Functions and Domains:

Definition: A relation in mathematics is a set of one or more ordered pairs. It can be described by:

1. A set of ordered pairs: $\{(-3,-1),(-2,1),(-1,1),(1,3),(3,1),(3,2),(0,3)\}$
2. Graphs:

3. Tables:

x	y
-3	-1
-2	1
-1	1
1	3
3	1
3	2
0	3

4. Mappings:

The DOMAIN of a relation is the set of all the first elements (the x-values or x-coordinates) in the ordered pairs.

The RANGE of a relation is the set of all the second elements (the y-values or y-coordinates) in the ordered pairs.

A FUNCTION is a special relation in which each element, x, of the domain is paired with exactly (only) one element, called $f(x)$, of the range. One way to test a relation to see if it is a function is by using the vertical line test.

1. Is the given relation a function?
a) $\{(1,-1),(2,5),(3,4)\}$

Domain:
Range:
b) $\{(1,2),(4,5),(3,2)\}$

Domain:
Range:
c) $\{(1,2),(4,5),(4,2)\}$
d) $\{(1,1),(0,0),(4,4)\}$

In the equation $y=f(x)$, the symbol $f(x)$ is read "f of x " and is the value of the function f at the number x. The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain.

To evaluate f at a number, substitute the number for x into the definition of f. (Wherever there's an x in the equation, use the number in parentheses instead and simplify.)
2. If $f(x)=6 x-5$, calculate $f(4)$.
3. If $f(x)=5 x^{2}+4 x-7$, calculate $f(-2)$.
4. If $f(x)=-2 x^{4}+3 x^{3}+x^{2}-2 x$, calculate $f(-1)$.
5. If $f(x)=\frac{10}{2 x+4}$, calculate $f\left(\frac{1}{2}\right)$.
6. If $f(x)=|2 x-5|$, calculate $f(1)$.

Domain of a function:

To find the domain of a function, one must determine what all possible x-values can go into the equation to get valid y-values. We ask, "Is there anything x cannot equal?" for a function.
If the answer to the question is "no," then the domain is all real numbers, written $(-\infty, \infty)$ or \mathbb{R}.
If the function has an x on the bottom of a fraction, then the domain cannot contain the number(s) that makes the denominator equal to zero (since division by zero is impossible).
7. Find the domain of the function $f(x)=4 x+15$.
8. Find the domain of the function $f(x)=\frac{4 x-1}{5}$.
9. Find the domain of the function $f(x)=\frac{5}{4-x}$.
10. Find the domain of the function $f(x)=\frac{x+4}{x-3}$.
11. Find the domain of the function $f(x)=\frac{x}{(x+1)(x-2)}$.
12. Find the domain of the function $f(x)=\frac{5}{x^{2}-16}$.

Radical Functions: If the function has an x on the inside of a square root sign, then the domain cannot contain those numbers which make the inside negative (since we can't take the square root of a negative number).
13.Find the domain of the function $f(x)=\sqrt{x-2}$.
14. Find the domain of the function $f(x)=\sqrt{8-2 x}$.

