \cdot 2} & =\frac{1}{2}+\frac{4}{2} \\
& =\frac{5}{2}
\end{aligned} \text { 有 }
\end{aligned} \\
& \text { b) }(-2,5) \&\left(\frac{1}{2},-1\right)
\end{aligned}
$$

Math 1300 Section 2.2
Midpoint Formula

The midpoint of the line segment joining the two points $\mathbf{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathbf{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by

$$
M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Example 2: Find the midpoint between the following pair of points.

$$
x_{1} y_{1} x_{2} y_{2}
$$

a) $(-3,1) \&(1,3)$

$$
M=\left(\frac{-3+1}{2}, \frac{1+3}{2}\right)=(-1,2)
$$

$$
\begin{aligned}
& \begin{array}{l}
x_{1} y_{2} x_{2} y_{2} \\
0 \\
0
\end{array}\left(-\frac{1}{2}, 2\right)+\left(\frac{\left.x_{2}-6\right)}{}\right. \\
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad-\frac{1}{2}+\frac{5}{2}=\frac{-1+5}{2}=\frac{4}{2}=2 \\
& M=\left(\frac{(-1 / 2+2}{2}, \frac{2+(-6)}{2}\right)=\left(\frac{2}{2}, \frac{-4}{2}\right)=(1,-2)
\end{aligned}
$$

Math 1300 Section 2.2
The Pythagorean Theorem states that in a right triangle, if a and b are the lengths of the legs, and c is the length of the hypotenuse, then $a^{2}+b^{2}=c^{2}$

Note: To use the Pythagorean Theorem, you must have a right triangle
Example 3: Find the missing side, if $a=6$ and $b=8 . \quad \subset$ - ?

Example 4: Find the missing side, if $a=3$ and $c=5$.

$$
a^{2}+b^{2}=c^{2}
$$

$$
(6)^{2}+(8)^{2}=c^{2}
$$

$$
\begin{aligned}
36+64 & =c^{2} \\
\sqrt{100} & =\sqrt{k^{2}}
\end{aligned}
$$

$$
10=c \quad c=10
$$

$$
(3)^{2}+b^{2}=(5)^{2}
$$

$$
a+b^{2}=25
$$

Example 5: Find the missing side, if $a=5$ and $c=13$.

