Factoring Polynomials

Some trinomials that can be factored do not look like the special trinomials from the previous sections. Factor trinomials, written $ax^2 + bx + c$, by doing the following rules:

- 1. Factor out the GCF of all three terms. Use the resulting trinomial for the rest of the steps. If a is negative, also factor out -1 along with the GCF.
- 2. Check that the square root of $b^2 4ac$ is a whole number (that is $b^2 4ac$ is a perfect square). If $b^2 4ac$ is negative, then we cannot factor the trinomial. If the square root of $b^2 - 4ac$ is not a whole number, then the factored form of $ax^2 + bx + bx$ c will have fractions or square root signs in it. We will not be factoring these in this section.
- 3. Look at the sign of the constant term.
 - a. If the second sign (the one before the constant term) is a + sign, then both signs in the factored form are whatever the first sign is.

$$ax^{2} + bx + c = (_ + _)(_ + _)(_ + _)$$

- $ax^2 bx + c = (_ -_)(_ -_)$ b. If the second sign is a sign, then the signs in the factored form are different. $ax^{2} + bx - c = (_ + _)(_ - _)$ or

$$ax^{2} + bx - c = (+)(-$$

- $ax^2 + bx c = (_ + _)(_ _)$ 4. Find two numbers that multiply together to give *ac* but add up to give *b*. Keep the signs of a, b, and c with the numbers.
- 5. Rewrite in preliminary factored form:
 - a. Write the GCF on the outside of the factored form.
 - b. In both sets of the parentheses, write ax
 - c. Write the appropriate signs from step 3.
 - d. Write the two numbers found in step 4, one in each set of parentheses.
- 6. Factor out any GCFs from the sets of parentheses and throw them away.
- 7. Rewrite. This is the final factored form.

Examples:

Factor $x^2 + 5x + 6$. 1.

Step 1: Find $GCF(x^2, 5x, 6)$. The GCF of this trinomial is 1 since the only factor of 1 is 1.

Step 2: Find $b^2 - 4ac$. Here, a = 1, b = 5, and c = 6, so $b^2 - 4ac = (5)^2 - (4)(1)(6) =$ 25 - 24 = 1. Since $\sqrt{1} = 1$, a whole number, then we can factor this trinomial and have integer coefficients.

Step 3: Sign of the constant term. The constant term of this trinomial is +6, so both the signs inside the factored form (a.k.a. the answer) will be the same. Since the sign on the 5x is positive also, the factored form will look like (+)(+). Step 4: Find 2 numbers. We need two numbers that multiply together to give (1)(6) = 6 and add up together to give 5. Factors of 6 are 1 & 6 or 2 & 3. Since 2 + 3 = 5, these are the numbers we will use.

Step 5: Preliminary answer. The preliminary factored form is 1(1x + 2)(1x + 3). Step 6: Internal GCFs. There are no GCFs other than 1 inside each set of parentheses.

Step 7: Rewrite. The factored form is (x + 2)(x + 3)

2. Factor the polynomial $x^2 - 5x - 24$. Step 1: GCF(x^2 , -5x, -24) = 1. Step 2: $b^2 - 4ac = (-5)^2 - 4(1)(-24) = 25 + 96 = 121$. $\sqrt{121} = 11$, so we can factor this polynomial. Step 3: The sign of the constant term is negative, so the signs inside the sets of

Step 3: The sign of the constant term is negative, so the signs inside the sets of parentheses will be different, $(_+_)(_-_)$

Step 4: We want 2 numbers that multiply together to give (1)(-24) = -24 and add up to -5. Factors of -24 and their sums are

1^{st}	2^{nd}	Product	Sum		1^{st}	2^{nd}	Product	Sum
-1	24	-24	23		1	-24	-24	-23
-2	12	-24	10		2	-12	-24	-10
-3	8	-24	5	\rightarrow	3	-8	-24	-5
-4	6	-24	2		4	-6	-24	-2

The numbers 3 and -8 multiply together to give -24 and add up to -5.

Step 5: The preliminary answer is 1(1x+3)(1x-8).

Step 6: Neither set of parentheses have a GCF other than 1.

Step 7: The answer is (x + 3)(x - 8).

3. Factor $x^2 + 10x + 18$.

Step 1: $GCF(x^2, 10x, 18) = 1$.

Step 2: $b^2 - 4ac = (10)^2 - (4)(1)(18) = 100 - 72 = 28$. Since 28 is not a perfect square (the square root of 28 is not a whole number), we cannot factor this trinomial and have only integer coefficients in our answer. This trinomial is in its final factored form.

4. Factor $3x^2 + 5x + 4$. Step 1: Find GCF($3x^2$, 5x, 4). The GCF is 1 since none of the coefficients have a factor in common. Step 2: Find $b^2 - 4ac$. In this trinomial, a = 3, b = 5, and c = 4, so $b^2 - 4ac = (5)^2 - (4)(3)(4) = 25 - 48 = -23$. Since -23 is negative, we cannot factor this polynomial. Math 1300 Section 4.3 **Example 1:** Factor $x^2 - 5x + 6$

Example 2: Factor $x^2 - 4x - 5$

Example 3: Factor $x^2 - 11x + 10$

Example 4: Factor $2x^2 + 18x - 20$

Math 1300 Section 4.3

Example 5: Factor $6x^2 - 18x + 12$

Example 6: Factor $-12x^2 + 24x + 36$

Example 7: Factor $6x^2 + 13x - 15$

Math 1300 Section 4.3 **Example 8:** Factor $16x^3 - 25x$

Example 9: Factor $30x^3 - 3x^2 - 9x$

Example 10: Factor $x^4 + 3x^2 - 4$

Example 11: Factor $-18x^3 + 54x^2 - 8x + 24$