Math 1300 Section 2.4
Section 2.4: Graphing Lines

$$
\begin{aligned}
& y=3 x+7 \\
& y=-1 / 2 x+3 \\
& y=7 x-5
\end{aligned}
$$

The graph of an equation of the form $y=A x+B$ is a line. If $A>0$, then the graph will RISE as we move from left to the right. If A <0, then the graph will FALL as we move from left to thejeght.

Example 1: Graph the line $y=x-1$
Start by filling in the missing values

x	y
-2	-3
1	0
3	2

$$
\begin{aligned}
& y=-2-1=-3 \\
& y=1-1=0 \\
& y=3-1=2
\end{aligned}
$$

Math 1300 Section 2.4
Example 2: Graph the line $y=-2 x+2$
Start by filling in the missing values

$$
\begin{aligned}
& 6=-2 x+2 \\
& -2=3 x-6
\end{aligned} \text { \& } \quad \frac{4}{-2}=\frac{-2 x}{-2}
$$

$$
-2=x
$$

$$
\begin{aligned}
& \begin{array}{|l|c|}
\hline \mathrm{x} & \mathrm{y} \\
\hline-2 & -12 \\
\hline 0 & -6 \\
\hline 1 & -3 \\
\hline 5 & 9 \\
\hline 2 & 0 \\
\hline
\end{array} \\
& y=3(-2)-6=-6-6=-12 \\
& y=3(0)-6=-6 \\
& y=3(1)-6=3-6=-3 \\
& \begin{array}{l}
9=3 x-6 \\
+6+6 \\
\frac{15}{3}=\frac{3 x}{3}
\end{array} \quad\left\{\begin{array}{l}
0=3 x-6 \\
+6+6 \\
\frac{6}{3}=\frac{3 x}{3}
\end{array}\right. \\
& 5=x \\
& 2=x \\
& x=5 \\
& x=2
\end{aligned}
$$

Equations of a Line
Forms of Equations:

1. The standard form of a linear equation is given by $A x+B y=C$ where A and B cannot both be equal to zero.
Example: $2 x-4 y=12$
2. The point-slope form of a linear equation is given by $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and the line passes through the point $\left(x_{1}, y_{1}\right)$.
$\begin{array}{cc}\text { Example: } y+3=-2(x-5) \\ y-(-3) & m=-2\end{array}(5,-3)$
3. The slope-intercept form of a linear equation is given by $y=m x+b$ where m is the slope and b is the y-intercept.

$$
\text { Example: } y=2 x+1 \quad m=2 \quad y \text {-int }=1
$$

Example 4: Find an equation for the line with a slope of 4 and a y-intercept of 1.

$$
\begin{aligned}
& y=m x+b \\
& y=4 x+1
\end{aligned}
$$

Example 5: Find an equation for the line with a slope of -3 and a y-intercept of -2 .

$$
\begin{aligned}
& y=m x+b \\
& y=-3 x-2
\end{aligned}
$$

Example 6: Find an equation for the line with a slope of -5 and passing through the point $(2,8)$.

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow y & =m x+b \\
y-8=-5(x-2), & y+8=-5 x+10 \\
y & =-5 x+18
\end{array}
$$

Example 7: Find an equation for the line with a slope of $4 / 3$ and passing through the point $(6,26)$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
3(y-26)=\frac{4}{3}(x-6) \\
y-26=\frac{4}{3}(x-6) \\
\text { point-slope form }
\end{gathered}
$$

$$
\begin{aligned}
& 3 y-78=4(x-6) \\
& 3 y=78=4 x-24 \\
& 3 y=-(4 x)(54) \\
& \left.\frac{3}{3}\right) \\
& y=\frac{4}{3} x+18 \text { shpe-inter. }
\end{aligned}
$$

Example 8 : Find an equation in slope-intercept form for the line that passes through the points $(-6,2)$ and $(0,-4)$.

$$
\left.\begin{array}{rl}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{-4-2}{0-(-6)}=\frac{-6}{6}=-1 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-1(x-(-6)) \\
y-2 & =-1(x+6) \\
y-2 & =-x-6 \\
+2
\end{array}\right] y=-x-4
$$

Example 9: Find an equation in slope-intercept form for the line that passes through the points $(-2,2)$ and $(4,-2)$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-2}{4-(-2)}=\frac{-4}{4+2}=\frac{-4}{6}=-\frac{2}{3} \\
& y-y_{1}=m\left(x-x_{1}\right) \quad \quad \quad y=-\frac{2}{3}(x+2)+2 \\
& y-2=-\frac{2}{3}(x-(-2)) \\
& y-2=-\frac{2}{3}(x+2) \quad y=-\frac{2}{3} x-\frac{4}{3}+2 \\
& y=-\frac{2}{3} x+\frac{2}{3} \\
& \frac{-4}{3}+\frac{2 \cdot 3}{1 \cdot 3}=\frac{-4+6}{3}=\frac{2}{3}
\end{aligned}
$$

