Functions and Graphs:

Definition: The graph of a function f is the set of all points (x, y) in the coordinate plane where the x-coordinates are the elements of the domain of f and where the y-coordinates are given by $y=f(x)$.

A function can have exactly (only) one y-value, called $f(x)$, per x-value. One way to test a relation to see if it is a function is by using the vertical line test. That is, a vertical line can intersect a graph of a function at most once.

1. State whether the given graph is a function.

2. Sketch the graph of $y=x^{2}$. What is the domain?

3. Sketch the graph of $y=\sqrt{x}$. What is the domain?

4. Graph the set of points $\{(-1,-3),(-2,3),(3,1),(3,2),(0,2)\}$. Determine whether the set of points represents a function.

5. Given the following graph, find:

Domain:

Range:
$f(-3)=$
$f(0)=$
$f(1)=$
$f(2)=$
$f(3)=$

6. Given the following graph, find:

Domain:

Range:
$f(-4)$
$f(-3)=$
$f(-1)=$
$f(0)=$
$f(1)=$

$f(2)=$
$f(4)=$
7. Solve for y and determine if the given equation defines y as a function of x.
$2 y+4 x=6$
8. Solve for y and determine if the given equation defines y as a function of x.
$y^{2}=x+4$

