Math 1300 Section 2.3
Section 2.3: Slope and Intercepts of a Line
Definition: The slope of a line measures the steepness of a line or the rate of change of the line.
To find the slope of a line you need two points. You can find the slope of a line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ by using this formula.

$$
\text { slope }(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}
$$

The Different Types of slope

- Lines with positive slope rise to the right.
- Lines with negative slope fall to the right.
- Lines with slope equal to 0 are horizontal lines.
- Lines with undefined slope are vertical lines

Example 1: Find the slope of the line containing the following points

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

a. $(4,-3)$ and $(-2,1)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-3)}{-2-4}=\frac{1+2}{-6}=\frac{4}{3}
$$

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

b. $(-3,1)$ and $(-3,-2)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-1}{-3-(-3)}=\frac{-3}{0} \text { undefined }
$$

$x_{1} y_{1} \quad x_{2} y_{2}$
c. $\left(-2, \frac{1}{4}\right)$ and $\left(1, \frac{3}{4}\right)$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\frac{3}{4}-\frac{1}{4}}{1-(-2)}=\frac{\frac{x_{1}}{x_{2}}}{3}=\frac{\frac{1}{2}}{3} \\
&=\frac{1}{2} \div 3=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

Math 1300 Section 2.3
The x-coordinate of the point where a line intersects the x-axis is called the \boldsymbol{x}-intercept. It is found by setting $y=0$ in the equation of the line and solving for x.

The y-coordinate of the point where a line intersects the y-axis is called the y-intercept. It is found by setting $x=0$ in the equation of the line and solving for y.

Example 2: Find the x - and y -intercepts of the following equations.
a. $7 x+2 y=14$

The term intercept also refers to the POINT at which the graph of the line crosses either the x-axis or the \square y-axis. Sometimes, the question will ask you to write the y-intercept or y-intercept "as a coordinate point" or "in coordinate point form". To answer this question, the procedure is
x - intercept as a coordinate point -

1. Find the x -intercept by setting $\mathrm{y}=0$ and solving the equation for x .
2. Write the point as (x -intercept, 0)
y-intercept as a coordinate point -
3. Find the y -intercept by setting $\mathrm{x}=0$ and solving the equation for y .
4. Write the point as (0 , y-intercept)

Example 3: Find the x - and y - intercepts of the line $3 x-2 y=18$ and express the intercepts in coordinate point form.

$$
\begin{array}{rr}
\text { set } y=0 & y \text {-int: set } x=0 \\
3 x-2(0)=18 & 3(0)-2 y=18 \\
\frac{3 x}{3}=\frac{18}{3} & \frac{-2 y}{-2}=\frac{18}{-2} \\
(6,0) & =6
\end{array}
$$

Math 1300 Section 2.3
Example 4: Find the x - and y - intercepts of the line $2 y=14$ and express the intercepts in coordinate point form.

x-int: $y=0$

$$
\frac{2 y}{2}=\frac{14}{2}
$$

$$
2(0)=14
$$

$$
0 \neq 14
$$

y-int $y=1$

Example 5: Find the x - and y -intercepts of the line $x=-5$ and express the intercepts in coordinate point form

$$
\begin{aligned}
& y \text {-int. DNE } \\
& x-\text { int. } x=-5 \\
& (-5,0)
\end{aligned}
$$

Example 6: Find the x - and y -intercepts of the line $-3 x=15$ and express the intercepts in coordinate point form

$$
\begin{gathered}
\frac{-3 x}{-3}=\frac{15}{-3} \\
x=-5
\end{gathered}
$$

